Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества удаление

    Силикагели. Силикагель (ксерогель кремниевой кислоты с хорошо развитой пористой структурой) используется для осушки воздуха и промышленных газов, осушки различных жидкостей, рекуперации паров органических веществ, очистки масел, удаления из нефти смолистых веществ. Применяется в хроматографии, а также как носитель и катализатор для реакций полимеризации, конденсации, окисления и восстановления органических веществ, для разделения радиоактивных изотопов, очистки промышленных сточных вод от ионов различных металлов [29]. Производится промышленностью в виде зерен и шариков в зависимости от пористой структуры может быть двух сортов мелкопористый и крупнопористый. В свою очередь каждый сорт по размерам зерен имеет несколько марок  [c.387]


    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]

    Мытье органическими растворителями. Если посуда загрязнена смолой или нерастворимыми в воде органическими веществами, для удаления загрязнения можно. .применять органические растворители, такие, как спирт, эфир, бензин, бензол, дихлорэтан и т. п. [c.57]

    Особенности применения в технологии подготовки воды и очистки сточных вод процессов фильтрования можно проследить на примере очистки жидкости, содержащей в небольшом количестве твердые частицы, растворенные соли, органические вещества и биогенные элементы. Очищаемую жидкость для первоначального удаления твердых частиц обрабатывают на механическом (медленном, скором, многослойном, намывном) фильтре с насыпным или намывным слоем фильтрующей массы, а также на напорном фильтре с плавающей фильтровальной массой. В качестве фильтрующего материала в насыпных фильтрах используют песок, антрацит, дробленый мрамор, керамзит, перлит, а для намывного слоя — перлит, в фильтрах с плавающей загрузкой — поролоновую крошку, пенополистирол. [c.62]

    Механизм промывки может быть представлен в следующем виде. Оставшийся после стекания в целлюлозной массе щелок распределен в ней между волокнами и пучками волокон в виде наружного слоя жидкости, частью же находится внутри волокон в виде капиллярной и межмицеллярной влаги. При подаче воды сверху та часть щелока, которая находится снаружи волокон, может быть. вытеснена новой жидкостью. Это вытеснение произойдет без изменения концентрации растворимых в щелоке органических веществ. Удаление же той части щелока, которая заключена в волокнах, невозможно иначе, как путем диффузии, которая будет иметь место вследствие разности концентрации веществ в жидкости снаружи и внутри волокон. В данном случае выравнивание концентраций, а следовательно, и разбавление щелока неизбежно. [c.431]


    Наилучшие результаты были получены при предварительной обработке сточной воды озонированием и коагулированием. В случае удаления коллоидных органических веществ из исходной сточной воды осаждением и коагуляцией благоприятное влияние, оказываемое озо- [c.325]

    Концентрация органических веществ в сточных водах при этом снижается до 100 г/л. В них остается большое количество высококипящих органических веществ, удаление которых производится посредством экстракции. В качестве экстрагента могут применяться диметилдиоксан и его смеси с непредельными спиртами, а также бутиловый спирт и другие растворители. Сточные воды содержат также минеральные соли — продукты нейтрализации серной и муравьиной кислот сернокислый натрий— 19 г/л, моногидрофосфат натрия —1,2 г/л, дигидрофосфат натрия— 1, муравьино-кислый натрий—-2,1, а также натриевую щелочь — 1,8 г/л. Эффективность экстракции повышается при предварительной частичной упарке сточных вод с отбором 50—75% дистиллята. [c.174]

    Группа факторов, относящихся к состоянию теплоносителя (температура греющего пара, горячей воды или высококипящего органического вещества, удаление конденсата, воздуха из сушильных цилиндров или плит). [c.183]

    Термическую очистку сточных вод применяют для обезвреживания органических веществ. Сущность метода заключается в полном окислении (сжигании) органических веществ до безвредных — Н2О, СО2, N2 и зольного остатка. Недостатком метода является существенный расход топлива и большой объем печей. Термические методы неэкономичны, особенно при больших объемах стоков. Они целесообразны при содерн< ании более 6 % токсичных органических веществ, удаление которых невозможно другими методами. [c.176]

    С учетом особенностей состава и распределения органических отложений в скважинах разработаны и испытаны на промыслах высокоэффективные технологии их удаления с использованием химических реагентов в сочетании с те-пл ом. Показано, что в зависимости от состава отложений следует использовать композиции реагентов с различным соотношением парафиновых углеводородов и раствор ителей-диспергаторов асфальтенов. Теплоносители рекомендуется закачивать при повышении содержания высокомолекулярных парафинов в составе отложений определенной величины. При высоком содержании парафинов необходимо подофевать лишь верхнюю часть отложений на поверхности колонны труб, а при более низком - и средний интервал АСПО п>тем снижения динамического уровня жидкости в скважине. В случае отложений органических веществ в призабойной зоне скважин рекомендованы технологии с закачкой химических реагентов в определенные интервалы перфорации с тем, чтобы обеспечить удаление АСПО путем продолжительного выноса их потоком жидкости из пласта. Испытания показали, что при внедрении предлагаемых технологий межочистной период на скважинах при добыче девонских нефтей увеличивается от 40 до 75 %. [c.185]

    Сложные физико-химические формы Ре(П) в сульфидных водах определяют сложность технологического обезжелезивания этих вод. При аэрировании этих вод сначала происходит достаточно быстрое уменьшение концентраций Fe, связанное с окислением сульфидных форм серы и с разрушением гидросульфидных комплексов. Но полного удаления Fe из сульфидных вод при этом часто не происходит — в них остаются остаточные концентрации Fe (порядка 1 мг/л), обусловленные его связями с органическими веществами, удаление которых требует применения более сильных окислителей. [c.121]

    При проектировании и монтаже оборудования и трубопроводов для процессов нитрования большое внимание должно уделяться разработке мер, полностью исключающих возможность контакта нитрующего агента с органическими веществами и образования застойных зон в аппаратах и трубопроводах. Необходимо разделять воздушки сборников и аппаратов с нитруемыми и нитрующими веществами, а также оснащать емкости для нитрующих продуктов средствами противоаварийной защиты предохранительными разрывными мембранами и блокировочными устройствами, обеспечивающими прекращение заполнения емкостей и быстрое удаление находящихся в них продуктов. [c.363]

    Чтобы показать, что тепло, выделяющееся при комплексообразовании, характеризует скорее химические, чем физические превращения, Шленк [171 установил постоянство упругости пара органического вещества и течение всего времени существования комплекса при условии, чтобы органическое вещество находилось в вакууме. Если бы органическое вещество было просто адсорбировано мочевиной, то упругость пара снижалась бы с его удалением. [c.220]

    Сланцевые масла, полученные деструктивной перегонкой органического вещества горючих сланцев, керогена, представляют собой сильно реакционноспособные непредельные продукты. В отличие от обычных нефтяных масел они характеризуются тем, что, кроме сернистых и кислородных соединений, содержат также сравнительно большие количества азотистых соединений. Для сланцевого масла, полученного из горючих сланцев месторождения Грин Ривер (Западное Колорадо), найдено содержание в % вес. азота — 2, серы — 0,7 и кислорода — 1,5. Если выразить это в виде соотношения различных типов молекул, то молекулы неуглеводородных компонентов составят 61 % при следующем приблизительном распределении их 60% азотистых, 10% сернистых и 30% кислородных соединений. Из 39% углеводородной части половину составляют олефиновые углеводороды. Хотя избирательной экстракцией или адсорбцией на твердых адсорбентах азотистые и другие подобные им соединения удаляются, но такое удаление указанных соединений проходит только вместе с приблизительно половиной сланцевого масла. По этой причине такие методы, по-видимому, практически не пригодны для улучшения качества сланцевого масла. [c.281]


    Для удаления органических веществ, мешающих проведению анализа, образцы продуктов питания прокаливают при высокой температуре. Органические соединения при этом сгорают с образованием воды и диоксида углерода. Минеральные соли, в частности соли железа, остаются в золе и затем растворяются в соляной кислоте. [c.280]

    Источники воспламенения в условиях производства весьма разнообразны как по своему появлению, так и по параметрам. Наиболее вероятными являются открытый огонь и раскаленные продукты горения нагретые до высокой температуры поверхности технологического оборудования тепловое проявление механической и электрической энергии тепловое воздействие химических реакций. Источниками воспламенения могут быть разнообразные технологические нагревательные печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания н утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют их, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.83]

    Наряду с каталитическим сжиганием органических веществ для удаления диоксида серы из дымовых газов можно использовать каталитическое окисление, тогда как каталитическое восстановление оксидов азота может применяться в производстве азотной кислоты, где этот процесс более эффективен, чем удаление оксидов в скрубберах, описанное на с. 150. [c.191]

    Механическое фильтрование замутненной жидкости способствует более эффективной последующей очистке от органических веществ и биогенных элементов на биофильтре, конструктивно во многом похожем на механический фильтр с фильтрующим насыпным слоем. Для удаления органической составляющей очищаемой жидкости в биофильтрах используют определенные виды микроорганизмов, которые образуют биологическую пленку на твердых частицах фильтровального слоя. [c.62]

    Если микроорганизмы относятся к аэробным бактериям, количества растворенного в жидкости кислорода недостаточно для их жизнедеятельности, то применяют аэрофильтр, в который под слой загрузки нагнетают воздух. Биофильтры и аэрофильтры необходимо периодически регенерировать (промывать) для разрушения и удаления с зернистой загрузки биологической пленки, разрастающейся в процессе очистки жидкости и постепенно забивающей межпоровое пространство фильтрующей массы. Если же по каким-либо причинам применение биофильтра или аэрофильтра нецелесообразно, то используют аэротенки (см. часть 1, гл. VI). В аэротенки, выполненные, например, в виде непрерывно действующих отстойников, вносят в качестве затравки порции микроорганизмов в форме активного ила. Благодаря присутствующим в жидкости органическим веществам количество активного ила увеличивается, он скапливается на дне аэротенка и непрерывно частично отводится. [c.62]

    Карбонат кальция в результате процесса кристаллизации обладает свойствами, характерными для конденсационно-кристалли-зационных структур. Он способствует разрушению нефтяной эмульсии, однако не может сорбировать на своей поверхности больших количеств нефтепродуктов. Гидроокись магния относится к коагуляционному типу и по своей структуре сходна с такими гидроокисями, как А1(0Н)з, Ре(0Н)2 и Ре(ОН)з. Последние обладают большой активной поверхностью, способной сорбировать из воды значительное количество органических веществ, в связи с чем происходит одновременно осветление и удаление эмульгированных нефтепродуктов. [c.18]

    Флотация. Очистка сточных вод флотацией заключается в извлечении нерастворенных примесей с помощью тонкодиспер-гнрованного в сточной воде воздуха. Флотационные установки используют для удаления из сточных вод масел, нефтепродуктов, жиров, смол, поверхностно-активных и других органических веществ, гидроксидов, твердых частиц полимеров, волокнистых [c.93]

    Удаление избытка органических веществ и планктона [c.549]

    Ксилозный сироп подается на ионообменные фильтры из расчета 500 кг сухих веществ на 1 м набухшего катионита или 250 кг на 1 м набухшего анионита. Регенерацию катионитов проводят 2%-ной серной кислотой, анионитов — 5%-ным раствором соды. Катионит постепенно снижает свою емкость и через 3 цикла требует (помимо кислотной) также щелочной регенерации [7]. Емкость анионита также постепенно снижается из-за загрязненности очищаемых растворов, использования неочищенной воды, а также из-за накопления органических веществ, сорбируемых смолой и не удаленных из нее щелочной регенерацией. Поэтому периодически рекомендуется проводить обратную регенерацию анионита серной кислотой. [c.150]

    Имеются два способа удаления углеводородных примесей — многоступенчатое выпаривание или более экономичный и простой способ, когда раствор пропускают через слой угля, как показано на рис. 1. Применение угля может быть эффективным лишь совместно с системой испарения, после которой содержание углеводородных примесей очень сильно снижается. Без этой системы концентрация органических веществ в растворе настолько велика, что уголь очень быстро теряет свою адсорбирующую способность. [c.281]

    Удаление влаги и органических веществ Образование двойных солей из карбонатов  [c.318]

    Каталитическое о5егсвривание органических веществ (удаление тиофена) [c.401]

    С1пределение описанным методом далеко не всегда дает достаточно правильное представление о количестве гигроскопической воды. Действительно, потеря в массе во время высушивания зависит от удаления из вещества не только гигроскопической, но и кристаллизационной воды, равно как и других летучих составнЬ1Х частей вещества. Другим часто встречающимся источником погрешностей рассматриваемого метода является окисление исследуемого вещества кислородом воздуха при нагревании. Потеря в массе вследствие этого оказывается меньшей, чем должна была бы быть, судя по действительному содержанию гигроскопической воды. Это наблюдается при анализе многих органических веществ, например муки, кожи и т. п. [c.165]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Регенерация адсорбента является одним из основных вопросов при адсорбционной очистке, от решения которого зависит возможность применения метода и его стоимость. Для удаления органических веществ с поверхности углей применяют вытеснительную десорбцию. В качестве десорбирующего агента используют воздух, инертные газы, насыщенный и перегретый пар. При использовании воздуха температура не превышает 120—140°С, для перегретого пара 200—300°С, для инертней газов 300—500°С. Соединения удаляют с поверхности активных углей также водными растворами кислот, щелочей и солей. При очистке газов ог соединений фтора адсорбент подвергался регенерации 2—3 % раствором NaOH на 99,5%, 3% раствором Naj Oa —на 60—65 %, 3 7о раствором NH4OH —на 15%, водой —на 18,7%. Потери адсорбента при регенерации—2—4 г/м газа. Расход воды и регенерационного раствора на 1 м адсорбента составил 10 м . [c.486]

    Для обезвоживания кристаллических веществ, например хлористого кальция, сернокислого натрия, сернокислой меди и других, их предварительно нагревают на сковороде. При этом образуется жидкая, масса когда вода из нее полностью испарится,-нагревание усиливают и прокаливание продолжают до получения совершенно сухой массы. Полученную массу разбивают на куски нужной величины, куски слегка теплыми помещают в банку, снабженную притертой пробкой. Если же такой банки нет, вместо стеклянной притертой пробки применяют резиновую. В тех случаях, когдй высушивают отработанные соли, применявшиеся для высушивания органических веществ, нужно быть очень осторожными. Работу с такими солями проводят обязательно под тягой. Сковороду или другой сосуд, в котором обезвоживают соли, предварительно осторожно нагревают, лучше всего на электрической плитке, до тех пор, пока не испарится все органическое вещество. Применение газовой горелки в этом случае представляет опасность, так как пары испаряющегося органического вещества могут воспламенитья. Только после удаления всего органического вещества соли обрабатывают, как описано выше. [c.79]

    Предварительная очистка морской воды, как показали длительные испытания опытно-промышленной обратноосмотической опреснительной установки [193], сложнее, чем предочистка солоноватых вод, несмотря на то, что при опреснении морской воды обычно нет необходимости в очистке ее от солей жесткости (так как по экономическим соображениям степень извлечения пресной воды из морской невелика — примерно 30—40% и, следовательно, концентрирование солей в исходной воде мало). Сложность очистки морской воды связана с высоким содержанием в ней органических веществ (водоросли, ил, микроорганизмы и т. п.) и коллоидов кремния, которые обычной фильтрацией практически не удаляются. Для максималыюго их удаления перед песчаным фильтром морскую воду следует обрабатывать коагулянтом. [c.297]

    Для удаления взвешенных и гумусовых веществ применяются методы отстаивания в отстойниках и осветлителях любого типа, а также фильтрование в напорных и открытых песчаных фильтрах с предварительной коагуляцией при высоком содержании гумусовых. Для уничтожения органических веществ, планктона и бактериального загрязнения необходимо использовать хлорирование и озонирование, для поддержания pH — подкисление, иодщелачи-вание и фосфатирование для поддержания допустимого содержания фтора — фторирование при недостатке и сернокислотную обработку при избытке для обезжелезивания — аэрацию, коагуляцию, подщелачивание, обработку перманганатом калия и катио-нирование для умягчения поверхностных вод — известковосодовое умягчение для умягчения подземных вод —ионный обмен для обессоливания — ионный обмен, электролиз, дистилляцию и гиперфильтрование. [c.162]

    Подвергая смесь экстракции бензином, извлекают масла нейтральные смолы остаются на поверхности адсорбента. Достигнув полноты экстрагирования бензином, что устанавливается по цвету стекающей через сифонную трубку жидкости, бензиновый экстракт переносят в колбу Вюрца, отгоняют бензин, остаток переносят в небольшую, заранее взвешенную на точных весах чашку или тигель и ставят на 0,5—1 ч в сушильный шкаф (температура 120 °С) для полного удаления следов бензина. После этого, охладив чашечку с маслами, взвешивают и определяют количество выделенных из битума масел. Далее в прибор Сокслета заливают 100 мл хлороформа и вновь экстрс.гируют поглощенные адсорбентом органические вещества. [c.336]

    Перед возвратом в систему оборотной воды сточные вода первой системы как менее загрязненные, органическими соединениями подвергаются одноступенчатой биохимической очистке дпя удаления органических веществ, способствующих интенсивному юобрастанию тр . Большое влияние на биологическую очистку этих стоков оказывает предварительная механическая и физико-химическая их очистка с целью максимального удаления взвешенных веществ. [c.116]

    Перспективный путь защиты водоемов от загрязнения сточными водами — это сочетание водооборота с локальными ме тодами очистки сбрасываемых вод. Современные схемы очистки сточных вод включают такие процессы, как нейтрализацию, удаление основной массы тонкоэмульгированных -> продуктов физико-химическими методами (флотацией или фильтрацией), биохимическую очистку от растворенных органических веществ, локальную очистку (особо загрязненных сточных вод). - [c.261]

    Известны три метода удаления газовых компонентов абсорбция газов жидкостью, адсорбция на поверхности твердого вещества или химическое превращение в другой, безвредный газ. Последний метод обычно включает сжигание органического вещества непосредственно либо каталитически. Механизм этих методов основан на диффузии газа либо к поверхности поглощающей жидкости, либо твердого адсорбента или катализатора, либо в реакционную зону с лучшей химической реакцией. В этом отношении удаление газовых компонентов представляет собой не столь сложную задачу по- сравнению с удалением твердых -ча(стиц и гкапель, где наряду с диффузией играют роль другие механизмы инерционный захват, осаждение, электрастатические и термические силы. [c.102]


Смотреть страницы где упоминается термин Органические вещества удаление: [c.153]    [c.247]    [c.247]    [c.77]    [c.240]    [c.248]    [c.452]    [c.222]    [c.81]    [c.346]    [c.70]    [c.37]    [c.129]    [c.342]   
Качественный полумикроанализ (1949) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическое удаление фосфора с использованием легко разлагаемого органического вещества, образующегося внутри системы

Каталитическое обессеривание органических веществ (удаление тиофена) (таблица

Органических веществ открытие удаление

Проектирование биофильтров, предназначенных для удаления растворенных органических веществ

Совместное удаление органического вещества и аммония

Удаление взвешенных органических веществ

Удаление микроколичеств органических веществ из газов

Удаление органических веществ при систематическом ходе анализа

Удаление органических веществ фотохимическим разрушением



© 2025 chem21.info Реклама на сайте