Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение термодинамики при изучении химических реакций

    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]


    Позднее, с открытием и исследованием электрической, лучи стой, химической и других форм энергии, постепенно в круг рассматриваемых термодинамикой вопросов включается и изучение этих форм энергии. Быстро расширялась и область практического применения термодинамических методов исследования. Уже не только паровая машина и процессы превращения механической энергии в теплоту исследуются на основе законов термодинамики, но и электрические машины, холодильные машины, компрессоры, двигатели внутреннего сгорания, реактивные двигатели. Гальванические элементы, а также процессы электролиза, различные химические реакции, атмосферные явления, некоторые процессы, протекающие в растительных и животных организмах, и многие другие исследуются не только в отношении их энергетического баланса, но и в отношении возможности, направления и предела самопроизвольного протекания процесса в данных условиях. Они исследуются также в отношении установления условий равновесия, определения максимального количества полезной работы, которая может быть получена при проведении рассматриваемого процесса в тех или иных условиях, или, наоборот, минимального количества [c.175]

    В круг рассматриваемых термодинамикой вопросов включается не только изучение соотношений между теплотой и механической работой, как это было в первый период развития термодинамики, но и изучение соотношения теплоты и других форм энергии (электрической, лучистой, химической). Применение термодинамики к химическим процессам составляет предмет химической термодинамики. Химическая термодинамика изучает не только соотношение между химической и другими видами энергии, но и другие вопросы она исследует возможности направления и предел самопроизвольного протекания химического процесса в данных условиях и устанавливает условия равновесия химических реакций. Все эти и другие вопросы химическая термодинамика рассматривает не только при изучении различных химических реакций, но и при изучении гальванического элемента, процессов электролиза и других, протекающих в растительных и животных организмах. [c.55]

    ПРИМЕНЕНИЕ ТЕРМОДИНАМИКИ ПРИ ИЗУЧЕНИИ ХИМИЧЕСКИХ РЕАКЦИЙ [c.98]

    Обзор работ, опубликованных до 1961 г. п посвященных аналитическому применению газовой хроматографии для изучения термодинамики и кинетики химических реакций, был составлен Даль Ногаре и Джуветом (1962). [c.470]


    Из физико-химических применений газовой хроматографии отметим изучение термодинамики сорбции, определение молекулярных масс, давления пара веществ, коэффициентов диффузии, поверхности адсорбентов и катализаторов. Широко применяют хроматографические методы для определения элементного состава, а также методы определения констант химических реакций. [c.14]

    Каталитическое действие некоторых веществ на скорость химических реакций — одно из весьма важных, но еще недостаточно изученных явлений природы. Книга посвящена рассмотрению теории и практики катализа на современном научном уровне. Катализ находит все более широкое применение во многих важных отраслях промышленности. Авторы пишут об историческом развитии учения о катализе, о применении катализаторов в производстве, об их роли в биохимических процессах. Особое внимание уделено кинетике и термодинамике химических реакций с участием катализирующих веществ. [c.2]

    Кроме того, неводные растворы находят широкое применение при исследовании кинетики реакций с целью изучения влияния природы растворителей на скорость реакций изучении растворимости веществ в различных средах исследовании вопросов термодинамики неводных растворов и исследовании электрохимии неводных растворов во всех ее теоретических и практических аспектах изучении каталитического действия кислот и оснований разнообразных химических, химико-технологических, биохимических, биологических и других процессов. [c.444]

    Этим мы закончим серию примеров, иллюстрирующих применение термодинамики химических реакций к изучению технических процессов [c.249]

    В целях изучения равновесия, термодинамики и механизма аналитических водных реакций комплексообразования в Лаборатории аналитической химии редких элементов была разработана новая область применения электронного парамагнитного резонанса (ЭПР). Было установлено, что спектры ЭПР парамагнитных ионов в жидких и замороженных растворах зависят от природы лиганда, с которым связан парамагнитный ион. Главное преимущество метода ЭПР перед физико-химическими методами исследования реакций комплексообразования заключается в том, что спектры ЭПР комплексов данного парамагнитного иона с различным числом лигандов различаются. Поэтому можно прямо наблюдать в растворе разные комплексы парамагнитного иона и тем самым исследовать реакции ступенчатого комплексообразования, определять распределение комплексов в зависимости от концентрации лиганда, рассчитывать константы устойчивости. В результате таких исследований был достигнут существенный прогресс в развитии химии ионов в необычных состояниях окисления, особенно химии Мо(У), Сг(У), У(1У), Т1(1П), Ад(П), Еи(П), N (01), Со(П) и др. [c.5]

    Далее, наряду с изложением различных аспектов теории активированного комплекса, автор счел полезным дать ряд конкретных применений этой теории к бимолекулярным реакциям с комплексами различных конфигураций, сопоставив одновременно результаты расчетов с теорией активных столкновений. Эти сведения должны помочь в применениях теории кинетики в практической работе. В порядке подготовки к изложению теории активированного комплекса дана глава V, посвященная основам статистической термодинамики. Как показал опыт преподавания физической химии на химическом факультете, эта глава может иметь и самостоятельное значение, как пособие при изучении основ термодинамики. [c.5]

    Таким образом, использование приемов и методов формальной химической кинетики при применении соответствующего математического аппарата в общем дает удовлетворительное совпадение между расчетными и экспериментальными данными. Это является важным доказательством принципиальной возможности использования метода формальной химической кинетики для описания поведения биологических систем. Однако степень адекватности таких математических моделей зависит от того, насколько полно учтены реакции метаболизма, протекающие в микробных клетках. Химическая кинетика не может быть рассмотрена в отрыве и без учета стехиометрических соотношений реагирующих компонентов и термодинамики. Поэтому если будут изучены все особенности реакций в микробных клетках, приводящих к увеличению биомассы популяции, а также все изменения в величинах констант скоростей реакции в цепях метаболических процессов, возникающие в ответ на увеличение биомассы популяции и изменения в составе культуральной жидкости, то принципиально возможно будет описать такое явление строго в терминах химической кинетики. Однако трудно представить, какое количество уравнений отдельных реакций потребуется в данном случае для описания такой системы и сколько машинного времени потребуется для расчета того или иного параметра. Можно полагать, что такая математическая модель потеряет все преимущества математического моделирования и в общем-то будет бесполезной в практическом отношении. С другой стороны, если пытаться описать рост популяции лишь незначительным числом избранных кинетических уравнений конкретных изученных реакций метаболизма и сводить к ним весь процесс, то всегда [c.95]


    Этот механизм привлекал внимание во всех ранних работах, посвященных исследованию скорости кислотного гидролиза и этерификации, — работах, которые стали основополагающими в области изучения кинетики вообще и помогли установить связь кинетики с химической термодинамикой. В 1862 г. Бертло и Пеан де Сан-Жилль [54] показали, как меняется положение равновесия при обратимом образовании этилацетата с изменением соотпошений реагирующих веществ. Они установили, что скорости обратных ])сакций пропорциональны произведению концентраций реагирующих веществ. Гульдберг и Вааге [55] широко использовали эту работу при обосновании закона действия масс в применении к кинетике реакций. Оствальд [56] установил порядок реакции гидролиза сложных эфиров водными кислотами, показав, что скорость реакции пропорциональна произведению (Н ] [R OOR] отсюда вытекала ясная зависимость скорости реакции от концентрации сложного эфира и не совсем ясная зависимость скорости реакции от концентрации водородного иона. Что касается последнего, то в 1884 г. было показано, что скорость гидролиза метилацетата в разбавленных водных растворах ряда кислот, от сильных до слабых, при одной и той же их кон-центрацпи почти пропорциональна (в интервале соотношения скоростей 200 1) электропроводности растворов этих кислот. Через три года, после появления теории электролитической диссоциации, смысл этого наблюдения стал ясным скорость реакции пропорциональна концентрации водородных ионов [И ], так как электрический ток почти полностью переносится ионами Н+. Порядок реакций этерификации карбоновых кислот при катализе сильными кислотами в спиртах как растворителях был совершенно четко определен Гольдшмидтом [57]. Он установил, что скорость реакции пропорциональ- [c.955]

    Изучение термодинамики и кинетики химических реакций с использованием газовой хроматографии является одной из наиболее быстро развиваюп ихся областей применения этого метода. В табл. ХУП1-7 мы делаем попытку дать полный список всех работ этого рода, опубликованных до 1961 г., поскольку до сих пор по этому важному разделу применения газовой хроматографии еш,е не было опубликовано ни одной обзорной статьи. Большинство из приведенных в таблице работ относится к исследованию газовых реакций, фотолиза, термического разложения и изомеризации. Приведены также примеры, показываюш ие значение газовой хроматографии для изучения многокомпонентных реакций в жидкой фазе (см. гл. XVII). [c.408]

    Ясность изложения Вант-Гоффом всех этих важнейших вопросов, касающихся скоростей химических реакций, определяемых числом активных (возбужденных) молекул реагирующих веществ, большой экспериментальный материал, приведенный в книге Очерки по химической динамике и, наконец, плодотворное применение законов химической термодинамики к трактовке механизма реакций и химического равновесия,— все это привлекло широкое внимание химиков к работе Вант-Гоффа. Со времени появления книги в разных странах мира начались интенсивные исследования по химической кинетике и по изучению равновесий, которые принесли богатые научные и практические плоды. В дальнейшем на основе законов и положений, установленных Вант-Гоффом, Аррениусом и их сотрудниками, были решены важнейшие производственные нроблемы, такие, например, как синтез аммиака. [c.440]

    В настоящее время термодинамические методы находят широкое применение в самых различных областях химии и химической технологии. Как исследователи, работающие в лабораториях, так и инженеры химики, в первую очередь инженеры-проектировщики, постоянно сталкиваются с необходимостью термодинамического рас смотрения различны.х вопросов. Каждый научный работник и каждый инженер, задумывающийся над осуществлением какой-либо новой химической реакции, прежде всего стремится узнать, возможна ли она термодинамически, т. е. насколько положение равновесия этой реакции сдвинуто в сторону образования интересующего его продукта. Пользуясь термодинамическими методами, можно рассчитать теплоты различных химических и физико-химических процессов, температуру, развивающуюся в двигателе, поршневом или реактивном, длину реактора, в котором интересующая нас реакция будет протекать до нужной глубины превращения исходны. веществ, и решить многие другие важные вопросы. По мере того как термохимия и наука о строении молекул накапливают все больше и больше конкретных данных, увеличивается и число вопросов, для которых можно, найти точное решение расчетным путем, не прибегая к экспериментальным исследованиям. Наряду с этим создается возможность отыскания различного рода закономерностей, помощью которых можно проводить вычисления, не имея соответствующих данных, но получая результаты с удовлетворительной для многих целей точностью. Этими обстоятельствами и объясняется широкое проникновение термодинамических вычислений в различные области химии. Б связи с этим книга Беннера Термохимиче-ские расчеты может оказаться полезной для различных кругов читателей. Инженеры найдут здесь простые методы расчета некоторых видов химической аппаратуры, химики-органики — расчеты равновесий важных органических реакций, студенты и аспиранты смогут познакомиться с основами вычислений термодинамических величин по спектроскопическим данным. К достоинствам книги относится конкретность изложения, наличие большого количества задач и примеров. Рекомендуя книгу Беннера всем желающим применять термодинамические методы на практике, мы никак не можем рекомендовать ее для изучения термодинамики. Основные законы термодинамики сформулированы автором во многих случаях недостаточно строго, а рекомендуя различные методы расчета, автор [c.5]

    Термодинамический метод применяется для рещения самых разнообразных проблем различных областей науки. Обычно при рассмотрении содержания термодинамики и ее приложений выделяют общую, техническую и химическую термодинамику. Общая термодинамика излагает основные начала термодинамики и непосредственно вытекающие из них следствия. При этом наиболее широко используются дифференциальные уравнения и частные производные. Техническая термодинамика включает применение тех же законов и их следствий к тепловым двигателям. Наконец, содержание химической термодинамики состоит в применении термодинамического метода к изучению химических процессов. Она изучает превращения тепла, связанные с химическими реакциями и агрегатными превращениями. При этом формулируются закономерности, позволяющие определять направление и предел прогекания этих процессов. Химическая термодинамика оказывается весьма плодотворной при решении вопроса об устойчивости химических продуктов, а также при отыскании способов, предотвращающих образование нежелательных веществ она же позволяет указать рациональные значения температуры, давления и прочих параметров для осуществления химических процессов, определить пределы фракционной дистилляции и кристаллизации, а также полезна при решении многих других металлургических и технологических задач. [c.12]

    Вместе с тем протекание реакции зависит, как правило, не только от термодинамических свойств реагирующей системы. Прежде чем перейти в равновесное состояние, определяемое термодинамикой реакции, система проходит через ряд промежуточных состояний. Скорость прохождения системой этих стадий определяется кинетикой процесса скорость установления равновесного распределения энергии по степеням свободы — физической кинетикой, скорость установления равновесного химического состава — химической кинетикой. При этом спецификой плазмохимических реакций является сильное взаимное влияние факторов физической и химической кинетики. Конечная скорость установления равновесного распределения энергии по различным степеням свободы в ряде случаев ограничивает возможность применения классических методов химической кинетики, основанных на предположении о максвелл-больцмановском распределении эиергии в реагирующей системе. Но и в тех случаях, когда методы химической кинетики могут считаться применимыми, исследование химической кинетики системы затрудняется тем, что сравнительно высокие при рассматриваемых температурах скорости химических реакций могут весьма существенно зависеть от скорости физических процессов, таких как диффузия — молекулярный и турбулентный перенос, макроскопическое перемешивание компонентов реагирующей системы. Изучение плазмохимического процесса предполагает, в общем случае, исследование элементарных актов соударений при условии кТ Е термодинамики, физической и химической кинетики процесса, а также вопросов газодинамики перемешивающихся потоков реагирующих веществ с учетом взаимоосложняющих воздействий всех этих факторов друг на друга. Сложность такой постановки задачи очевидна. Поэтому правомерно принять некоторое физически осмысленное упрощение отдельных сторон вопроса, разграничение отдельных факторов и их взаимных влияний. [c.412]

    Постгшовка проблемы. В предыдущих разделах были представлены методы вычисления скорости продуцирования энтропии в открытых системах и описано их применение в изучении свойств биологических объектов. Общее заключение, которое следует из приведенного материала, состоит в том, что хотя нахождение диссипативных функции р (У.3.1), (У.З.б) и имеет значение для энергетической характеристики системы, однако определить на этой основе направление ее эволюции можно только в области линейной термодинамики, где справедливы соотношения (У.3.3), (У.З.б). Это обстоятельство, конечно, существенно ограничивает область применения термодинамики необратимых процессов в анализе свойств биологических систем, которые находятся вдали от термодинамического равновесия. Поэтому вдали от равновесия однозначных выводов о значениях величины р при приближении системы к стационарному состоянию сделать нельзя. Это особенно важно для биохимических превращений, где наиболее характерны реальные переходы с изменением значения термодинамического потенциала АС порядка 4-8 кДж/моль, в то время как применимость линейных соотношений в химических реакциях ограничена пределами изменения АО 0,8 кДж/моль и где, кроме того, существуют дополнительные кинетические ограничения. [c.145]

    Во всех специальных дисциплинах специальности Химическая технология органических веществ большое внимание уделяется вопросам реализации принципов создания безотходных ресурсо-и энергосберегающих технологий. В частности, в курсе Теоретические основы реакционных процессов наибольшее внимание уделяется реализации следующих принципов созданию малостадийных и в пределе одностадийных химических процессов разработке процессов, имеющих высокую избирательность (селективность) применению методов, позволяющих одновременно получать несколько целевых продуктов совмещению нескольких реакций, направленных на получение одного и того же продукта разработке процессов с малым энергопотреблением. Реализация этих принципов базируется на глубоком изучении термодинамики реакционных процессов, подборе соответствующих каталитических систем и выборе оптимальных условий проведения реакций на основе выявления кинетических закономерностей. [c.531]

    Основные научные работы посвящены химической кинетнке и изучению кристаллической структуры. Еще в 1914 заинтересовался вопросами применения законов термодинамики к биологическ( м системам. После 1918 занялся интерпретацией рентгенограмм, которые получались при облучении целлюлозных волокон, и установил, что пятна на рентгенограммах возникают от кристаллов, ориентированных вдоль осп волокна. С помощью рентгеновского анализа установил (1921) размеры элементарной ячейки целлюлозы. Один из создателей (1935, вместе с Г. Эйрингом и анг ишским физикохимиком М. Г. Эвансом) теории абсолютных скоростей реакций, включающей метод переходного состояния. Начиная с 1950-х практически оставил научную деятельность в области химии и занялся философией и теологией. [349] [c.401]

    Возможности метода э. д. с. для изучения термодинамики твердофазных реакций ограничены прежде всего сравнительно малым выбором кристаллов, обладающих чисто ионной проводимостью в широком диапазоне химического потенциала составляющих его компонентов и температур. Помимо рассмотренных выше кисло-родпроводящих твердых электролитов в последнее время широкое применение нашли галогенпроводящие твердые электролиты, в первую очередь фториды кальция, магния, иттрия и редкоземельных элементов. Благодаря использованию этих электролитов открылась возможность исследовать методом э. д. с. обширную группу твердофазных реакций с участием углерода, бора, фосфора и других элементов. Рассмотрим в качестве примера взаимодействие [c.20]


Смотреть страницы где упоминается термин Применение термодинамики при изучении химических реакций: [c.8]    [c.9]    [c.168]    [c.6]    [c.6]    [c.221]    [c.4]   
Смотреть главы в:

Введение в технологию полупроводниковых материалов -> Применение термодинамики при изучении химических реакций




ПОИСК





Смотрите так же термины и статьи:

Термодинамика химическая



© 2025 chem21.info Реклама на сайте