Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обнаружение ошибок метода

    Проверка правильности выполнения команд в однотактном режиме. В данном случае последовательно выполняются все команды программы, а правильность полученных результатов проверяется путем сравнения с результатами контрольного просчета. При этом легко проверить правильность выполнения команд передачи управления и команд, организующих цикл. Однако такой метод неэффективен, поскольку требует очень больших затрат машинного времени. Его применяют лишь для проверки отдельных небольших участков программы, на которых ожидается обнаружение ошибки. [c.44]


    Как используется доверительный интервал для обнаружения систематической ошибки метода  [c.194]

    При определении очень небольших количеств веществ (анализ следов) необходимо проводить холостой опыт, так как нередко даже при х = О холостой сигнал у > 0. Результаты холостых опытов, как и результаты анализа, характеризуются случайным разбросом. Для у Уа случайная ошибка метода будет определяться разбросом результатов холостых опытов Ов. Располагая данными холостого опыта, получают критерий обнаружения сигнала в следующем виде [81  [c.18]

    В первом из названных методов результаты холостых опытов в разных пробах должны быть близкими. Разброс результатов холостого опыта в этом случае должен соответствовать случайной ошибке метода анализа вблизи предела обнаружения. Здесь можно особенно точно определить результат холостого опыта, потому что он основывается на очень большом числе данных. (Для практических целей используют чаще всего пв = 20 анализов.) Второй метод применим всегда, так как каждый результат анализа комбинируется со своим холостым опытом. Недостаток же заключается в том, что часто получают лишь нечетко [c.106]

    Из выражения (3) следует, что предел обнаружения зависит от величины общей случайной ошибки метода анализа. Эта ошибка складывается из случайных флуктуаций в каждом звене аналитического метода. Если представить аналитический процесс как цепь последовательных преобразований входного сигнала, то можно выразить общую случайную ошибку через случайные ошибки, имеющие место в каждом звене этого процесса, и установить таким образом влияние параметров каждого звена на общую ошибку, а, следовательно, и на величину предела обнаружения. [c.38]

    В реальных методах спектрального анализа чистых веществ и определения следов элементов доминирующими являются часто флуктуации аналитического сигнала, возникающие вследствие нестабильности поступления и возбуждения пробы, неоднородности и неполной идентичности одинаковых анализируемых проб данного материала, а также из-за случайных загрязнений. Для достижения наименьших пределов обнаружения элементов основные усилия должны быть направлены на повышение чувствительности и снижение случайных флуктуаций именно в этих звеньях метода анализа с тем, чтобы общая случайная ошибка лимитировалась уже только статистическими свойствами приемника излучения. Если такое положение достигнуто, то величина предела обнаружения будет (при некоторых дополнительных условиях — СМ. гл. 2) наименьшей возможной для данного метода анализа. Связь предела обнаружения спектральной линии с параметрами источника света, спектрального прибора и приемника излучения для случая анализа, когда общая случайная ошибка метода определяется только статистическими флуктуациями светочувствительного слоя приемника излучения, исследовалась в работах [245, 606, 748] и в некоторых других. Рассмотрим этот важный случай анализа, следуя схеме, предложенной в работах [245, 74 ]. [c.39]


    Из физических методов анализа следует отметить нейтронно-активационный (ПАА), рентгено-флюоресцентный (РФА) и рентгено-радиометрический (РРМ). ПАА основан на взаимодействии нейтронов с ядрами облучаемой пробы. Предел обнаружения серы этим методом равен 5-10 %. В основе РРМ лежит измерение поглощения рентгеновских лучей при известной зависимости степени поглощения от концентрации анализируемого вещества. РРМ можно использовать для анализа нефтей и нефтепродуктов с массовой долей серы не менее 0,5 % При меньшем содержании серы метод дает существенные ошибки (результаты получаются завышенными). Наиболее достоверные результаты получают при массовой доле серы в анализируемом нефтепродукте 0,5—2,0,%- Предел обнаружения серы методом РРМ равен 1-10 2%. Общим недостатком методов НАА и РРМ является радиационная опасность, требующая специального оборудования лабораторных помещений. Из-за меньшей сложности в аппаратурном оформлении метод РРМ нашел применение, например, для определения серы в потоке на нефтепроводах и экспресс-анализа фракций при перегонке нефти. [c.81]

    Выбирая доверительный уровень для оценки значимости разности, аналитик должен решить вопрос, делать ли безопасное заключение с небольшим риском ошибки или указать лучший предел обнаружения, но с большим риском ошибки. При выборе доверительного уровня необходимо учитывать разные факторы. Очень важно, однако, вместе с данными по пределу обнаружения любого метода всегда приводить характеристики доверительного уровня и метода оценки значимости разности полезного сигнала и сигнала холостого опыта. [c.14]

    Самое удивительное с антропоцентрической точки зрения, что в ДНК всех позвоночных, начиная от рыб, амфибий, птиц, грызунов и кончая человеком, содержание [Г] + [Ц1 колеблется в пределах 40—44%, т. е. в таких пределах, при которых обнаруженная разница мало отличается от колебаний, обусловленных ошибкой метода при анализе оснований. [c.172]

    Навески е = 2 2 = 2е , требующиеся для такого способа обнаружения ошибок, проще всего заменить отбором аликвотных частей раствора. Выполняя большее число определений, можно обнаружить ошибки обоих видов в разных пробах. Это позволяет избежать лишней работы. Описанные способы особенно удобны для использования в методах анализа, построенных на принципе навеска — растворение — измерение, отличающихся небольшой случайной ошибкой. [c.37]

    Наряду с понятиями - погрешность и ошибка в работах псу химическому анализу часто используется понятие помеха . В этом понятии объединены различные источники погрешностей физической или химической природы, присущие конкретным методам анализа, измерительным схемам и приборам. В методах анализа, основанных на фотоэлектрической и электрометрической регистрации наряду с понятием помеха используют понятие - шум , которое тесно смыкается с понятием фоновый сигнал и в конечном счете определяет предел обнаружения метода (см. 10 гл. П1). [c.23]

    В материалах для микроэлектроники природные элементы, испускающие а-частицы, Th и U, можно рассматривать как примеси, вызывающие вредные эффекты (так называемые мягкие ошибки ) в системах электроники, например ячейках памяти. Поэтому максимально допустимые концентрации этих элементов в различных материалах находятся в пределах 0,1-1 млрд . При определении содержания Th и U в ряде материалов НАА обеспечивает наилучшие пределы обнаружения из всех существующих методов. В этом случае индикаторными радионуклидами для Th и U являются Ра и Np соответственно, которые образуются при /3-распаде короткоживущих продуктов реакции  [c.126]

    В ходе анализа могут появляться измерения, сильно отличающиеся по значению от других измерений и являющиеся грубыми ошибками (промахами). Определить, является ли результат промахом или нет, достаточно сложно. При принятии ошибочного решения, результат всего анализа (среднее) сам может стать промахом (т.к. среднее значение — тоже случайная величина). Для обнаружения грубых ошибок измерений анализа разработано ряд методов. В одном из них используется значение -критерия. Если рассчитанное значение -критерия превышает табличное, то результат анализа отбрасывается, и в дальнейших вычислениях не учитывается. Табличное значение -критерия берется в зависимости от числа выполненных измерений и (или числа степеней свободы /=и-7) и доверительной вероятности Р. Наиболее часто используемое значение Р=0,95 и Р=0.90. [c.15]

    Уравнение ( 1.56) позволяет определить направление хода изотермо-изобар поверхности пара при любом составе пара, для которого известен состав равновесного раствора. Метод пригоден для качественного обнаружения как случайных, так и систематических ошибок в эксперименте. Определенные расчетом направления изотермо-изобар могут быть изображены на треугольнике составов отрезками касательных прямых. Совокупность таких отрезков должна показывать расположение изотермо-изобар пара, возможно сравнение с изотермо-изобарами, построенными на основании измерений или температур кипения или давления. Кроме того, можно обнаружить нарушения закономерности расположения указанных отрезков, что будет связано со случайными ошибками. Для иллюстрации метода приводятся диаграммы на рис. 1.5. [c.150]


    Методы амперометрического титрования Sb(IH), основанные на образовании прочных нерастворимых и комплексных соединений с органическими реагентами, характеризуются низкими пределами обнаружения (до 10 мкг Sb в пробе), однако по точности (ошибка — 3%) уступают амперометрическому титрованию броматом калия (ошибка —0,1%). [c.72]

    Для определения 8Ь в железе, сталях, чугуне, железных метеоритах и других материалах на основе железа предложен ряд активационных методов, не требуюш,их выделения ЗЬ из облученного материала [135, 1556, 1632]. По одному из них [1652] при определении 2,5-10" % 8Ь ошибка 4,8%. В ряде других [987, 1033, 1113, ИЗО, 1222, 1280, 1539, 1590, 16531 ЗЬ выделяют из облученного материала. Предел обнаружения ЗЬ этими методами достигает 1 Ю -1 10 % (5, = 0,07 0,12). [c.131]

    Полярографические методы позволяют одновременно определять в цинке Sb и Bi [417, 420] и Sb и Sn [67]. В полупроводниковых индий-цинковых сплавах Sb определяют методом тонкослойной хроматографии с использованием очень малых объемов растворов (5 —10 мкл) при содержании Sb 2% ошибка определения 5% [721]. Активационные методы, включающие выделение Sb из облученной пробы, используются для ее определения в цинке [827, 1272, 1488] с пределом обнаружения до 1-10 мкг в пробе Sr 0,25) [1272] или до 1-10 % (5, = 0,1 0,2) [827]. В электролитных растворах сульфата цинка активационный метод с выделением Sb из облученной пробы позволяет определять до [c.154]

    Щелочные и щелочноземельные элементы в сурьме и ее соединениях определяют методами фотометрии пламени. Так, в сурьме определяют Ы, Na, К и Са в остатке после удаления основы отгонкой в виде хлорида в токе С12- Предел обнаружения Na, К и Са составляет 1-10 %, для Ы — 3-10 % [1374]. По другому методу [509] Са в сурьме определяют по молекулярной полосе СаО при 622 нм. Предел обнаружения 5-10- % Са, ошибка 3—5%. [c.173]

    Описано [396] определение Na, К и Са в сурьме методом фотометрии пламени без отделения основы (предел обнаружения 1-10- %). Рекомендованы [164, 211] методы фотометрии пламени для определения Na в сурьме и продуктах ее производства также без отделения основы. Предел обнаружения 1 10 %, ошибка 5 %. [c.173]

    Обсуждение ошибок играет решающую роль для планирования, оценки и интерпретации химико-аналитических исследований. Поэтому аналитику нужна подробная информация обо всех возможных в данной области исследований ошибках. Принимая во внимание их характерные свойства, он получит затем с помощью математико-статистических методов желаемую информацию о собранных числовых результатах. Методы математической статистики превратились в подсобный инструмент для решения ряда задач, таких, например, как сравнение средних, оценивание межлабораторных опытов или обнаружение систематической ошибки. Задача аналитика — отобрать из множества различных математико-статистических методов наиболее подходящие для решения поставленной перед ним конкретной задачи. [c.28]

    Определение температурного предела хрупкости резин при изгибе заключается в разрушении замороженного образца резины, закрепленного одним концом, при мгновенном приложении ударной нагрузки к его свободному концу. За результат испытания принимается наивысшая температура двух параллельных образцов, при которой они приобретают хрупкость и при изгибе ударником дают видимую невооруженным глазом трещину или ломаются [19]. Определение связано с визуальным обнаружением трещин на образцах, что обусловливает субъективные ошибки метода дополнительную неопределенность вносит влияние на результат испытания силы, с которой образцы затягивают в зажиме перед испытанием. Поэтому межлабора-торная воспроизводимость метода достигает 8 С. [c.549]

    Если в факторном эксперименте ограничиваются сначала только обнаружением главных эффектов, то значительное сокращение затрат на эксперимент и вычисления обеспечивают дробные факторные планы. Такие планы, описанные Плаккеттом и Берманом [2, 3], позволяют из тп опытов при I = 2 уровнях обнаружить главные эффекты п = т — 1 факторов. Затраты на эксперимент теперь возрастают только линейно вместе с числом факторов. Условие существования факторных планов такого специального вида состоит в том, что тп должно делиться на Р = 4. Матрица плана (см. табл. 10.2) построена таким образом, что в каждой ее строке каждый фактор Хц встречается (тп/2) раз на верхнем (-Ь) и (тп/2) — 1 раз на нижнем ( —) уровне. После заполнения первой строки все остальные получаются путем циклической перестановки. Последняя тп-я строка включает только знаки (—) - Искомые главные эффекты получают в соответствии с уравнением (10.1). Они считаются значимыми только тогда, когда пре-выщают ошибку метода анализа Ву. Ее можно получить, проводя каждый из тп опытов дважды и вычисляя стандартные отклонения из пар определений [уравнение (5.2)]. При незначительных затратах ресурсов получают ошибку опыта, если столбцы для некоторых факторов плана не используют по назначению, а применяют их как фиктивные переменные для оценивания 5,. В случайном рассеянии эффектов эти фиктивные переменные проявляются в возникающей случайной ошибке Ву. При тп опытах и п, мнимых переменных получается [c.189]

    Ксиленоловый оранжевый получил широкое распространение как реагент для колориме1рического и комплексонометрического определения ряда э. ементов. К достоинствам этого реагента относится способность реагировать с катионами металлов в довол .но кислой среде, что ведет к повышению избирательности определения, в частности к некоторому повышению избирательности в случае титрования раствора катиона металла комплексоном III. Нами установлено, что элементы (кроме железа ), обнаруженные спектральным способом в следовых количествах в продажных препаратах соединений скандия, не мешают титрованию скандия комплексоном III при рн 2 с ксиленоловым оранжевым в качестве индикатора. Кроме того, ошибка титрования, связанная с присутствием мешающих элементов, например железа, значительно меньше ошибки метода. [c.87]

    Мицуи сэкию кагаку , которая применяла метод Циглера. В рамках 2-й программы компании Сумитомо кагаку и Мицубиси юка приступили к ускоренному наращиванию мощностей по выпуску полиэтилена высокого давления, наметив на 1961 г. введение в эксплуатацию оборудования, способного давать 15 тыс. т этого продукта в год. Компания Сёва юка , у которой в тот момент в результате колебаний с оценкой полиэтилена среднего давления скопился на складах его запас, превышающий трехмесячный объем производства, решила расширить мощности на 10 тыс. т в год, но даже не установила даты завершения своей программы. Компания Фурукава кагаку поспешила закупить у компании Стандард ойл-Индиана права на использование еще не доведенного до совершенства оборудования. Ввиду обнаруженной ошибки в расчетах и необходимости ее исправления выпуск полиэтилена среднего давления был начат не в назначенный срок, а с занозданием почти на год, причем поскольку степень загрузки оборудования не превышала 50%, достичь рентабельности сначала не удавалось. Компания Мицуи сэкию кагаку , столкнувшись с трудностями сбыта нолиэтилена низкого давления, решила на основе метода компании Е. И. Дюпон де Немур перейти к выпуску полиэтилена высокого давления. [c.170]

    По первому из названных выше методов анализа результаты холостого опыта должны иметь близкие значения при переходе от пробы к пробе. Разброс значений холостого опыта должен соответствовать случайно ошибке метода анализа вблизи границы обнаружения. При выполнении этих услови11 можно особенно точно определить значение холостого опыта первым из описанных выше методов, так как тогда может быть использовано очень большое число анализов. (Для практических целей проводят >25 анализов.) Второй способ применим всегда, так как каждое значение анализа сочетается со своим значением холостого опыта. Недостатком в этом случае является то, что значение холостого опыта получают из сравнительно малого числа определений, что часто оказывается ненадежным. Поэтому эти методы используют только тогда, 1ч0гда значения холостого опыта столь сильно разбросаны при переходе от пробы к пробе, что нельзя дать общего значения холостого опыта, так как это делается при первом способе. Как способ 1, так и способ 2 дают границу обнаружения в размерности измеряемой величины (например, экстинкции) .  [c.77]

    В углях с выходом летучих веществ ниже 35% наблюдается хорошее соответствие (см. рис. 2) степени метаморфизма, определенной этим способом, степени метаморфизма, установленной на основании других методов анализов, например по содержанию углерода, водорода, выходу летучих веществ и др. Для образцов углей с выходом летучих веществ более 30% замеры, не представляющие собой средние из многих данных, могут привести к существенной ошибке в определении степени их метаморфизма. Так, например, у обнаруженных в южном полушарии каменных углей с выходом летучих веществ 28—30% индекс вспучивания близок к нулю, что необычно и наводит на мысль о предварительной окисленности исследуемых образцов. В действительности же это оказались такие угли, витринит которых подобен по своей отражательной способности пламенным, жирным лотарингским углям с выходом летучих веществ около 35%, обладающим слабой спекаемостью. Общая величина выхода летучих веществ 28—30% в углях получается в результате примешивания к вит-риниту (выход летучих веществ 35%) значительного количества инер-тинита (выход летучих веществ приблизительно 20%). Ухудшение спекаемости таких углей наступает из-за высокого содержания в них инертинита, который вообще не превращается в пластическое состояние, и очень малого при этом содержания спекающегося экзинита. [c.18]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Ценные указания о возможности использования метода анализа иногда дает зависимость средней квадратичной ошибки 0у от измеряемой величины у. Наибольшей эффективностью методы анализа обладают в том случае, если абсолютная и относительная средние квадратичные ошибки малы.Поэтому методы, отличающ,иеся постоянной абсолютной ошибкой Оу = onst, предпочитают использовать при определении больших содержаний искомых веществ, а методы с постоянной относительной ошибкой Oyly = onst — при определении малых количеств. Подобно тому как Оу является мерилом случайной ошибки, t/u играет важную роль как критерий возможности обнаружения сигнала, В общем случае, если относительную ошибку предела обнаружения принять равной Оу/у = 0,33, то, выполняя Пд параллельных определений, минимально обнаруживаемую интенсивность сигнала можно уменьшить в раз. С учетом уравнения (2.2.3) получим [c.18]

    Это означает, что принцип релятивизации, или разностного измерения, позволяет исключить в криоскопии как систематическую погрешность градуировки, так и систематическую реактивную (примесную) ошибку. Принцип вычитания аналитического сигнала холостой пробы или фона используется во всех инструментальных методах. Такая коррекция фона исключительно важна при прямом анализе млогокомпонентных смесей (без предварительнога разделения), особенно при работе вблизи предела обнаружения, где сигналы фона и определяемого компонента соизмеримы. Коррекцию фона проводят либо непосредственно в ходе измерения сигнала анализируемого компонента, регистрируя интенсивность фонового сигнала рядом с основным, как это делается, например, в эмиссионном спектральном анализе. Так, при фотографической регистрации измеряют разность почернений  [c.40]

    Значения Пф и min обычно выбирают равными, поскольку в большинстве методов анализа измеряется разностный сигнал Ai/min = i/min — i/Ф, т. е. величины г/min и Уф определяются одновременно и равнократно. С ростом значений Пф и Лтш предел обнаружения аналитического сигнала уменьшается. Однако увеличение числа параллельных определений при измерении Аутш до /I > 20 не имеет смысла, поскольку это связано с существенным возрастанием трудоемкости и времени анализа, причем относительная точность в оценке предела обнаружения падает и начинают играть все большую роль неучтенные систематические ошибки, [c.114]

    Метод обнаружения линейно изменяющейся ошибки, описанный уравнением (9.50), соответствует определению корректирующего коэффициента (re overy rate). Этот коэффициент надо постоянно проверять на значимое отклонение от ожидаемого значения, равного единице по уравнению (7.12). При определении корректирующего коэффициента важно иметь в виду, что по одному только уравнению (9.50) нельзя обнаружить постоянную систематическую ошибку, которая, возможно, имеет место. [c.180]


Смотреть страницы где упоминается термин Обнаружение ошибок метода: [c.39]    [c.55]    [c.39]    [c.55]    [c.451]    [c.327]    [c.68]    [c.309]    [c.162]    [c.19]    [c.275]    [c.184]    [c.218]   
Смотреть главы в:

Основы аналитической химии Часть 1 -> Обнаружение ошибок метода




ПОИСК





Смотрите так же термины и статьи:

ошибки



© 2024 chem21.info Реклама на сайте