Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модели структуры полипептидной цепи

    Модели структуры полипептидной цепи [c.142]

    Однако и Фрэнсису и мне было ясно, что модели, имевшиеся в лаборатории, не вполне подходили для нашей цели. Их года за полтора до этого сконструировал Джон для исследования пространственной структуры полипептидной цепи. Точных изображений атомных группировок, характерных для ДНК, среди них не было, как и моделей атомов фосфора или пуриновых и пиримидиновых оснований. Предстояло наспех что-то придумать заказывать их не было времени. Даже срочное изготовление совершенно новых моделей отняло бы у нас целую неделю, тогда как ответ мы могли получить через день-два. Поэтому, едва войдя в лабораторию, я принялся цеплять к моделям атомов углерода кусочки медной проволоки, тем самым превращая их в более крупные атомы фосфора. [c.54]


    В данном случае восстановление нативной конформации не требует наличия никаких дополнительных структур. Какие же модели свертывания полипептидной цепи в соответствующую конформацию являются наиболее вероятными Одной из распространенных гипотез самоорганизации белка является гипотеза расплавленной глобулы. В рамках этой концепции вьщеляют несколько этапов самосборки белков. [c.36]

    Как уже отмечалось, Астбери предложил большое число молекулярных моделей белков. Хотя ни одна из них не была подтверждена последующими экспериментами, тем не менее его работы оказали огромное стимулирующее влияние на развитие этой области. Условия, которым должны были удовлетворять предложенные им структуры, еще не носили строго количественного характера. Это касается длин связей, валентных углов и конфигурации пептидной группы (во многих моделях Астбери она не была плоской). Ученый хотя и предполагал наличие водородных связей между пептидными единицами, например в Р-форме, однако он не сформулировал тезис об образовании связи К-Н...О=С как общий принцип формирования структуры полипептидной цепи и не ставил условие полной насыщенности структуры водородными связями. У. Астбери говорил о необходимости плотной упаковки полипептидных цепей, но и это требование носило скорее декларативный характер, поскольку никаких количественных критериев им введено не было. Это и не могло быть сделано, так как в то время не только отсутствовали данные о геометрических параметрах пептидов и белков, но еще не было известно химическое строение ни одного белка. [c.15]

    Удовлетворять отмеченным выше геометрическим критериям могли только спиральные структуры полипептидной цепи, поэтому Хаггинс предложил спиральное строение полипептидов. Оказавшаяся столь плодотворной идея спиральности молекулярных структур биополимеров впервые была высказана им в 1942 г. [31]. Лишь для фиброина шелка и Р-кератина Хаггинс, в согласии с Мейером, Марком и Астбери, допускал плоскую форму цепи. Для различных фибриллярных белков им было предложено большое число спиральных структур, существенно отличающихся от ленточных структур У. Астбери. М. Хаггинс разработал модель пептидной цепи, которая включала в качестве основного структурного элемента семичленный цикл, замыкаемый водородной связью. Непрерывное повторение в цепи этого элемента при сохранении нормальных значений валентных углов и плоской конфигурации пептидных групп приводит к неплоской структуре полипептида с винтовой осью второго порядка. Такая структура должна давать в рентгенограмме слабый рефлекс 5,0 А и сильный [c.16]


    Обработка и анализ экспериментальных данных завершается расчетом карты распределения электронной плотности внутри элементарной ячейки кристалла, которая хранится в памяти ЭВМ. Такая карта позволяет проследить ход полипептидной цепи молекулы, но еще не выявляет структуру на уровне атомного разрешения. Для перехода к атомному разрешению необходимо построить модель, вписывающую полипептидную цепь в карту электронной плотности с учетом известных стереохими-ческих данных для полипептидного остова молекулы и боковых цепей образующих ее аминокислот. Для этого с помощью ЭВМ рассчитывают ряд сечений карты электронной плотности, которые в подходящем масштабе переносят на прозрачную пленку. Будучи сложенными в стопку, они воспроизводят распределение электронной плотности в элементарной ячейке кристалла. Однако без специальных приспособлений визуальный анализ структуры затруднен. Поэтому сечения или их выбранные районы укрепляются в вертикальной раме и освещаются сзади и сбоку. Перед рамой размещают полупрозрачное зеркало. Атомную модель молекулы собирают перед зеркалом так, чтобы ее зеркальное изображение совмещалось с картой распределения электронной плотности [11] (рис. 20.10). [c.544]

    Как видно из рис. 15.3, в структурах типа складчатого слоя водородные связи, соединяющие соседние полипептидные цепи, расположены в одном слое. На этом рисунке цепи выглядят так, как будто их можно полностью вытянуть с сохранением расположения амидных групп в плоскости слоя. Однако путем расчета и построения модели было показано, что длины связей и их углы не допускают образования таких плоских слоев. Структуры, удовлетворяющие пространственным требованиям, можно получить при изгибании цепей у а-атома углерода, как это показано на рис. 15.4 и 15.5. Структуры типа складчатого слоя обнаружены в белках шелка, растянутых волосах и в глобулярных белках. [c.431]

    Физическая теория пространственной организации белка, определяемая сформулированными выше принципами, является дальнейшим развитием рассмотренной ранее термодинамической теории. В нее привнесены отсутствующие у последней конкретные, детерминистические признаки структуры белка, связывающие конформационное поведение макроскопической системы со свойствами ее микроскопических составляющих. Термодинамическая теория является феноменологической. Она была призвана установить природу самоорганизации белка (и, действительно, установила, что сборка полипептидной цепи представляет собой статистико-детерминистический процесс), отнести рассматриваемое явление к адекватной его природе области естественнонаучных знаний (нелинейной неравновесной термодинамике) и дать качественно непротиворечивую трактовку всем важнейшим особенностям этого явления (спонтанному характеру, беспорядочно-поисковому механизму, высокой скорости и безошибочности). Физическая теория, в отличие от термодинамической, является не качественной, а количественной теорией, и должна послужить основой метода численного решения конформационной проблемы белка. Метод, опираясь на физическую модель, строится на поэтапном подходе и анализе конкретной белковой молекулы, нативная конформация которой предполагается самой предпочтительной по энергии, наиболее компактной и согласованной в отношении всех внутри- и межостаточных взаимодействий структурой. [c.106]

    Основные положения предложенной мною конформационной теории белков были сформулированы в общем виде и имели вначале чисто эвристический характер [40, 41]. Создание расчетного метода требовало их детализации и тщательной проверки. Достоинство теории даже в ее первоначальной, быть мо жет, несовершенной форме заключалось в том, что она позволяла всю необходимую работу с первой и до завершающей стадии заранее представить в виде строго последовательного ряда логически связанных между собой шагов, где каждое продвижение вперед опиралось на результаты предшествующих исследований и предваряло последующее. Иными словами, теория, отражавшая вначале чисто субъективное представление автора о структурной организации белка, в то же время представляла собой достаточно четко ориентированную рабочую программу исследования. Одно из положений теории, а именно предположение о согласованности в белковой глобуле всех внутри- и межостаточных взаимодействий, давало возможность разделить задачу на три большие взаимосвязанные части. Цель первой заключалась в кон-формационном анализе свободных остатков стандартных аминокислот, т.е. в оценке ближних взаимодействий валентно-несвязанных атомов. Идеальными моделями для изучения ближних взаимодействий явились молекулы метиламидов М-ацетил-а-аминокислот (СНз-СОМН-С НК-СОЫН-СНз). Вторая часть общей задачи состояла в выяснении влияния средних взаимодействий, т.е. взаимодействий между соседними по цепи остатками. Объектами исследования здесь могли служить любые природные олигопептиды. Цель третьей, завершающей части - изучение роли контактов между удаленными по цепи, но пространственно сближенными в глобуле остатками и априорный расчет трехмерной структуры белка. В дефинициях нелинейной неравновесной термодинамики эти цели могут быть сформулированы следующим образом. Во-первых, определение возможных конформационных флуктуаций у свободных аминокислотных остатков и выявление энергетически наиболее предпочтительных. Во-вторых, нахождение возможных конформационных флуктуаций локальных участков полипептидной цепи и установление среди них бифуркационных флуктуаций, ведущих к структурированию фрагментов за счет средних невалентных взаимодействий. В-третьих, анализ возможных флуктуаций лабильных по средним взаимодействиям участков полипептидной цепи и идентификация бифуркационных флуктуаций, обусловливающих комплементарные взаимодействия конформационно жестких нуклеаций, стабилизацию лабильных участков и, в конечном счете, образование нативной трехмерной структуры молекулы белка. [c.109]


    Итак, завершено рассмотрение опытных данных Крейтона о механизме сборки трипсинового ингибитора. Оно основывалось на неравновесной термодинамической модели, физической теории структурной самоорганизации и конкретных результатах априорного расчета конформационных возможностей полипептидной цепи и геометрии нативной трехмерной структуры белка. Общим итогом анализа является адекватное естественному процессу ренатурации представление всего пути свертывания белка -от состояния статистического клубка до строго детерминированной нативной конформации макромолекулы. К принципиальным результатам рассмотрения следует, по-видимому, отнести выявление причин и количественное теоретическое обоснование возможности спонтанной, быстрой и безошибочной сборки флуктуирующей беспорядочным образом белковой цепи. [c.482]

    Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы. Это впервые удалось сделать М. Перутцу в 1954 г, что явилось предпосылкой Д 1я построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь, В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина а-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около [c.43]

    Прогресс, достигнутый в ходе решения столь сложный проблемы, был, естественно, результатом усилий многих исследователей. Среди них — Лайнус Полинг (Калифорнийский технологический институт), получивший в 1954 г. Нобелевскую премию. В 1951 г. Полинг писал Четырнадцать лет назад профессор Р. Кори в я, предприняв очень энергичные, но безуспешные попытки решить задачу построения удовлетворительной модели конфигурации полипептидных цепей в белках, решили попытаться справиться с этой задачей косвенным методом, тщательно изучив кристаллы аминокислот, простых пептидов и родственных соединений для того, чтобы получить абсолютно надежные и подробные сведения о структурных характеристиках веществ подобного рода и в конце концов получить возможность уверенного предсказания точных конфигураций полипептидных цепей в белках [Re ord. hem. Prog., 12, 156—157 (1951)]. Эта работа на простых веществах, проводившаяся в течение более 14 лет, позволила в конце концов Полингу с сотрудниками предложить структуру, которая, вероятно, является важнейшей вторичной структурой в химии белков — а-спираль. [c.1057]

    Однако работы Астбери помогли достаточно четко сформулировать цели исследований и наметить основные пути выяснения пространственной конфигурации белковых веществ. В 3 0-х годах складываются два основных направления рентгенострук-турных исследований белковых веществ (разрабатываемые первоначально исключительно для фибриллярных белков). Этими направлениями были, во-первых, изучение детального строения основных простых компонентов полипептидной цепи (признававшейся основной структурой белковых веществ) — аминокислот и простых пептидов, а также некоторых аналогичных структур, в первую очередь, дикетопиперазинов во-вторых,— изучение моделей полипептидных цепей, построенных на основании рентгеноструктурных анализов фибриллярных белков. Оба этих направления были тесно связаны друг с другом, так как исследование детального строения аминокислот, пептидов и модельных веществ ч данные о геометрических размерах этих соединений позволили бы использовать уже накопленные данные для построения все более точных модельных структур полипептидных цепей и перейти, таким образом, к выяснению закономерностей строения как полипептидной цепи, так и образуемых ею структур высшего порядка. [c.140]

    Успех Полинга был обусловлен отчасти тем, что он использовал новый подход к определению структуры. В этом подходе предположения и построение моделей играли гораздо большую роль, чем при аналитическом методе, применявшемся старомодными кристаллографами старой школы. Несколькими годами ранее Полинг решил, что структуру полипептидной цепи можно, вероятно, представить, если располагать точными данными о пространственной конформации пептидной связи. Поэтому свои исследования, проводимые методом рентгеиоструктурной кристаллографии, он сосредоточил на определении длин и углов валентных связей в кристаллических аминокислотах и небольших пептидах фиг. 45). Получив эти данные, Полинг смог построить теоретическую модель регулярного полипептидного скелета (фиг. 46). Такая вторичная структура получила название а-спирали. Устойчивость этой структуры обусловлена наличием водородных связей между атомом водорода а-ами-ногруппы и атомом кислорода а-карбоксильной группы другого аминокислотного остатка— четвертого по цепи, считая от первого. Шаг а-спирали составляет 5,4 А, и она содержит 3,6 аминокислотных остатка на виток. [c.93]

    Первое краткое сообщение о результатах исследования Полингом и Кори пространственной структуры полипептидов и белков появилось в ноябре 1950 г. [57]. В апреле следующего года в одном номере журнала было опубликовано сразу восемь работ Полинга и Кори с подробным изложением полученных результатов, а вскоре появились еще четыре их работы [58—65]. Они сразу же обратили на себя внимание научной общественности, вызвали огромный резонанс и оказали сильное влияние на последующее развитие молекулярной биологии и прежде всего исследований пространственной структуры пептидов и белков. В связи с чем вполне обоснованно разделить исследования, проводимые в этой области, на работы до 1951 г. и последующего периода. Читая какой-либо труд, посвященный структуре пептидов, можно, не зная даты публикации, почти наверняка определить, написан ли он до или после появления в печати работ этих ученых. Исследования Полинга и Кори (1951 г.) имеют теоретический характер. Сделанные авторами предсказания возможных структур полипептидной цепи основаны на следующих постулатах 1) приняты одинаковые значения для длин связей и валентных углов всех пептидных групп полипептидной цепи. В литературе они получили название геометрических параметров Полинга— Кори 2) пептидная группа считалась плоской. Возможны две плоские конфигурации группы, отличающиеся взаимным расположением связей N—Н и С=0, цис- и трамс-переход между ними связан с преодолением высокого потенциального барьера (-20 ккал/моль). При построении моделей Полинг и Кори отдали предпочтение транс-конфигурации пептидной группы. По оценке Р. Кори и Дж. Донахью, отклонение от плоского строения группы на 10° вызывает повышение энергии приблизительно на 1,5, а на 30° — на 6 ккал/моль [66] 3) предполагалась полная насыщенность полипептидной цепи водородными связями. Для водородной связи N—Н...О = С были приняты следующие геометрические и энергетические оценки расстояние N...0 считалось равным 2,8 А, максимальное отклонение от линейности N—Н...0 не должно превышать 30° и энергия связи — 8,0 ккал/моль 4) при построении моделей пептидной цепи выбирались наиболее благоприятные ориентации пептидных групп, разделенных атомом С , с учетом потенциалов внутреннего вращения вокруг связей С —N и С —С и ван-дер-ваальсовых контактов между атомами 5) конформационные состояния всех звеньев пептидной цепи считались эквивалентными. [c.21]

    Порядок химической связи аминокислот друг с другом создает первичную структуру макромолекулы белка. Однако его свойства зависят также и от конформации полипептидной цепи (вторичной структур ы). Одной из моделей вторичной структуры белка является так называемая а-спираль, в которой полипептидную цепь надо представлять себе в виде нити, обвивающей поверхность 1илиндра. Устойчивость а-спирали обеспечивается водородными связями между группами NH и С=0 (рис. 11.1). [c.334]

    Все а-, р- и 7-глиадины состоят из единственной полипептидной цепи [64—69, 72, 73, 156]. Цистеины в молекулах а-, Р- и 7-глиадинов связаны внутримолекулярными дисульфидными мостиками. Эти дисульфидные мостики расположены так в полипептидной цепи, что их разрыв приводит к значительной фрагментации цепи [79]. В твердом состоянии после экстракции и лиофилизации глиадины имеют компактную структуру, в образовании которой, вероятно, участвуют гидрофобные остатки [163]. При высокой концентрации в растворе они стремятся к агрегированию, видимо, вследствие образования водородных связей между молекулами [8]. В денатурируюш,ей среде (8М мочевина и 0,1М муравьиная кислота) глиадины имеют рыхлую и асимметричную структуру, на что указывают коэффициенты трения. Восстановление дисульфидных мостиков еш,е сильнее увеличивает асимметрию и степень рыхлости, т. е. пространственного расширения молекулы [140]. Присущая ш-глиадинам вязкость в среде 6М гуанидинхлорида указывает на то, что в этих условиях они находятся в виде статистического клубка из-за отсутствия дисульфидных мостиков. Они обладают такой конформацией в присутствии 2М гуанидинхлорида — концентрации, которая не вызывает денатурации, следовательно, в нативном состоянии в растворе конформация ш-глиадинов — это статистический клубок. Аналогичное исследование а-, р- и 7-глиадинов показывает, что они не имеют жесткой глобулярной конформации, но, наоборот, представляют собой молекулы полужесткой структуры с низкой степенью организации [153]. Основываясь на известных N-концевых последовательностях, Перноле и Мосс [154] предложили модели вторичной структуры. Они представили а-, Р- и 7-глиадины в основном как р-структуру, прерываемую р-из-гибами и непериодическими структурами. Практически отсутствует а-спираль ш-глиадины четко различимы, поскольку наиболее выраженная их структура — это р-изгиб, прерываемый [c.196]

    Неравновесная модель свертывания. Начнем обсуждение модели с определения минимального фазового и компонентного состава системы, обеспечивающей спонтанное протекание процесса в изолированных условиях. Не нарушая общности модели свертывания, во всяком случае, применительно к условиям in vitro, будем считать, что объектом рассмотрения является мономерный белок. Имеющиеся опытные данные о структурной самоорганизации белков позволяют представить укладку линейной аминокислотной последовательности в трехмерную структуру как внутримолекулярный процесс, который полностью определяется проявляющимися в соответствующих условиях свойствами единичной полипептидной цепи. Иными словами, свертывание не зависит от концентрации белка, и поэтому модель может включать лишь одну белковую молекулу. В систему должна входить также водная фаза. Для предварительного феноменологического описания процесса не требуется учет конкретных специфических свойств среды, обусловливающих реализацию заложенной в белковой цепи потенции к самоорганизации. Пока будем считать водное окружение гомогенным, обладающим необходимыми для сборки белка свойствами. [c.93]

    Для рассматриваемой модели это условие на первый взгляд выглядит нереальным, так как число возможных комбинаций случайных и беспорядочных конформационных флуктуаций белковой цепи невероятно велико, и появление среди них бифуркационных флуктуаций как будто бы ничтожно мало. Перебор всех микроскопических состояний даже у самых низкомолекулярных белков занял бы не менее лет. Противоречие между характером описываемого процесса и наблюдаемой продолжительностью свертывания снимается, если предположить, что актуальные на первом этапе сборки белка бифуркационные флуктуации возникают независимо и одновременно на разных участках полипептидной цепи. Иными словами, начало пространственного структурирования белка представляется рядом параллельно идущих процессов формообразования как бы не связанных друг с другом олигопептидных фрагментов молекулы. Чтобы это действительно могло происходить при вполне определенном сочетании необратимых флуктуаций, следует допустить возможность образования конформационно достаточно жестких структур только за счет взаимодействий остатков в пределах сравнительно коротких участков белковой цепи. При количестве возможных сочетаний низкоэнергетических флуктуаций порядка 10" (п - число аминокислотных остатков) и продолжительности одной флуктуации с время вероятного появления локальной структуры при беспорядочно-поисковом механизме ориентировочно равно 10> -14 Следовательно, для фрагмента белковой цепи, например с и = 12, время сборки составит всего 10 с. Чтобы процессы структурирования разных участков аминокислотной последовательности могли идти параллельно и независимо друг от друга, требуется также предположить чередование в белковой цепи конформационно жестких и лабильных фрагментов. [c.97]

    В другой работе этих же авторов [31] исследована трехмерная структура миогена карпа (180 аминокислотных остатков). Использовалась та же расчетная модель с максимально упрощенными представлениями полипептидной цепи и силового поля. Вопрос о свертывании белка из полностью резвернутой цепи уже не ставился все исходные для минимизации приближения содержали шесть а-спиральных сегментов, наблюдаемых в кристаллической структуре миогена. Компьютерное воспроизведение упаковки заданных вторичных структур вьшолнено при трех условиях. В первом случае рассматривалось взаимодействие лишь пары а-спиралей. Было показано, что они предрасположены к достижению оптимального взаимодействия. Во втором случае аналогичная задача ставилась для четырех а-спиралей (69 остатков). Однако она оказалась практически нерешаемой было получено пять конформаций со среднестатистической ошибкой -7,0 А. В третьем случае моделировалось свертывание белковой Чепи миогена из шести жестких цилиндров. После длительных поисков были найдены три структуры с ошибкой в 8,5 А. [c.485]

    Во многих исследованиях такого плана к анализу упрощенных моделей привлекаются разные эмпирические соотношения, кристаллофафические данные, результаты статистического анализа и гомологи. В первом комплексном подходе к описанию свертывания белка С. Танаки и Г Шераги [33-36] рассмотрение модели полипептидной цепи сочетается с данными статистического анализа белков известной структуры. Авторы предполагают, что процесс образования конформации проходит через три последовательных этапа. На первом этапе (А) полностью развернутая белковая цепь складывается за счет внутриостаточных и ближних межостаточных взаимодействий в упорядоченные вторичные струкутры. Затем (этап В) под влиянием средних взаимодействий между а-спиральными и -струк-турными сегментами зарождаются небольшие контактные области При этом образованные на первом этапе регулярные формы могут претерпевать изменения. На третьем этапе (С) происходит ассоциация контактных областей этапа. В за счет дальних взаимодействий и образование нативной конформации белка. [c.486]

    Начальная форма полипептидной цепи с участками вторичной структуры получена Танакой и Шерагой с помощью эмпирических правил и механико-статистической обработки однонитчатой модели Изинга. Аминокислотные остатки представлены в виде сфер основной цепи (-HN- H-С0-) и сфер боковых цепей определенных ван-дер-ваальсовых радиусов Из анализа 25 белков известной структуры найдены частоты контактов между всеми парами остатков [к и I) и для каждого типа пар определены константы равновесия Кц и свободная энергия Гиббса АСц образования контакта между остатками к и / Процедура поиска конформации белка состоит в следующем. На стадии А цепь представляется порядком символов /г, и с, характеризующих области правой а-спирали, -структуры н клубка. Остатки, идентифицированные с помощью предсказательного алгоритма, помечаются только одним символом h или ), а неотнесенные остатки - тремя (И, , с) Для свертывания цепи используется процедура Монте Карло при последовательном введении средних (этап В) и дальних (этап С) взаимодействий и произвольном варьировании значений углов ф. / в выбранных областях /г и у отнесенных остатков и символов Л, , с, а при каждом символе - значений углов ф, V у неотнесенных на этапе А остатков По ходу счета через определенные промежутки времени отбирались конформации, в которых отсутствует перекрывание жестких сфер [c.486]

    В последующей работе Н. Гё и Г. Абе [60] детально рассмотрели статистико-механическую модель локальных структур, идея которой уже прослеживалась в изложенных только что исследованиях Н. Гё и Г. Такетоми [57-59]. Под локальной структурой понимается конформация участка полипептидной цепи, которая образуется на определенной стадии процесса свертывания и которая без существенных изменений входит в нативную конформацию белка. В отличие от общепринятого представления о том, что сборка полипептидной цепи начинается с образования вторичных структур, и составляющего основное содержание процесса, а также инициирующего его последующее развитие, Гё и Абе априори не отдают предпочтения ни одной локальной структуре, регулярной или нерегулярной. Наличие а-спиралей, Р-складчатых листов, изгибов и прочих образований оценивается их статистическими вкладами и статистико-механическим поведением всей белковой молекулы посредством парциальной функции. В этой функции не учтен вклад стабилизирующих контактов между локальными структурами на отдельных участках цепи. Отсюда и название анализируемого представления о процессе белкового свертывания как модели невзаимодействующих локальных структур По существу, она аналогична бусиничной модели без подвесок Кунтца и соавт. [32], только в данном случае Гё и Абе представляют белковую цепь не в виде отдельных аминокислотных остатков, аппроксимированных жесткими сферами, а в виде целых конформационно жестких образований, каждое из которых включает непрерывный участок аминокислотной последовательности. Предположение об отсутствии взаимодействий между ними позволяет рассчитать парциальную функцию модели. Но даже в этом случае непременными условиями являются знание нативной конформации, которая обязательно должна быть однодоменной, и предположение [c.492]

    В модели Канехиса и Тсонга состояние полипептидной цепи может передаваться набором многих микроскопических конфигураций, отличающихся друг от друга размером кластеров и положением их вдоль цепи. Важнейшими характеристиками состояния являются количества кластеров в последовательности (к) и остатков в кластере (т). Значения кит ограничены лишь протяженностью цепи. Кластерная модель описывает равновесный двухфазный процесс свертывания, т.е. предполагается существование только двух термодинамических стабильных состояний белковой цепи, отвечающих двум минимумам свободной энергии. Переход между ними сводится к тому, что все микроскопические состояния должны входить в распределение одного оптимального макроскопического состояния или другого. Динамика кластерной модели трактуется как беспорядочный, стохастический процесс, характеризующийся вероятностью переходов промежуточных состояний. Свертывание белка включает стадии зарождения, роста и миграции локальных структур. Случайность процесса означает, что свертывание молекул одного белка при одинаковых исходных состояниях и внешнем окружении может происходить различными путями без соблюдения последовательности соответствующих конкретных событий, но при условии статистической идентичности путем свертывания. [c.493]

    Причину неудавшегося описания структуры Бэржес и Шерага [132] увидели в несовершенстве расчетной процедуры, которая, по их мнению, учитывала только внутриостаточные и ближние межостаточные взаимодействия. Был сделан вывод, что полученные результаты свидетельствуют о необходимости дополнить схему предсказания учетом средних и дальних взаимодействий. Авторы этой работы, как и предыдущей [131], неправы, утверждая, что в расчете игнорировались межостаточные взаимодействия среднего и дальнего порядка. Как уже упоминалось, в действительности они в неявном виде входили в расчетную модель благодаря отнесению геометрии всех аминокислотных остатков полипептидной цепи БПТИ к нативным конформационным состояниям, являющимся конечным результатом воздействия суммарного эффекта всех внутриостаточных и межостаточных контактов. В силу использования процедур, основу которых составила экспериментальная информация о трехмерных структурах белков, результаты исследований [131] и [39] в принципе не могут претендовать на дифференцированное отражение внутримолекулярных невалентных взаимодействий атомов. Таким образом, вопрос о функциональном назначении внутриостаточных и межостаточных контактов в структурной самоорганизации белковой глобулы остался без ответа по существу, он не рассматривался. [c.503]

    При анализе свертывания белковой цепи на основе концепции регулярных вторичных структур не учитываются экспериментальные данные о реальном механизме сборки белка. Характерной иллюстрацией такого рода моделирования может служить работа О.Б. Птицына и A.A. Рашина [113], посвященная сборке молекулы апомиоглобина. Авторы использовали модель полипептидной цепи, в которой еще до начала манипуляции с ней были заданы в виде цилиндров все а-спирали наблюдаемой нативной конформации белка. Задача, следовательно, свелась к тому, чтобы, зная реальную структуру молекулы, упаковать заданные цилиндры различными способами и оценить энергию их взаимодействий. Расчет велся вручную, поэтому не были учтены все возможные структурные варианты (а их миллионы). Найденное взаимное расположение спиралей, имеющее минимальную энергию, совпало с нативной конформацией апомиоглобина. Однако здесь и речи не может быть о том, что в результате данного исследования стала ясна функция дальних взаимодействий в структурной организации белка, поскольку в состав наперед заданных а-спиралей входит не менее 75% остатков аминокислотной последовательности, а в этом случае была рассмотрена ничтожная часть возможных структурных вариантов. [c.503]

    Предлагаемая автором модель белкового свертывания не может считаться общей, так как не только не затрагивает фибриллярных белков, но и среди глобулярных имеет отношение только к небольшой группе белков, состоящих преимущественно из а-спиралей и Р-структур, образующих супервторичные структуры. Стабилизация последних, как полагает Пти-цьш, не определяется конкретной аминокислотной последовательностью, а представляет собой некий интегрально-статистический эффект, чувствительный лишь к общей контактной гидрофобной поверхности. Оставляя это положение без аргументации, автор формулирует "общую гипотезу направленного механизма белкового свертывания", суть которой заключается в предположении, что "узнавание регулярш,1х сегментов определяется не деталями аминокислотной последовательности, а взаимной локализацией этих сегментов в линейной полипептидной цепи" [140. С. 198]. Постулировав, по существу, независимость супервторнчных структур от химического строения белков, Птицын тем самым свел проблему спонтанной сборки нативных конформаций к выработке геометрических критериев самоорганизации регулярных сегментов. Таким образом, "общая физическая модель" белкового свертывания оказалась не только не общей, но и не физической. [c.504]

    Стадия взаимодействия вторичных структур должна следовать за стадией их образования. Следовательно, до выработки геометрических критериев упаковки вторичных структур в супервторичные необходима идентификация а-спиралей и р-складчатых листов, описание процессов их идентификации, развития и терминации. Задачи, перечисленные в работе [140], предполагаются решенными, что, как известно, не соответствует действительности. Поэтому модель Птицына описывает не весь процесс белкового свертывания, а лишь упаковку вторичных структур, т.е. завершающую стадию, быть может, не отвечающую соответствующей стадии реального механизма самоорганизации. Следует также отметить несовместимость предложенной модели с одним из постулируемых в этой же работе положений. Так, автор, рассматривая вопрос об идентификации а-спиралей и Р-структур, исходит из существования корреляций между вторичными структурами и аминокислотной последовательностью, а обсуждая образование из них супервторичных структур, утверждает отсутствие таких корреляций. В основу поиска геометрических критериев упаковки вторичных структур положена простейшая полипептидная цепь - гомополимер из аминокислот с гидрофобными боковыми группами. Предполагается, что такая цепь в водном окружении обладает вторичными структурами, стабилизированными пептидными водородными связями, и супервторичной и третичной структурой, стабилизированной гидрофобными взаимодействиями боковых цепей а-спиралей или Р-складчатых листов. Реальное поведение гомополипептидов в растворе не дает, однако, оснований для подобных предположений [25, 142-144]. Молекулы гомополипептидов, как и молекулы других синтетических полимеров, имеют огромное количество близких по энергии непрерывно флуктуирующих в [c.504]

    Дж. Грир предложил конструировать экспериментальные модели, используя семейство гомологичных белков и выделяя в их последовательностях общие участки, которым приписываются конформационные состояния белка, изученного рентгеноструктурно [237, 238]. Такой способ был опробован им при формировании расчетной модели белка комплемента С5а с привлечением структуры СЗа [239] и ренина человека на основе структур нескольких последовательностей аспартатных протеиназ [240]. Аналогичный подход с использованием консервативных участков гомологов для создания у исследуемого белка структурного кора полипептидной цепи был предложен также Т. Бланделлом и соавт. [241-244]. Недавние исследования модельных структур протеиназ, применяемых в медицине, показали, что при использовании информации о семействе белков для выявления активного центра полезными могут оказаться гомологи даже с невысоким содержанием идентичных участков ( 30%) [245-248]. [c.522]

    Как полагают Меклер и Идлис, "обязательный компонент любой А-А-связи - водородная связь, образующаяся между полярной группой боковой цепи одного аминокислотного остатка и карбонилом остова полипептидной цепи - компонентом аминокислотного остатка-партнсра" [352. С. 43]. Вокруг таких водородных связей имеются гидрофобные рубашки, "защищающие их от атаки молекулами растворителя, в первую очередь, воды. Таким образом Природа обеспечивает образование особых, ранее неизвестных, специфических связей между аминокислотами - Л-Л-связей" [352. С. 44]. Из описанной структурной модели A-A-комплекса, однотипной для всех 26 пар аминокислотных остатков, не ясно, почему водородная связь является "обязательным компонентом любой A-A-связи". Это исключено по целому ряду причин. Во-первых, стабилизирующая энергия водородной связи, даже если она экранирована от контактов с водой, во много раз уступает суммарной энергии других видов невалентных взаимодействий, прежде всего, дисперсионной энергии. Во-вторых, точечное взаимодействие двух атомов этого "обязательного компонента" не может обеспечить стереокомплементарность остатков А и A. Напротив, как хорошо известно [353], взаимное расположение групп С = 0 и Н-О (H-N) определяется не столько самой водородной связью, сколько потенциальной энергетической поверхностью окружающих ее атомных групп. Она реализуется только в том случае, если удовлетворяет требованиям других видов невалентных взаимодействий, среди которых наибольшие ограничения накладывают ван-дер-ваальсовы взаимодействия. В-третьих, сближенность акцептора и донора протона требует определенной ориентации друг относительно друга основной цепи одного остатка и боковой цепи другого, что должно лишать конформационной свободы оба аминокислотных остатка и вести к реализации у всех пар A-A-связей данного типа одинаковых конформационных состояний. Такая унификация пространственного строения A-A-комплексов, как отмечалось, противоречит эксперименту. И наконец, в-четвертых, с предложенной моделью A-A-связи не согласуется четко проявляющаяся в трехмерных структурах белков тенденция боковых цепей заряженных остатков (Arg, Lys, Glu, Asp), находящихся на поверхности глобулы, принимать полностью развернутые конформации и ориентироваться в [c.536]

    Значения двугранных углов основной цепи ограничены. Конфор-Мационная подвижность полипептидной цепи ограничена. Жесткая пептидная связь заметно ограничивает подвижность полипептидной цепи. Кроме того, пептидное звено довольно громоздко и вызывает существенные стерические затруднения. Во время работы над моделями структуры коллагена Рамачандран и сотр. [28] исследовали вопрос, каким образом дальнее стерическое взаплюдействие ограничивает свободу вращения вокруг связей N—С и С —С Цепи, т. е. интервал допустимых углов 0 и 6. Для этой цели они определили по известным кристаллическим структурам контактные вандерваальсовы расстояния между интересующими их ато- [c.29]

    Вандерваальсовы радиусы приблизительно соответствуют контактным расстояниям. Вандерваальсовы потенциалы позволяют определить расстояния, отвечающие вандерваальсовым контактам между данными атомами. Ннжние границы этих расстояний, полученные из кристаллических структур, определили Рамачандран и Сасисекхаран [29]. Они составляют около 75% равновесных расстояний в табл. 3.2 и отвечают энергии отталкивания, равной приблизительно 1 ккал/моль. Эти контактные расстояния были использованы в модели жестких сфер для оценки стерических затруднений при Са-атоме полипептидной цепи [28] (рис. 2.3), [c.44]

    Дисульфидные мостики, приводящие к образованию петель в полипептидной цепи, обнаружены в нескольких белках (пепсине, тиоредоксине, А-цепи инсулина, фиброине шелка [145], липоамидной дегидрогеназе и других пиридиннуклеотиддисульфидных окси-редуктазах [ 111 ]). Между мостиковыми цистеиновыми остатками в полипептидной цепи находится 2—4 остатка. Рассмотрение моделей, а также рентгеноструктурный анализ показывают, что такие петли имеют уплощенную жесткую структуру. В глутатионредуктазе и родственных ферментах в петле участвует изоаллоксазиновое кольцо FAD [123, 124]. [c.69]

    Рентгеноструктурный анализ позволяет определить конформацию п ход полипептидной цепи в пространстве, поэтому для каждого белка может быть построена объемная модель, отражающая местоположение линейных п сппралпзованиых участков. При изучении глобулярных белков было показано, что пространственная структура белков в сильной степени зависит от ряда факторов, в частности от ионной силы п pH раствора, температуры п т.д. Новейшие методы дифракции рентгеновских лучей [c.65]

    Остов полипептидной цепи может образовывать спиральные структуры с параметрами, близкими к двойной спирали ДНК в В- и 4-формах. Как показали конформационные расчеты н построение молекулярных моделей, стереохимически возможны два типа спиральных структур, одна из которых (/) имитирует структуру повторяющихся Г -метилпирролкарбоксамидных единиц дистамицина, а вторая (g) представляет собой регулярную спираль, в которой карбонильные группы остова могут образовывать водородные связи с 2-аминогруппами гуанина, находящимися в одной и той же полинуклеотидной цепи (рис. 8.18). Две антипараллельные, И или tg, пептидные цепи можно расположить в узкой бороздке таким образом, что образуются водородные связи между пептидными группами двух цепей и ос-Еованиями ДНК. Этот структурный мотив был обнаружен экспериментально. [c.292]

    Рпс. 7.12, Электронная микрофотография высокого разрешения бактериородопсина — светозависимого протонного насоса галофильны.х бактерий. Во многих отношениях эта структура подходит для использования в качестве модели ионного транспорта через другие (нейрональные) мембраны. Каждая молекула состоит из семи спиральных полипептидных цепей, пронизывающих мембрану (б). На карте электронной плотности (а) видно, что три молекулы ассоциированы в единое структурное образование, в котором внутреннее кольцо включает девять и внешнее — двенадцать полипептидных спиралей. В центре расположены липиды. Каждая молекула бактериородопсина является активным протонным насосом. (Воспроизводится с разрешения R. Henderson и M Millan Journals Ltd.) [15]. [c.183]


Смотреть страницы где упоминается термин Модели структуры полипептидной цепи: [c.439]    [c.354]    [c.69]    [c.246]    [c.493]    [c.495]    [c.500]    [c.523]    [c.524]    [c.524]    [c.184]   
Смотреть главы в:

Развитие химии белка -> Модели структуры полипептидной цепи




ПОИСК





Смотрите так же термины и статьи:

Полипептидные цепи



© 2025 chem21.info Реклама на сайте