Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная масса, размеры и форма белковых молекул

    Установлено, что белки могут иметь весьма различные размеры и форму. Определение молекулярной массы и размеров молекул белка выполняется с применением мощного арсенала физических методов исследований. Молекулярные массы можно определить с помощью измерения скоростей диффузии, скоростей седиментации в ультрацентрифуге, рассеяния света и даже путем измерения размеров индивидуальных больших по размеру молекул белка методом электронной микроскопии. [c.510]


    Белки — важнейшие компоненты организма функции, классификация, форма и размеры белковых молекул. Молекулярная масса. [c.94]

    При разделении нуклеиновых кислот используют те же методы, что и при фракционировании белков, однако имеются ограничения, обусловленные большим диапазоном величин молекулярной массы (2-10 —Ы0 ° Да), отклонениями от глобулярной формы, различиями в четвертичной структуре (двухнитевые, однонитевые, кольцевые), значительным отрицательным зарядом в нейтральной области pH. Поэтому методы гель-фильтрации и ионообменной хроматографии не получили широкого распространения при фракционировании нуклеиновых кислот и значительно уступают ультрацентрифугированию и электрофоретическому разделению в геле агарозы, полиакриламидном геле или их смеси. Поскольку величина отрицательного заряда нуклеиновых кислот и продуктов их расщепления мало зависит от pH, а отношение заряда к молекулярной массе сохраняется практически неизменным, разделение нуклеиновых кислот при электрофорезе определяется не их зарядом, а размером молекул. При наличии маркеров с известной молекулярной массой возможно определение молекулярной массы препаратов нуклеиновых кислот и их фрагментов. [c.171]

    Установлено, что белки могут иметь весьма различные размеры и форму. Определение молекулярных масс и размеров белков было выполнено с применением мощного арсенала физических методов исследований. Молекулярные массы можно определить с помощью анализа отдельных компонентов (см. упражнение 20-23), измерения скоростей диффузии, скоростей седиментации в ультрацентрифуге, рассеяния света и даже путем измерения размеров индивидуальных, очень больших по размеру молекул белка методом электронной микроскопии. Сведения о форме молекул получают, измеряя скорости молекулярной релаксации после электрической поляризации, исследуя изменения в оптических свойствах (двойное лучепреломление), возникающие в струе жидкости, непосредственно с помощью электронной микроскопии и, что имеет, быть может, наиболее важное значение, исследуя интенсивность рассеяния света и рентгеновского излучения как функцию угла рассеяния. Применение всех этих методов часто встречает трудности вследствие высокой степени гидратации белков, а также в результате того, что многие белки вступают в обратимые реакции ассоциации, образуя димеры, три-меры и т. д. Молекулярные массы, молекулярные параметры и изоэлектрические точки ряда важных белков приведены в табл. 20-2. [c.125]


    Как известно, функция рибонуклеазы состоит в гидролитическом расщеплении рибонуклеиновых кислот и олигонуклеотидов. Как мы видели, это один из первых белков, изучавшихся с помощью ЯМР, хотя спектры, полученные на ранних стадиях, не обнаруживали характерных деталей. Рибонуклеаза близка по размеру (молекулярная масса 13700, 124 аминокислотных остатка) и форме к лизоциму и является удобным объектом для изучения методом ЯМР. В ее молекуле имеются 4 дисульфидных мостика, 18 остатков основных аминокислот (10 Лиз, 4 Apr и 4 Гис) и только 10 остатков кислых аминокислот (5 Глу и 5 Асп). Таким образом, в растворе при нейтральных pH молекула заряжена положительно. По сравнению с лизоцимом она содержит несколько меньше а-спиральных структур и больше -структур (остатки 42—49, 71—92 и 94—110). В дополнение к 4 Гис имеются также 6 Тир и 3 Фен, но нет остатков триптофана. Полная трехмерная структура рибонуклеазы известна из рентгеноструктурных исследований, проведенных двумя группами авторов [37, 38, 38а]. Форма ее глобулы близка к сферической имеется большая щель, в которой происходит связывание субстрата. С одной стороны этой щели расположены в непосредственной близости друг от друга остатки Гис-12, Гис-119 и Лиз-7, а с другой стороны находится Лиз-41. По данным подробных химических исследований все эти четыре остатка входят в активный центр. [c.363]

    На рубеже Х1Х-ХХ вв. к изучению белков подключаются физическая химия, а немного позднее - новейшая физика, что, однако, далеко не сразу стало способствовать решению задачи. И здесь обилие новых данных, на первых порах неправильно истолкованных, приводило к тому, что белки представлялись еще более загадочными как в физическом, так и в химическом и биологическом отношениях. Физические исследования белков начались с изучения их коллоидного состояния, выявления диффузионных, осмотических, седиментационных и электрохимических свойств. Впервые было получено представление о форме и размерах большого числа белков в активном состоянии, а также достаточно надежно определены их молекулярные массы. При существовавшем в первые десятилетия XX в. уровне знаний о строении молекул, тем более макромолекул, новые [c.65]

    Понятно, что первые исследователи были приведены в замешательство открытием, каких размеров может достигать полипептид-ная цепь в некоторых белках, согласно оценкам их молекулярной массы. Некоторые авторы [3] пришли к заключению, что имеющаяся конфигурация действует таким образом, что помогает молекуле гораздо сильней уплотниться, чем это можно было ожидать на основании простейших и наиболее очевидных предположений . Большие успехи в исследовании биополимеров, таких как белки н нуклеиновые кислоты, а также становление молекулярной биологии в значительной степени произошли в результате понимания того факта, что такие ограничения, накладываемые на форму и размер частиц, действительно существуют. Определение точной пространственной структуры белков с помощью кристаллографической техники и в ряде случаев исследования, которые показали дискретные изменения в конформации белков, когда они вступали в [c.219]

    За последние годы в связи с возросшей необходимостью анализа и разделения сложных смесей получила значительное развитие ситовая хроматография (гель-проникающая, гель-фильтрационная, молекулярно-ситовая). В качестве подвижной фазы в этом случае используются только жидкости, а неподвижной фазой являются материалы с заданной пористостью, способные избирательно удерживать молекулы веществ с определенными размером и формой. Так, например, в качестве фильтрующих материалов используются сшитые гидрофильные полимеры (гели), обладающие строгой регулярностью пространственной структуры. При пропускании через гель водных растворов белков или других водорастворимых биологических материалов удается удерживать внутри решетки геля молекулы определенного размера, а более крупные молекулы беспрепятственно вымываются подвижной фазой. При этом компоненты смеси элюируются в порядке уменьшения молекулярной массы. [c.46]

    Сферические молекулы белка обычно имеют меньшую характеристическую вязкость, чем вытянутые молекулы с такой же молекулярной массой. Асимметрия влияет на характеристическую вязкость в большей степени, чем молекулярная масса, хотя в пределах ряда молекул с одинаковой конформацией увеличение характеристической вязкости определяется увеличением молекулярной массы. Заметим еще раз, что характеристическая вязкость (как и седиментационные свойства) зависит и от размера, и от формы молекул растворенного вещества. [c.138]

    Полиакриламидные гели широко применяются при электрофорезе. Это позволяет значительно расширить возможности клинико-биохимических исследований, а также дает очень хорошие результаты при разделении полимеров, имеющих молекулярные массы в интервале 2-10 —5-10 [29]. Метод электрофореза в гелях ПАА обладает высокой разрешающей способностью и позволяет проводить фракционирование белков не только по заряду, но и по форме и размерам молекул. [c.74]


    Что же произойдет если смесь белков, растворенных в ДСН, подвергнуть электрофорезу в блоке полиакриламидного геля. Каждая молекула белка связывает значительное количество негативно заряженных молекул детергента, общий заряд которых превосходит общий заряд белка. По этой причине белок после того, как будет приложено напряжение, начнет двигаться в направлении положительного электрода. Белки одного размера ведут себя сходным образом, поскольку, во-первых, их природная структура полностью нарушена ДСН так, что их форма идентична, во-вторых, они связывают одинаковое количество ДСН и приобретают одинаковый негативный заряд. Крупные белки, обладающие большим зарядом, подвергаются действию значительных электрических сил, а также более существенном торможению. В обычных растворах эти эффекты, как правило, взаимно погашаются, но в порах полиакриламидного геля, действующего как молекулярное сито, большие белки тормозятся значительно сильнее, чем малые белки. Вследствие этого сложная смесь белков делится на ряд полос, расположенных в соответствии с их молекулярной массой. Окрасив гель красителем кумасси синим, можно выявить основные фракции полипептидов Минорные белки идентифицируют серебрением минимальное [c.215]

    Гель-хроматография — простой, но чрезвычайно эффективный метод, позволяющий определять размеры молекул, а также фракционировать молекулы на основе различий в размерах. Молекула, которая не может проникать в поры молекулярного сита, движется быстрее вдоль колонки, чем молекула меньших размеров. Еще одним чрезвычайно полезным инструментом, применяемым для очистки и качественного анализа смесей макромолекул, служит электрофорез. Довольно трудно получить аналитическое выражение, связывающее наблюдаемую в опыте электрофоретическую подвижность с зарядом и формой молекулы. Однако в некоторых специальных случаях электрофорез лает количественную информацию. Пользуясь методом изоэлектрического фокусирования, находят pH изоэлектрических точек белков. А воспользовавшись электрофорезом в носителе, представляющем собой молекулярное сито, можно крайне просто определять молекулярную массу белков (в присутствии ДСН) или нуклеиновых кислот. [c.306]

    Кроме размера, некоторое значение при определении молекулярной массы белков имеет форма белковых молекул. Она должна быть сферической, при этом поведение белковых молекул во время электрофореза будет прямо зависеть от величины их молекулярной массы. Для достижения этой цели белки обрабатывают диссоциирующим раствором, содержащим 505 или мочевину и р-меркапто-этанол. При этом происходит разрушение четвертичной и видоизменение третичной структуры белковой молекулы в результате ослабления гидрофобных взаимодействий и разрушения водородных и дисульфидных связей полипептидные цепи принимают конформацию статистически беспорядочного клубка. р-Меркаптоэтанол при этом используется для восстановления внутри- и межцепочечных дисульфидных мостиков, способствуя дезагрегации белков. Связывание детергента с полипептидами сообщает им большой отрицательный заряд. В результате этого белки перемеща- [c.258]

    ЭЛЮЦИИ ряда молекул известных размеров устанавливают соотношение, из которого путем простой экстраполяции определяют размер неизвестной молекулы. Теоретически объем элюции связан не с размером молекулы, а с ее стоксовским радиусом. Стоксовский радиус описывает сферу с гидродинамическим поведением, эквивалентным поведению данной конкретной частицы неправильной формы. Поэтому, допуская, что по своей фор-сме неизвестные и калибровочные белки сходны, можно калибровать колонку по молекулярной массе. [c.200]

    Во-вторых, с помощью физико-химических методов, применимых. к белковым растворам, можно установить молекулярный вес. Он может быть определен несколькими различными приемами, при условии, если материал монодисперсен. К таким приемам относятся методы измерения осмотического давления, светорассеяния, седиментационного равновесия и измерения скорости седиментации и диффузии. Все эти приемы основаны на различных принципах и часто дают не вполне совпадающие результаты. Это объясняется тем, что получаемые данные зависят не только от размеров и массы, но и от. электрического заряда, формы и степени гидратации белковых молекул. При измерении скорости движения частиц (например, скорости диффузии или скорости седиментации) хорошие результаты получаются только для тех молекул, форма которых близка к шарообразной, ибо они ведут себя в соответствии с изученными закономерностями. Отклонение от сферической формы (фибриллярные белки) и гидратация молекул приводят к различным ошибкам, так как движение молекул замедляется в результате увеличения коэффициента трения или эффективного размера частиц. [c.128]

    Нерасходимость луча лазера существенным образом повышает разрешение индикатрисс рэлеевского рассеяния, что позволяет получить более точную информацию о размерах (молекулярных массах) и форме макромолекул и их комплексов. С помощью рэлеевского рассеяния лазерного света удалось, например, определить тонкие детали строения вируса табачной мозаики. Рамановское (комбинационное) рассеяние, связанное с изменением длины световой волны благодаря сложению или вычитанию частот колебаний электромагнитного излучения и молекулы, с успехом применяется для выяснения структурной организации молекул (белки, нуклеиновые кислоты, липиды и т. д.), межмолекулярных взаимодействий и их динамики. [c.364]

    Гель-фильтрацию проводят на колонках, заполненных частицами набухшего геля, имеющими поры определенного диаметра. Общий объем столбика геля обозначают К/. Общий объем можно найти расчетным путем по форме колонки или же экспериментально по объему заполняющей ее воды. В процессе элюирования крупные молекулы, не проникающие в гранулы геля, перемещаются с высокой скоростью вместе с растворителем, находящимся между гранулами, и элюируются в виде узкой зоны. Объем элюента, соответствующий появлению этой зоны, обозначают Уо (свободный объем). Менее крупные молекулы проходят через колонку не так быстро, так как они проникают в гранулы геля и их выход с колонки занимает продолжительное время. Поскольку степень диффузии в гранулы геля зависит от размеров молекул, вещества элюируются с колонки в порядке уменьшения их молекулярной массы. Молекулярная масса М исследуемого белка определяется путем сравнения объема элюирования Уе с аналогичным параметром для белков-маркеров. Этому вопросу посвящены исчерпывающие обзоры [1, 59] и проспекты фирмы РЬагтас1а [134]. [c.21]

    Лизоцим белка куриных яиц — мономерный белок с молекулярной массой 14 500, его полипептидная цепь состоит из 129 аминокислотных остатков, связанных поперечно четырьмя дисульфид-ными связями. Молекула лизоцима имеет примерно эллипсоидную форму с размерами 45x30x30 А [2]. [c.154]

    Однако это не так. Дело в том, что под словом меньше мы не вправе подразумевать молекулярную массу белка, а должньс оценивать тот параметр, который действительно определяет возможность проникновения белка в поры геля,— его молекулярные размеры. Но если плотности всех нативных белков (за немногими исключениями) почти одинаковы, то их размеры, а точнее объемы, должны быть пропорциональны массам. Это верно, но остается еще один фактор, играющий в этом рассмотрении ключевую роль,— форма молекулы. Белковая глобула может быть почти шаром, а может напоминать палочку, поэтому ее поведение при гель-фильтрации (способность проникать в поры геля) будет совершенно различным в этнх двух случаях. Но можно ли составить представление о форме молекулы белка, если пе рассматривать ее (в нативном состоянии ) [c.146]

    В середине 1930-х годов Дж. Берналом, Д. Ходжкин, И. Фанкухеном, Р. Райли, М. Перутцем и другими исследователями начато изучение кристаллографических трехмерных структур глобулярных белков. Получены лауэграммы пепсина, лактоглобулина, химотрипсина и некоторых других хорошо кристаллизующихся водорастворимых белков. Картины рассеяния рентгеновских лучей от монокристаллов содержали десятки тысяч четко выраженных рефлексов, что указывало на принципиальную возможность идентификации координат во много раз меньшего числа атомов белковых молекул (за исключением водорода). На реализацию этой возможности ушло более четверти века. Однако сам факт наблюдения богатых отражениями рентгенограмм говорил о многом. Например, он позволил сделать вывод об идентичности всех молекул каждого белка в кристалле, как правило, не теряющего в этом состоянии свою физиологическую активность. Кроме того, были оценены ориентировочные размеры, формы, симметрия и молекулярные массы исследованных белков, размеры их элементарных ячеек, а также возможное число аминокислотных остатков в ячейке. Дальнейшее развитие этой области вплоть до начала 1960-х годов замкнулось на решении внутренних, чисто методологических задач, связанных с расшифровкой рентгенограмм. [c.70]

    Классификация. Связь строения со свойствами. В предыдущих главах мы неоднократно упоминали о различных органических соединениях, отличающихся большим размером молекул к ним относятся каучуки, белки, полисахариды. Подобные соединения с молекулярными массами от нескольких тысяч до миллионов получили название высокомолекулярных полимерных). Некоторые из них выполняют важные функции в живых организмах. В настоящее время научились синтезировать много разных высокомолекулярных соединений, нашедших применение для изготовления различных материалов пластмасс, волокон, эластомеров. Для этих материалов очень важны физико-механические свойства— их прочность, эластичность, термостойкость. Установлено, что физико-механические свойства высокомолекулярных соединений вависят прежде всего от формы молекул. [c.410]

    С. Дикинсон, Ф. Бейли) [24, 43], инсулина (Д. Кроуфут) [44, 45], химо-трипсина и метгемоглобина (Дж. Бернал, И. Фанкухен, М. Перутц) [46], лактоглобулина (Д. Кроуфут, Р. Райли) [47]. В результате стали известны ориентировочные размеры, форма, симметрия и молекулярная масса белков, размеры элементарных ячеек кристаллов, а также вероятное количество молекул в ячейке. На основе рентгенограмм инсулина, лактоглобулина и метгемоглобина были построены паттерсоновские проекции межатомных векторов. Д. Ринч предприняла попытку связать особенности паттерсоновских проекций со структурой белков [48, 49]. Она предположила несколько гипотетических моделей, в которых пептидные цепи белков свернуты таким образом, что образуют замкнутые правильные многогранники различных размеров с определенным целым числом аминокислотных остатков. Многогранники могут представлять собой призмы, октаэдры и т.д., в предельном случае вырождаться в плоскую сетку с замкнутыми полипептидными цепями. Циклольная гипотеза Ринч была скептически встречена отчасти в силу ее искусственности, а главным образом потому, что имеющиеся в то время данные по рентгеновскому рассеянию кристаллов глобулярных белков еще не могли быть надежно связаны с молекулярной структурой. Для этого прежде всего необходимо было решить проблему фаз рентгеновских рефлексов. При известных фазах и интенсивностях рефлексов могли быть построены проекции распределения электронной плотности и выяснены детали атомной организации структуры. Но это было делом будущего. [c.17]

    Методические преимущества электрофореза в полиакриламидном геле навели исследователей на мысль о создании таких его вариантов, которые позволили бы определять молекулярную массу макромолекул и в первую очередь белков, В разд. 1.11.1 пoдpoбiю обсуждался вопрос о том, что при электрофорезе в полиакриламидном геле разделение макромолекул зависит как от их размеров, так и от заряда. Отсюда следует, что для определения молекулярной массы необходимо исключить влияние заряда. Для этой цели разработано множество методов, которые можно разделить на две группы. В методах первой группы для определения молекулярной массы используют коэффициент задержки Д. Зависимость между Кт и молекулярной массой изучена еще недостаточно хорошо, и для ее выражения был предложен целый ряд уравнений [б 12, 1106, 1289, 1296]. Хедрик и Смит [538] построили графики зависимости коэффициентов задержки, определяемых по кривым Фергюсона, от молекулярной массы белков и обнаружили между ними линейную зависимость (рис. 75). Поскольку коэффициент задержки является функцией размера, а не массы молекулы [5, 1186, 1366], некоторые белки ведут себя аномально при электрофорезе, если отличаются от большинства других белков по форме молекулы или парциальному удельному объему. Так, например, полимеры ферритина и альбумина дают соответственно более низкие и более высокие значения Кг, чем можно было бы ожидать, исходя из их молекулярных масс [92, 538]. [c.217]

    Прежде всего рассмотрим главные особенности структуры тРНК . По своей форме молекула похожа на букву Г. Поперечный размер отдельных участков не превыщает диаметра двойной спирали ДНК. Структура намного более вытянута, чем в случае типичных глобулярных белков соответствующей молекулярной массы. В основе трехмерной конформации тРИК лежит вторичная структура клеверный лист (рис. 3.17,А), стабилизированная больщим числом дополнительных парных взаимодействий между основаниями. Поскольку эти взаимодействия затрагивают удаленные друг от друга участки молекулы, образующиеся пары оснований называются третичными. [c.179]


Смотреть страницы где упоминается термин Молекулярная масса, размеры и форма белковых молекул: [c.21]    [c.221]    [c.112]    [c.349]    [c.118]    [c.124]    [c.211]    [c.298]    [c.31]    [c.215]   
Смотреть главы в:

Биологическая химия -> Молекулярная масса, размеры и форма белковых молекул




ПОИСК





Смотрите так же термины и статьи:

Белки молекулярный вес

Масса белка

Молекула масса

Молекула размеры

Молекулы белка

Молекулярная масса

Молекулярный вес (молекулярная масса))

Форма молекул



© 2024 chem21.info Реклама на сайте