Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эквивалентности точка методе нейтрализации

    Амины, как правило, являются слабыми основаниями. Так, показатель константы основности анилина в воде (р/(в) равен 9,42. Кроме того, анилин малорастворим в воде. Поэтому его определение в водной среде прямым индикаторным или потенциометрическим методом оказывается невозможным. Как указано ранее (см. книга 2, гл. И, 36), использование в качестве сред для титрования неводных растворителей уксусной кислоты, кетонов, спиртов нитрилов и их смесей с углеводородами — дает возможность определить анилин методом нейтрализации, используя визуальный способ обнаружения точки эквивалентности в присутствии кристаллического фиолетового. [c.442]


    И. М. Кольтгоф, В. А. Стенгер. Объемный анализ. Госхимиздат, 1950, (т. I. 376 стр.) и 1952, (т. И, 444 стр.). В т. I рассматриваются теоретические основы объемного анализа. Изложена теория методов нейтрализации и соединения ионов, приведены кривые титрования для различных случаев метода нейтрализации. Отдельные главы содержат материал ио теории методов окисления-восстановления, теории индикаторов, по ошибкам титрования. Рассмотрены явления адсорбции и соосаждения, катализа и индукции, применение объемных методов в органическом анализе описаны теоретические положения, касающиеся применения физико-химических методов для определения точки эквивалентности. В т. 11 книги изложено практическое применение методов нейтрализации, осаждения и комплексообразования. В томе 111 (840 стр., 1961 г.) описано применение окислительно-восстановительных методов объемного анализа. [c.486]

    Как фиксируется точка эквивалентности в методе нейтрализации  [c.148]

    Особенности установления точки эквивалентности в методе нейтрализации [c.169]

    Для установления точки эквивалентности в методе нейтрализации применяют индикаторы — вещества, меняющие свою окраску в определенной области pH. [c.219]

    В методе нейтрализации решить вопрос о характере ошибки можно на основании сравнения pH в точке эквивалентности и рТ индикатора. Величина pH в точке окончания титрования может быть найдена с точностью 0,3 от этой величины. [c.348]

    Как уже было сказано, момент эквивалентности в методе нейтрализации определяется по pH раствора. В процессе титрования pH раствора изменяется и достигает расчетной величины, соответствующей точке эквивалентности. В объемном анализе для определения точки эквивалентности чаще всего применяют кислотно-основные индикаторы — вещества, которые меняют окраску в зависимости от pH раствора. [c.98]

    По этой причине метод Пристли имеет некоторые ограничения, особенно когда реакция протекает с очень малой скоростью изменения температуры. Например, как показал опыт, при титровании фосфорной кислоты не обнаруживаются промежуточные эквивалентные точки реакции нейтрализации. [c.47]

    Помимо индикаторного способа определения точки эквивалентности, который применяют при титровании в методах нейтрализации, иодометрии, осаждения и т. п., существуют и другие способы определения, основанные на наблюдении свойств раствора, резко изменяющихся в момент эквивалентности. Большое значение имеют так называемые физико-химические методы определения точки эквивалентности, основанные на измерении при помощи специальных приборов некоторых физико-химических свойств растворов (например, электропроводности), которые меняются в процессе титрования постепенно, а в момент эквивалентности— резко. К этим методам относятся кондуктометр ический, высокочастотный, потенциометрический, амперометрический и некоторые другие методы титрования. [c.267]


    Равновесия, устанавливающиеся при взаимодействии сильных оснований со смесями слабых кислот, могут быть рассмотрены более детально с учетом влияния гидролиза. Когда участвующие в реакции электролиты характеризуются значением рКа + рКь) < 12, в первой точке эквивалентности в растворе имеются анионы слабой кислоты и катионы слабого основания, что может привести к гидролизу, который вызовет смещение реакции нейтрализации в левую сторону, а реакции вытеснения — в правую. Практически влияние гидролиза заметно в случаях, когда величина (р/(а + рЛ ь) приближается к 12. Однако для сравнительно концентрированных растворов смещение реакций выражено в равной степени, что дает возможность устанавливать точки эквивалентности графическим методом, если (рКа + рЛ ь)- 12. В этих условиях влияние гидролиза выразится лишь небольшим закруглением излома кондуктометрической кривой вблизи первой точки эквивалентности. [c.89]

    Титрование, при котором точка эквивалентности определяется по скачку потенциала электрода, погруженного в раствор, называют потенциометрическим титрованием. Потенциометрическое титрование применяют при методах нейтрализации, оксидиметрии, осаждения, комплексообразования. [c.331]

    Количество титранта, соответствующее точке эквивалентности, можно считать за 100 или за 0%. В последнем случае счет процентов ведут в обе стороны от нуля (считая за нуль точку эквивалентности). Проще всего по оси абсцисс откладывать число миллиметров прибавленного титранта. По оси ординат откладывают числовое значение показателя, характеризующего какое-либо свойство титруемого раствора, изменяющееся в процессе титрования. Например, в методе нейтрализации по оси ординат откладывают pH или рОН. [c.339]

    Для выполнения определений по методу нейтрализации применяют титрованные растворы кислот серной, соля-дой или азотной — и растворы щелочей гидроксида натрия, калия и бария. Для установления точки эквивалентности применяют индикаторы — вещества, меняющие свою окраску в определенной области pH. [c.134]

    Помимо титрования чистых растворов (рис. 61), кондуктометрический метод может быть распространен также и на смеси сильных н слабых кислот (или оснований). В этом случае кривая титрования имеет две точки перегиба первая из них (В на рис. 62) соответствует эквивалентной точке сильной кислоты, вторая (С)— слабой. Когда искривление линии нейтрализации сильной кислоты (АВ на рис. 62) очень велико, рекоменду- [c.126]

    Помимо титрования чистых растворов, кондуктометрический метод может быть распространен также и на смеси сильных и слабых кислот (или оснований). В этом случае (рис. 19) кривая титрования имеет две точки перегиба первая из них В соответствует эквивалентной точке сильной кислоты, вторая С —слабой. В том случае, когда искривление линии нейтрализации сильной кислоты АВ очень велико, титрование ведут в присутствии компонента, подавляющего диссоциацию слабой кислоты (например,этилового спирта). [c.136]

    При титровании раствором трилона Б определение эквивалентной точки чаще всего проводят с помощью комплексометрических индикаторов или металлоиндикаторов . Титрование можно вести и в присутствии обычных кислотно-основных индикаторов, применяемых в методах нейтрализации, так как при комплексообразовании выделяется кислота в количестве, эквивалентном количеству определяемого катиона. Этот способ менее удобен и его применяют реже. [c.51]

    Потенциометрическое титрование может быть использовано для индикации точки эквивалентности при количественном определении методами нейтрализации, осаждения, комплексообразования, окисления — восстановления и т. п. При этом выбор электродной системы зависит от типа аналитической реакции (табл. 2). [c.122]

    При этом выделяется одно и то же количество теплоты независимо от природы аниона кислоты или катиона основания. Если количества кислоты и основания эквивалентны, то в результате получается нейтральный раствор соли. Такие реакции называются реакциями нейтрализации. Они могут быть использованы для получения многих солей и лежат в основе аналитического определения количества кислоты или основания в растворе. Этот метод носит название кислотно-основного титрования. При титровании один раствор (титрант) небольшими порциями, обычно по каплям, добавляют к другому (титруемому) раствору. Точку эквивалентности, т. е. тот момент, когда количество титранта точно равно тому, которое необходимо для завершения реакции с веществом, находящемся в титруемом растворе, можно определять по изменению цвета индикатора, добавленного к раствору, или по изменениям других свойств растворов (см. разд. 34.7). [c.193]

    На рис. 48 показана наиболее характерная часть кривой титрования 0,1 н. раствора сульфата железа (II) 0,1 н. раствором сульфата церия (IV) [10% остатка Ре -ионов и 10% избытка стандартного раствора 0(804)2]. Как видно из рис. 48, кривая окислительно-восстановительного титрования напоминает кривые, получаемые в методе нейтрализации. В начале титрования, когда в титруемом растворе находится значительное количество восстановителя, кривая изменяется плавно, даже при добавлении значительных количеств реактива величина Е изменяется медленно. Вблизи точки эквивалентности наблюдается резкое изменение потенциала даже при прибавлении малых количеств реактива. По резкому скачку кривой титрования устанавливают точку эквивалентности, которая не всегда лежит на середине скачка. Характер кривых в методах окисления—восстановления не зависит от разбавления раствора, если стехио-метрические коэффициенты у окислителя и восстановителя одинаковы. [c.185]


    Кривые титрования по методу нейтрализации указывают на резкое изменение pH вблизи эквивалентной точки. Электрод, опущенный в анализируемый раствор, должен быть индикаторным по отнощению к концентрации водородных ионов. На поверхности такого электрода устанавливается равновесие  [c.200]

    Так же как в методах нейтрализации и осаждения и здесь кривую титрования строят в координатах рМ —объем прибавленного титранта. Поскольку константы устойчивости комплексонатов многовалентных ионов металлов высоки, можно считать, что каждый эквивалент прибавленного титранта связывает точно один эквивалент М. До достижения точки эквивалентности концентрация оставшихся ионов металлов равна  [c.279]

    Анализ методом нейтрализации в общем случае удобнее выполнять титрованием с кислотно-основными индикаторами однако этот способ неприменим, если нужно определить содержание одной кислоты в присутствии другой. Раздельное определение соляной и уксусной кислот в смеси выполняют кондуктометрическим титрованием. При этом на графике обнаруживаются две эквивалентные точки. [c.197]

    При титровании по методу нейтрализации возможно несоответствие между сигналом индикатора и точкой эквивалентности, обусловленное неблагоприятными равновесными отношениями. При титровании по методу окисления — восстановления также могут сложиться неблагоприятные условия равновесия, но более часто здесь встречается нестехиометричность, связанная с медленным течением реакции и протеканием непредвиденных побочных и индуцированных реакций. [c.14]

    Методом нейтрализации называется метод объемного анализа, основанный на применении реакции взаимодействия ионов Н+ и ОН". По сравнению с другими объемно-аналитическими методами этот метод отличается большей трудностью определения точки эквивалентности. [c.169]

    На первый взгляд кажется, что если слить вместе эквивалентные количества (например, одинаковые объемы растворов одинаковой концентрации) кислоты и щелочи, то полученный раствор будет иметь строго нейтральную среду. Оказывается, однако, что такой результат будет наблюдаться не во всех случаях. В ряде случаев в точке эквивалентности наблюдается слабокислая или щелочная среда. Следовательно, в методе нейтрализации титрование заканчивают в различных средах в зависимости от силы нейтрализуемых кислот и оснований. Поэтому, если во всех случаях титровать до нейтральной среды, то раствор окажется или недотитрованным или перетитрованным, что приведет к совершенно неправильным результатам. [c.169]

    Концентрацию определенного компонента раствора (как заряженного, так и незаряженного) можно контролировать потенциометричес-ки, если подобрать электрод, потенциал которого определяется реакцией, включающей этот компонент Проводя титрование анализируемого компонента, потенциометрически определяют конечную точку титрования по резкому изменению потенциала электрода в точке эквивалентности. Так, используя электрод, потенциал которого зависит от pH раствора, можно провести потенциометрическое титрование кислоты или щелочи по методу нейтрализации. Индифферентные электроды используются для титрования обратимых окислительно-вос-становительных систем (окислительно-восстановительное потенциометрическое титрование). Широко применяется также потенциометрическое титрование по методу осаждения или комплексообразования. В этом случае рабочий электрод должен быть обратим по отношению к компоненту раствора (чаще иону), который в процессе титрования образует осадок или комплекс. [c.123]

    В качестве индикаторов используются также вещества, которые в точке эквивалентности меняют свою структуру (вследствие изменения pH, окислительно-восстановительного потенциала системы или концентрации ионов), что сопровождается резким изменением светоиоглоще-ния раствора. Например, при титровании по методу нейтрализации с кислотно-основным индикатором в точке эквивалентности содержание определенной формы индикатора, поглощающей при выбранной длине болны, резко возрастает. При дальнейшем прибавлении титранта светопоглощение не изменяется (см. рис. 105, кривая 6). [c.267]

    В методе нейтрализации ошибка титрования зависит от откюне-ния рГ индикатора от pH точки эквивалентности, а также от недостаточной резкости изменения pH вблизи точки эквивалент]юсти. Кроме того, существует так называемая ошибка индикатора, которая вычисляется но формуле [c.336]

    Потенциометрически можно производить многие аналитические определения, используя различные методы объемного анализа, наиример метод осаждения, нейтрализации, оксидиметрии и др. Однако в каждом конкретном случае необходимо правильно подобрать соответствующий индикаторный электрод, потенциал которого заметно бы реагировал на изменение концентрации определяемых ионов в растворе. Теоретический расчет и опытные данные показывают, что наибольшее изменение величины иотенциала индикаторного электрода наблюдается вблизи эквивалентной точки. Таким образом, резкое изменение величины электродного потенциала служит своеобразным индикатором, указывающим на конец титрования. [c.311]

    Кривые титрования. Как уже отмечалось в начале главы, гидролиз и нейтрализация являются противоположно направленными процессами. Прямое взаимодействие кислот и оснований с образованием соли и воды, называемое титрованием, широко используется в лабораторной практике для взаимного определения концентрации и количества реагентов. Зависимость pH титруемого раствора от количества добавляемого реагента называют кривой титрования. Величину pH раствора определяют с гюмо-щью индикаторов или инструментальными методами (по электрической проводимости, по ЭДС гальванического элемента, спектрофотометрически и т. Д.). Равному числу эквивалентов кислоты и основания в растворе соответствует эквивалентная точка. [c.128]

    В аналитической практике хемилюминесцентные реакции используют 1) для установления точки эквивалентности при титровании мутных или окрашенных растворов (применение хемилюминесцентных индикаторов в методах нейтрализации, окисления — восстановления, комплексообразования) 2) для определения основных компонентов хемилюминисцентных реакций (хемилюминесцентного реактива, окислителя или восстановителя), 3) для определения микроколичеств ионов металлов, которые являются катализаторами или ингибиторами хемилюминесцентных реакций 4) для определения органических веществ, которые являются ингибиторами хемилюминесцентных реакций, по их окислению. [c.364]

    Определение точки эквивалентности с помощью индикаторов. Точное установление точки эквивалентности, т. е. того момента, когда количество прибавленного реактива В станет эквивалентно количеству реагирующего с ним определяемого вещества А, имеет очень важное значение в объемном знализе вообще и в методе нейтрализации в особенности. [c.75]

    В промышленности довольно острой проблемой является определение таких слабокислых соединений,как фенолы. Имеется ряд сообщений исследователей о термометрическом определении фенолов и связанных с ними продуктов. Вероятно, наиболее полезной работой в этой области является работа Вогана и Свисенбэн-ка [13], использовавших неводные растворы. Они применили несколько другой способ измерения теплоты реакции нейтрализации. Детально это исследование рассмотрено в разделе каталитических реакций. Используя уже описанные методы, некоторые исследователи при определении фенолов применили ручное титрование. Пари и Виал [14] сообщили об использовании термометрического метода для частичного определения состава смеси фенола и его метилированных аналогов, кре-золов. Бромированием фенолов они увеличили кислотность фенольной группы и таким образом получили два класса бромированных фенолов, а именно трехбромистые фенолы из фенола и /п-крезола и двубромистые фенолы из о- и р-крезола. При титровании этой смеси раствором гидроокиси натрия они получили энтальпограм-му с двумя эквивалентными точками первая точка соответствовала оттитровыванию всего количества присутствующих о- и р-крезолов, а вторая — всех присутствующих фенолов. [c.57]

    Вейган и его сотрудники [1, 4, 5] применили катали-метрический метод для определения третичных аминов и солей органических кислот, использовав в качестве титранта хлорную кислоту. Основания растворяли в ледяной уксусной кислоте, содержащей небольшие количества воды (2% объемн.) и уксусного ангидрида (8% объемн.). При прибавлении стандартного раствора хлорной кислоты, изменение температуры титруемого раствора, обусловленное реакцией небольшого количества присутствующего основания, идет медленно до эквивалентной точки. После достижения эквивалентной точки в растворе появляется маленький избыток хлорной кислоты. Хлорная кислота катализирует реакцию между водой и уксусным ангидридом. Температура раствора при этом резко поднимается и конечная точка титрования для реакции нейтрализации четко обозначается. Сообщается, что метод пригоден для анализа растворов, содержа щих от 2-10- - до 5- 10 -м. сильных оснований. При более низких концентрациях оснований повышается ошибка определения. При определении таких оснований, как аденин и цинхонин, и таких солей, как бифталат калия, получены результаты, отличающиеся в среднем меньше чем на 0,3% от результатов, полученных потенциометрическим методом. [c.115]

    Индикаторные ошибки происходят оттого, что показатель титрования (рТ) индикатора для метода нейтрализации не совпадает с pH раствора в точке эквивалентности. Таким образом, в зависимости от характера индикатора и порядка титрования немного недотитровывают или немного перетитровывают. Эги ошибки, как видно будет ниже, увеличиваются с уменьшением концентрации титрованных растворов. [c.130]

    К титриметрическим методам относятся методы кислотно-основного, осадительного, комплексообразовательиаго и окислительно-восстановительного титрования. Наиболее широко применяется кислотно-оснбвное титрование (метод нейтрализации), в котором при анализе раствора кислоты титрантом служит раствор щелочи (аи,адаметрия) или при анализе раствора щелочи титрантом служит раствор кислоты (алкалиметрия). Точка эквивалентности (конечная точка титрования) устанавливается с помощью кислотно-основных индикаторов для сильных кислот и оснований в точке эквивалентности образуется нейтральный раствор (pH = 7). [c.56]

    В методе нейтрализации в качестве индикатора используют люминол с гемоглобином и перекисью водорода [9]. Регистрация эквивалентной точки производится на усилителе с фотоумножителем [29]. Для титрования кислот и щелочей предложено применять также люминол с красной кровяной солью и перекисью водорода [30]. Эквивалентная точка устанавливается визуально или с селеновым фотоэлементом. Люминол применяют также в комплексонометрическом титровании для определения Си +, ЭДТА, РЬ " , [18]. [c.84]

    В амперометрическом титровании используют измерение полярографического предельного тока для определения эквивалентной точки титрования. С помощью этого метода можно проследить любую быструю и воспроизводимую реакцию между органическими соединениями, например нейтрализацию или окисление — восстановление. Иногда можно определить вещества, медленно реагирующие с реагентом, если взять избыток этого реагента и измерить затем его непрореагировавщий остаток. [c.352]

    По аналогии с титрованием по методу нейтрализации, в начале титрования величина Е изменяется медленно, по мере приближения к точке эквивалентности изменение это нарастает, и вблизи точки эквивалентности наблюдается наиболее резкий скачок, который при титровании определяется изменением окраски индикатора. В некоторых случаях возможно и безын-дикаторное титрование. Например, при титровании перманганатом калия конец титрования определяется по розовой окраске титруемого раствора, вызываемой избытком перманганата калия. [c.37]


Смотреть страницы где упоминается термин Эквивалентности точка методе нейтрализации: [c.376]    [c.53]    [c.253]    [c.14]    [c.727]   
Основы аналитической химии Часть 2 (1965) -- [ c.75 ]

Основы аналитической химии Кн 2 (1965) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Метод нейтрализации

Нейтрализации метод установление точки эквивалентности

Нейтрализация

Особенности установления точки эквивалентности в методе нейтрализации

Точка нейтрализации

Точка эквивалентности

Эквивалентная точка



© 2025 chem21.info Реклама на сайте