Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Присоединение спиртов, альдегидов и аминов

    К особому случаю электростатических сил направленного действия относится водородная связь [3]. Она возникает между двумя партнерами, один из которых содержит атом водорода, присоединенный к электроотрицательному атому, а другой— свободную пару электронов X—Н---У (здесь X — атом с высокой электроотрицательностью, т. е. Р, О, Ы Н — атом водорода, У—атом с неподеленной парой электронов, Н---У — водородная связь). Чем сильнее электроотрицательность X, тем более положителен водород в связи X—Н. При этом кислород имеет в газовой хроматографии наибольшее значение для высших аналогов этих трех элементов энергии водородных связей имеют тот же порядок, что и обычные силы притяжения [4]. В соединениях с гидроксильной группой атом водорода приобретает положительный заряд благодаря перемещению электронов к электроотрицательному атому кислорода (например, в карбоновых кислотах, спиртах, фенолах, воде) и смещается к атомам, обладающим неподеленной парой электронов, т. е. к атомам фтора, кислорода, азота (во фторсодержащих соединениях, простых и сложных эфирах, кетонах, альдегидах, карбоновых кислотах, спиртах, фенолах, аминах и т. п.). Сходным образом ведет себя атом водорода в ЫН- и СН-группах, если азот (например, в пирроле, имидазоле и т. д.) или углерод (в ацетилене, хлороформе, органических нитро- и цианистых соединениях с а-атомами водорода) становятся отрицательными благодаря особенностям химической структуры соединения. Энергия образования водородной связи примерно на порядок больше, чем энергия обычного межмолекулярного взаимодействия, однако она гораздо меньше энергии образования химической связи. Вследствие этого энергию образования водородной связи можно объяснить не только электростатическим взаимодействием ХН и V. Второе взаимодействие можно приписать [c.71]


    Хлористый кальций—широко применяемый дешевый осушитель. Он образует несколько гидратов с различной температурой разложения. Его преимуществом является способность поглощать относительно большое количество воды, а основным недостатком—слишком медленная сушка жидкости. Безводная соль медленно образует гидрат с малым содержанием воды, который быстро переходит в более оводненную соль. Недостаток хлористого кальция заключается в том, что он легко образует продукты присоединения с рядом органических веществ, например со спиртами, фенолами, аминами, аминокислотами, амидами, низшими кетонами, альдегидами li сложными эфирами. Кроме того, технический продукт всегда содержит в качестве загрязнений гидрат окиси кальция и основную соль. Поэтому он непригоден для сушки веществ кислотного характера. [c.115]

    Присоединение спиртов, альдегидов, кислот, аминов и меркаптанов [c.891]

    Присоединение спиртов, альдегидов и аминов [1—3] [c.232]

    Присоединение спиртов, аминов, сложных эфиров, альдегидов и т. д. [c.207]

    Другими соединениями, содержащими С=0-группу, являются кислоты и их производные. В то время как в альдегидах и кетонах карбонильная группа весьма активна, вследствие чего для этого класса соединений реакции присоединения являются характерными, для кислот и их различных производных—хлорангидридов, сложных эфиров, ангидридов и амидов—продукта присоединения реагента по карбонильной группе обычно получить не удается. При взаимодействии производных кислот с водой, спиртами и аминами образуются соединения, в которых С=0-группа сохраняется, т. е. происходит как бы обмен атомов и групп, стоящих около углеродного атома карбонила, на другие группировки. Однако детальное исследование и этих реакций привело к представлению о том, что они протекают также через стадию присоединения реагента по карбонильной группе. [c.435]

    Подобно другим сильным кислотам, железистосинеродистая кислота дает солеобразные продукты присоединения с различными органическими веществами эфирами, спиртами, альдегидами, кетонами, аминами, алкалоидами, а также рядом органических циклов, содержащих в своем составе атомы серы, фосфора, кислорода и азота, причем наличие последних в молекуле основания является необходимым условием для образования молекулярных продуктов присоединения. [c.97]


    Альдегиды, формиаты, первичные и вторичные спирты, амины, простые эфиры, алкилгалогениды, соединения типа 2— —СНг—2 , а также ряд других соединений присоединяются к двойным связям в присутствии свободнорадикальных инициаторов [420]. Формально это присоединение КН к двойной связи, [c.207]

    Скорость присоединения по карбонильной группе, естественно, тем выше, чем более нуклеофилен реагент, т. е., грубо говоря, чем больше его основность. Поэтому, например, эфиры и амиды омыляются ионами гидроксила гораздо быстрее, чем менее основной водой поэтому альдегид гораздо энергичнее реагирует с первичным или вторичным амином, чем со спиртом. В связи с этим полезно вспомнить то, что говорилось о нуклеофильных реагентах в гл. 2 части IV. Все сказанное там сохраняет полную силу и для рассматриваемых случаев. [c.366]

    Акрилонитрил присоединяет не только амины, фенолы, сероводород и спирты, но также и соединения, имеющие реакционноспособную метиленовую или метиновую группу (кетоны, альдегиды, нитросоединения). Такое присоединение носит название реакции цианэтилирования, так как р-циан-тильная группа вступает на место реакционноспособного атома водорода. [c.177]

    По этому типу присоединения могут реагировать спирты, амины, альдегиды и кетоны. рйь [c.431]

    Хлорид бериллия имеет ярко выраженную склонность к присоединению аммиака Be b- NHa х = 2, 4, 6, 12) и органически. молекул — эфиров, спиртов, альдегидов, аминов и т. д. с образованием координационных соединений главным образом состава Be l2-2R. Комплексы галогенидов бериллия с эфирами ВеГала- 2 R2O — кристаллические вещества, растворимые в эфирах, ароматических углеводородах, четыреххлористом уг лероде, сероуглероде и нерастворимые в алифатических углеводородах [135— 140]. [c.22]

    За прошедшие годы появилось значительное количество исследований, в которых был расширен круг галоидорганических соединений, вступающих в реакцию Арбузова, и проведены исследования по изучению ее механизма. Однако за последние 20 лет наметилось и другое, не менее важное и интересное направление исследований в химии производных кислот трехвалентного фосфора — изучение взаимодействия с органическими электрофильными реагентами, не содержащими атомов галоидов. Эта новая, многообещающая и быстро развивающаяся область фосфорорганической химии включает разнообразные превращения производных кислот трехвалентного фосфора с широким кругом соединений как насыщенного, так и ненасыщенного рядов — спиртами, перекисями и гидроперекисями, карбоновыми кислотами и их производными, аминами, альдегидами, кетонами, сернистыми соединениями, непредельными углеводородами и др. Ввиду многообразия реагентов, вступающих в реакции с соединениями трехвалентного фосфора, естественно и механизмы их протекания неоднозначны. Наряду с нуклеофильным замещением наблюдаются процессы нуклеофильного присоединения и окисления. Многие из реакций нуклеофильного замещения и присоединения осуществляются по схемам, аналогичным или близким к предложенным для классической перегруппировки Арбузова и могут рассматриваться как ее разновидности. В первой фазе происходит атака атома фосфора на атом углерода, несущий какую-либо функциональную группу или являющийся концевым в непредельной системе, по механизму бимолекулярного нуклеофильного замещения с образованием квазифосфониевого соединения или биполярного иона. Во второй фазе в результате 5д,2-реакции аниона [c.5]

    Деккер получал продукты присоединения из алкилиден-амина и алкилиодида, которые распадаются при нагревании с водой или спиртом на альдегид и алкилпроизводные соответствующего основания [c.623]

    Первичные и вторичные спирты индуцируют разложение ацилперекисей аналогичным образом, что приводит к окислению спирта до альдегида или кетона [26]. Ацилперекиси также быстро реагируют с аминами, по-видимому, главным образом не по свободнорадикальному механизму [27]. Вследствие этого ацилперекиси вероятно, не являются лучшими инициаторами в цепных реакциях присоединения простых эфиров, спиртов и аминов к олефинам. Однако они с успехом применялись для инициирования других реакций присоединения. Например, способность ацилперекисей вступать в реакцию при более низких температурах делает их полезными для применения в реакциях присоединения альдегидов, которые при более высоких температурах, необходимых при использовании диалкилперекисей, могут подвергаться чрезмерному декар-бонилированию. [c.129]

    Оказалось, что фотоинициирование весьма полезно в некоторых реакциях присоединения полигалогенметанов, а также присоединения некоторых спиртов и аминов. Данные по поглощению ультрафиолетовых лучей другими соединениями также свидетель-сруют о возможности фотоинициирования реакций присоединения. Однако всегда существует возможность и иных фотохимических реакций помимо желаемого процесса инициирования. Например, метиловый эфир муравьиной кислоты претерпевает при облучении сильное разложение с образованием окиси углерода и метилового спирта, причем в присутствии октена-1 не удалось обнаружить продуктов реакции присоединения. Если альдегиды и кетоны облучать в присутствии олефинов и ацетиленов с неконцевой кратной связью, то образуются производные окиси триметилена [28]. [c.131]


    Другими соединениями, содержащими С=0-группу, являются сислоты и их производные. В то время как в альдегидах и кетонах карбонильная группа весьма активна, вследствие чего для этого сласса соединений реакции присоединения являются характерными [,ля кислот и их различных производных—хлорангидридов, сложных фиров, ангидридов и амидов,—продукт присоединения реагента ю карбнильной группе обычно получить не удается. При взаимодей-твии производных кислот с водой, спиртами и аминами образуют-я соединения, в которых С=0-группа сохраняется, т. е. происхо-1ит как бы обмен атомов и групп, стоящих около углеродного атома сарбонила, на другие группировки. Однако детальное исследование I этих реакций привело к представлению о том, что они протекают акже через стадию присоединения реагента по карбонильной груп-16. Первые указания на такой механизм реакций производных кис-ют были получены при исследовании процесса гидролиза сложных )фиров в щелочной среде. Последний можно объяснить, допустив Дин из следующих механизмов  [c.379]

    Образует азеотропные смеси с фенолом, о-крезолом, бен-зилхлоридом. Быстро окисляется на воздухе до бензойной кислоты подобно алифатическим альдегидам вступает в реакции присоединения по карбонильной группе. Нагревание с раствором щелочей приводит к бензиловому спирту и бензойной кислоте (реакция Канниццаро), конденсация в присутствии K N -к бензоину. С фенолами или третичными ароматическими аминами бензальдегид конденсируется с образованием производных трифенилметана, с уксусным ангидридом - с образованием коричной кислоты (реакция Перкина), реакция с NH3 приводит к гидробензамиду ( 6H5 H=N)2 H gH5. Замещение в ароматическом ядре (например, при нитровании, хлорировании, сульфировании) идет преимущественно в л1-положении. [c.117]

    По этому типу происходит присоединение первичных ароматических аминов, енаминов [22], меркаптанов [23], соединений с активными метиленовыми группаш (ацетоуксусный эфир, малоновый эфир [24, 25]), спиртов [23], гидразонов альдегидов [26], азотистоводородной кислоты [27] и алифатических диазосоединений [28—30]. Анало- [c.522]

    Лучше протекает реакция восстановления натрием и спиртом, и этот способ оказал большие услуги (в особенности Краффту) при синтезе высших аминов жирного ряда. В последнее время более подробно было изучено каталитическое восстановление нитрилов никелем и водородом, а также палладием или платиной и водородом (Сабатье и Сандеран, Рупе и др.). Оказалось, что в зависимости от характера нитрила получаются либо первичные, либо вторичные амины, либо смесь обоих соединений. Объяснение хода реакции образования первичных аминов не представляет трудности, но синтез вторичных аминов уже не столь ясен. Вероятно, он протекает так, что из нитрила при присоединении молекулы водорода образуется альдимин, который затем частично гидролизуется до альдегида и частично восстанавливается до первичного амина. Оба эти вещества соединяются с образованием шиффова основания, которое при дальнейшем действии водорода превращается- во вторичный амин. Возможно также, что альднмин реагирует с одной молекулой образовавшегося первичного амина, причем сразу получается шиффово основание  [c.162]

    Амины — это продукты замещения в молекуле аммиака атомон водорода алкильными радикалами. Амины — типичные нуклеофилы, способные атаковать электронодефицитные центры, что в конечном итоге приводит к присоединению по кратной связи (в альдегидах и кетонах) или к нуклеофильному замещению (в галоген-алканах, производных кислот, спиртах)  [c.53]

    Скорость присоединения по карбонильной группе, естественно, тем выше, чем более нуклеофилен реагент, т. е., грубо говоря, чем больию его основность. Поэтому, например, эфиры и амиды омы-ляются ионами гидроксила гораздо быстрее, чем водой, молекулы которой менее основны поэтому альдегид гораздо энергичнее реагирует с первичным или вторичным амином, чем со спиртом. [c.47]

    Вторая реакция, как следует из приведенных выше хроматографических данных, тре.бует 2 моля амина на 1 Моль исходного кетона I и также сопровождается отщеплением спирта. Поскольку известно, что при взаимодействии карбонилсодержащих соединений с аминами образуются неустойчивые карби-ноламины [5], то можно предполагать, что первой стадией наблюдаемой нами реакции является присоединение амина к кетону I с образованием карбинол-амина V. В дальнейшем в условиях реакции происходит, по-видимому, распад соединения V с отщеплением спирта и образованием неустойчивого енамина ацетона и пропаргилового альдегида, который, как известно, легко дает с присутствующим в реакционной смеси амином соответствующий Р-амино-акролеин (III). [c.36]

    Наиболее характерными реакциями диацетиленовых углеводородов являются реакции присоединения нуклеофильных реагентов, В этих реакциях тройные связи проявляют особенно высокую реакционную способность, которая возрастает с увеличением числа тройных связей в молекуле полиина [113, 531]. Кроме того, активность диацетиленов в нуклеофильных реакциях в значительной степени зависит от природы заместителей, соседних с тройными связями. Из этих реакций будут рассмотрены реакции диацетиленов со спиртами, аминами и меркаптанами, изучение которых позволило выявить важные закономерности в реакциях нуклеофильного присоединения к тройным сопряженным связям. Подобно реакциям винилирования спиртов и меркаптанов с помощью ацетилена (Реппе [85, 538, 539], Шостаковский [540]), взаимодействие диацетилена с этими реагентами сыграло большую роль в развитии химии диацетилена и открыло реальный путь практического его использования. Применение технической смеси, содержащей диацетилен [29, 116, 541, 542], для синтеза эти-нилвинилметилового эфира и ацеталей разнообразных альдегидов открывает широкие возможности для синтетической химии. [c.84]

    В главе III рассмотрена реакция присоединения к двойной связи по свободнорадикальному цепному механизму с образованием новой углерод-углеродной связи. Большое внимание уделено процессу теломеризации, основанному на присоединении к этилену полигалогенметанов. Обсуждено также присоединение к кратной связи альдегидов, спиртов, аминов, сложных и простых эфиров. [c.5]


Смотреть страницы где упоминается термин Присоединение спиртов, альдегидов и аминов: [c.131]    [c.425]    [c.374]    [c.374]    [c.197]    [c.392]    [c.5]    [c.129]    [c.124]    [c.218]    [c.7]    [c.7]    [c.97]    [c.143]    [c.432]    [c.535]    [c.300]    [c.195]   
Смотреть главы в:

Введение в фотохимию органических соединений -> Присоединение спиртов, альдегидов и аминов




ПОИСК





Смотрите так же термины и статьи:

Альдегиды йтэ аминами

Амины из спиртов

Присоединение к спиртов

Спирты, амино-присоединение



© 2025 chem21.info Реклама на сайте