Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свинец индикаторы

    Свинец образует с ЭДТА достаточно устойчивый комплекс, = 18,0. Лучшими условиями для определения свинца будут слабокислые растворы с pH = 5—6 в присутствии индикатора ксиленолового оранжевого. При этом условная константа комплексообразования комплексоната свинца условная константа устойчивости металлоиндикаторного комплекса при рН = 5 будет что обеспечивает достаточно четкий переход окраски от красной к желтой. В качестве буферного раствора можно использовать ацетатный буфер, но концентрация ацетат-ионов [c.378]


    Комплексонометрический метод. Комплексонометрическое титрование свинца проводят в аммонийно-аммиачной буферной среде pH 10 или в ацетатной среде pH 6,5—7 соответственно с индикаторами эриохромчерным Т (см. Алюминий ) нли ксиленоловым оранжевым (см. Алюминий ). В среде pH 8—9 применяют также сульфарсазен (см. Никель ) в качестве индикатора, обладающий четким переходом окраски в эквивалентной точке. При анализе сложных систем требуется предварительное отделение мешающих элементов. Например, свинец отделяют от сопутствующих элементов в виде сульфата, растворяют осадок в избытке комплексона HI и титруют свинец раствором соли цинка способом обратного титрования. [c.114]

    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]


    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]

    При амперометрическом варианте необходимость в индикаторе отпадает. Кроме того, подбирая соответствующие условия, можно проводить титрование в присутствии больших количеств кальция, магния, свинца (при сульфатном фоне свинец в большей своей части окажется в осадке), меди (до соотношения меди к цинку, равном примерно 1 1), кадмия (до соотношения кадмия к цинку, равном примерно 1 10), алюминия и железа. Такая возможность достигается подбором фона, способствующего связыванию мешающих элементов в комплексные соединения или выпадению их в осадок. Так, в ацетатно-аммиачной среде медь и кадмий удерживаются в виде комплексных соединений, а цинк, обладающий наименьшей по сравнению с другими металлами растворимостью ферроцианидного соединения, выпадает в осадок. Железо в аммиачной среде выпадает в осадок и не мешает титрованию, если его содержание не слишком велико, так как в ином случае цинк может адсорбироваться осадком гидроокиси железа. Поэтому при высоких содержаниях железа (около 10% и выше) следует прибегать к добавлению лимонной кислоты связывающей его в достаточно прочный комплекс, из которого ферроцианид не осаждает железо. Добавление лимонной кислоты также ослабляет влияние алюминия, которое вообще довольно заметно при всех титрованиях с платиновым электродом (возможно, что алюминий пассивирует электрод вследствие образования тончайшей пленки гидроокиси, появляющейся в результате гидролиза солей алюминия). [c.345]

    Определению не мешают свинец, марганец, никель, кобальт, медь, цинк, кадмий, алюминий, щелочноземельные и лантаниды. Мешает определению присутствие железа. Ниже (см. стр. 204) приводится предлагаемый в этом случае ход определения. Мешают хлорид-ионы, если содержание их более чем в 20 раз превышает содержание комплексона. В этом случае рекомендуется проводить титрование с тиомочевиной в качестве индикатора (см. метод Б ). [c.203]

    Индикаторы на ион свинца при титровании сульфатов солями свинца используются реже [293]. Более надежно титрование сульфатов раствором нитрата свинца с ионоселективным индикаторным электродом на свинец [1090] или осаждение SO4 избытком соли свинца и последующее титрование РЬ + раствором сульфида натрия с применением сульфид-серебряного электрода [511]. [c.180]

    Титриметрические методы. При комплексонометрии титрование таллия (П1) комплексоном 1П проводят при рН 2. Индикатором служит реактив ПАР или ПАН. Определению содержания таллия цинк, свинец и кадмий не мешают. [c.218]

    Объемным методом. Для объемного определения Ва2+ применяется обратное комплексонометрическое титрование избытка трилона Б раствором хлорида цинка в присутствии 20— 30 мл этанола при индикаторе эриохроме черном Т (см. свинец). Метод позволяет определять в среднем 96°/о Ва + при содержании 10 мг в 100 г органа со средней относительной ошибкой 3,5°/о при количествах 1 мг определяется 92% со средней относительной ошибкой 8,7°/о- Барий определяется в пределах 0,5— 100 мг. Граница определения 0,5 мг. [c.310]

    Этот метод можно также применять для разделения неорганических ионов. Для передачи электрического тока требуется наличие фонового электролита. Примером является разделение бария и лантана, а также радия, свинца и висмута, проводимое в 0,1 М растворе молочной кислоты при градиенте потенциала 3,5 в на 1 сж [40]. За 24 ч радий передвинулся на 100 см, барий — на 90 см, свинец — на 50 см и висмут— от 10 до 15 см. Положение ионов было определено методом радиоавтограф ий при помощи естественной радиоактивности и введенных индикаторов. Методом электрохроматографии оказалось возможным отделить литий от натрия и от других щелочных металлов в растворе цитрата аммония [15]. [c.261]

    С хозяйственно-бытовыми и производственными сточными водами, в том числе со стоками с промплощадок, в водоемы попадают белки, жиры, масла, нефть и нефтепродукты, красители, смолы, дубильные вещества, моющие средства и многие другие загрязнения. С полей вымываются удобрения и пестициды — средства борьбы с вредителями сельскохозяйственных культур. Поэтому в водах открытых источников водоснабжения в разных концентрациях содержатся фактически любые химические элементы, в том числе такие вредные для здоровья, как свинец, цинк, олово, хром, медь. Не имея целью дать полный обзор состава загрязнений, попадающих со сточными водами, и полагая, что свойства биологических примесей достаточно подробно рассмотрены в предыдущем разделе этой главы, остановимся лишь на некоторых видах загрязнений, отличительными признаками которых являются широкая распространенность, особенно в последние годы токсические свойства трудное отделение при очистке сточных вод медленное окисление и разложение в открытых водоемах мешающее действие, оказываемое на процессы очистки воды, в том числе на коагуляцию способность быть индикаторами глубины очистки воды от отдельных элементов. [c.61]


    Мешающие влияния. Определению мешают большие концентрации элементов, которые восстанавливаются при более положительных потенциалах, чем цинк. В аммиачном электролите такими элементами являются медь, кадмий, никель, кобальт и частично свинец. Цинк от этих элементов отделяют экстрагированием дитизоном в четыреххлористом углероде при pH 5 в присутствии тиосульфата и цианида. Для экстрагирования берут такое количество пробы, чтобы общее содержание цинка было в пределах 0,005—0,5 мг. Объем доводят до 50 мл, прибавляют две капли метилового красного и смесь нейтрализуют разбавленной соляной кислотой или раствором аммиака (1 5) до изменения окраски индикатора. После этого прибавляют 20 мл маскирующего раствора, содержащего цианид, и тиосульфат (приготовление—см. стр. 284). Цинк экстрагируют порциями по 20 мл раствора дитизона (0,1 г дитизона на 500 мл четыреххлористого углерода) до тех пор, пока окраска раствора дитизона не перестанет изменяться. Экстракты собирают в другой делительной воронке. После экстракции цинк переводят в водный раствор встряхиванием с тремя порциями соляной кислоты (1 5) по 25 мл. Водные экстракты собирают в чашке для упаривания и на водяной бане выпаривают досуха. Остаток смачивают концентрированной соляной кислотой, снова выпаривают досуха и добавляют 2—3 капли концентрированной соляной кислоты. Анализ продолжают по варианту Б или же остаток после выпаривания растворяют в воде, раствор количественно переводят в мерную колбу емкостью 50 мл и продолжают анализ по варианту А. [c.286]

    Неясный переход окраски индикатора происходит вследствие присутствия металлов, комплексы которых с примененным индикатором более прочны, чем с комплексоном И1. Определению жесткости мешают присутствие железа (10 лгг/л), кобальта (0, 1 жг/л), никеля (ОД жг/л) и меди (0,5 жг/л). Другие катионы, как, например, свинец, кадмий, марганец, цинк, барий и стронций, титруются вместе с кальцием и магнием и повышают этим расход титрованного раствора комплексона III. Для устранения мешающих влияний при титровании и для связывания некоторых катионов, вызывающих повышенный расход раствора, можно применить цианид калия, гидроксиламин солянокислый или сульфид натрия, которые прибавляют к титруемому раствору. [c.55]

    Свинец(И) можно определить титрованием стандартным раствором хромата калия. В качестве индикатора конечной точки титрования разумно использовать ион серебра, который образует осадок хромата серебра. Хромат свинца имеет ярко-жел-тую окраску, в то время как хромат серебра кирпично-красную. [c.264]

    Титрование этилендиаминтетрауксусной кислотой с применением специфических индикаторов. Точку эквивалентности при титровании устанавливают по появлению или исчезновению синей или голубой окраски роданидного комплекса кобальта [1300, 1301, 1394]. Для отделения кобальта от других элементов осаждают его в виде акридинроданидного тройного соединений [1460]. Осадок растворяют в ацетоне и титруют кобальт раствором комплексона III до исчезновения синего окрашивания. Предложено [1395] осаждать кобальт в виде гексанитрокобальтиата калия и натрия, растворять осадок в концентрированной соляной кислоте и титровать ионы кобальта в ацетатном растворе комплексона III в присутствии роданида и ацетона. Вместо ацетона можно пользоваться амиловым спиртом [1299], причем синий роданидный экстракт кобальта в амиловом спирте может служить индикатором при определении ряда других катионов, образующих с комплексоном III более прочные комплексы, чем кобальт (кальций, свинец, торий и др.). Индикатором может служить также хлороформный раствор синего соединения кобальта с роданидом и трифенилметиларсонием [536]. К анализируемому раствору, содержащему от 2 до 2 мг Со, прибавляют 25 мл 0,01 N раствора комплексона III, 1 М раствор гидроокиси аммония до щелочной реакции по лакмусу, вводят 10 мл хлороформа, 2 мл аммиачного буферного раствора с рн 9,3, 5 мл 50%-ного раствора роданида калия, 3 мл 1%-ного раствора хлористого трифенилметиларсония и оттитровывают избыток раствора комплексона III стандартным раствором сульфата кобальта до появления синего окрашивания хлороформного слоя. Метод рекомендуется применять для опре- [c.124]

    В аналитической химии в качестве реактива на сурьму [4], свинец (капельным методом) [5, 6], цирконий [7] и как комплексометрический индикатор при определении галлия [8, 9,  [c.94]

    В нашей стране в качестве стандартного служит метод ГОСТ 13210—72, который применяют к автомобильным и к авиационным бензинам. Он основан на комплексонометрическом оттитровывании свинца, полученного разложением алкилов свинца соляной кислотой. Разложение осуществляют в специальном сосуде кипячением с НС1 [7]. Нижний слой отделяют и упаривают, органические примеси разлагают при необходимости азотной (кислотой и остаток (азотнокислый свинец) растворяют в воде. В водный раствор добавляют 5 мл 0,1 н. НС1, 2 мл уротропина и 3—5 капель индикатора ксиленоловый оранжевый (в смеси с азотнокислым калием) и титруют трилоном Б — комплексоном П1 (двунатриевая соль этилендиаминтетрауксусной кислоты) до перехода цвета от сиреневого к желтому. При этом свинец связывается трилоном Б в хелатное комплексное соединение, в котором ион свинца неактивен и не дает окрашенных продуктов с индикатором. На одно определение требуется 50 мл бензина. Метод обладает удовлетворительной точностью — расхождения параллельных определений, согласно стандарту, не превышают 0,01 г/кг при содержании свинца в бензине до 0,5 г/кг и 0,02 г/кг при более высоком содержании. [c.205]

    Природный свинец содержит четыре стабильных изотопа - аРЬ, РЬ, 5гРЬ, вгРЬ, которых В смеси соответственно 1,48 23,6 22,6 и 52,3% (мае.). Последние три из них — конечные продукты радиоактивных рядов распада урана, актиния и тория. Изотопы и получают в атомных реакторах и используют как радиоактивные индикаторы. [c.336]

    Основу — свинец — можно отделить от микроколичеств натрия осаждением РЬ804 [524]. С помощью радиоактивных индикаторов показано, что большинство микрокомпонентов, в том числе и натрий, соосаждается на 30—50% с РЬ804. Промыванием осадка 6М НМОд можно практически полностью десорбировать натрий. [c.36]

    Разработан амперометрический метод титрования золота при pH 3,7—7,0 раствором диэтилдитиокарбамината натрия при потенциале 0,8 в (отн. н.к.э.) на фоне КС1. Метод позволяет определять 0,2—2 мг Аи в 50 мл раствора необходимо пользоваться эмпирическим титром реагента. Свинец, образуюш ий менее прочный, чем золото, диэтилдитиокарбаминат и более прочный, чем диэтил-дитиокарбаминаты других ионов, использован в качестве индикатора. В этом случае расход титранта строго эквивалентен соотношению Аи ДДТК = 1 2, точка эквивалентности более четка. Можно определить 0,4—4 мг Аи в 50 мл раствора с ошибкой < 3%. Не мешают Zn, d, Fe, Ni, Mn и 2—100-кратные количества Pb [594]. [c.132]

    При определении сульфатов с родизонатом натрия [978, 1129] красная окраска его комплекса с барием не развивается до тех пор, пока все количество сульфат-ионов не будет осаждено в виде Ва304. Предпочтительнее обратное титрование избытка бария стандартным раствором сульфата натрия. В этом случае наблюдается четкий переход окраски из красной в желтую. Часто используется смесь родизоната с щелочным синим [726, 727] или эриохромчерным Т [1046]. Окраска растворов изменяется из сине-фиолетовой в зеленую. Определение проводят при pH 4,5—5 в 25%-ной водно-органической среде. Железо и свинец удаляют осаждением аммиаком. Родизонат натрия использован для пропитки бумаги как внешний капельный индикатор [316, 913] или как фазовый индикатор при титровании в присутствии смеси (1 5) нитробензола с изоамиловым спиртом [1111]. [c.90]

    Осаждение сульфатов в виде PbSOi предлагалось многими авторами, некоторым из них удалось получить удовлетворительные результаты. Тананаев [434] осаждал сульфаты свинцом и взвешивал полученный осадок. Иохельсон [198] после осаждения сульфатов определял свинец в осадке колориметрически в виде PbS. Кольтгоф [222] рекомендует определять сульфаты прямым титрованием азотнокислым свинцом с адсорбционными индикаторами эозином или эритрозином. [c.94]

    Цвет индикатора в интервале pH от 2 до 6 красно-оракжевын, при pH 7—10 — красно-фиолетовый и при pH 10,5—12 — синий. Комплексное соединение кобальта с глициннафтоловым фиолетовым, образующееся при pH выше 10,5, окрашено в краснофиолетовый цвет. Титруют в аммиачном растворе до перехода красно-фиолетовой окраски в синюю. Катионы других двухвалентных металлов, как кадмий, свинец, никель, медь, марганец, также образуют окрашенные комплексы с индикатором и должны быть предварительно удалены. [c.121]

    В присутствии РЬ в слабокислый раствор вводят винную кислоту, нейтрализуют по метиловому красному аммиаком, прибавляют 10—15 мл буферного раствора, K N, индикатор и титруют свинец раствором комплексона III. Добавляют H HQ и вновь титруют d комплексоном III до перехода окраски [344, стр. 416 694, стр. 82]. [c.77]

    При титровании производными дитиокарбаминовой кислоты электрохимическим индикатором служит свинец (И). Медь, серебро и золото (П1) не должны присутствовать в титруемом растворе. [c.278]

    Определение свинца в бензине проводят методами комплексометрического титрования (ГОСТ 13210-72) или спекгрофотометрически по ГОСТ 28828. В первом случае образец бензина обрабатывают соляной кислотой. При этом ТЭС разлагается до хлорида свинца, который экстрагируется водой. Затем экстракт упаривают, сухой остаток растворяют в воде, добавляют немного соляной кислоты и титруют натриевой солью этилендиаминотетрауксусной кислоты в присутствии уротропина и индикатора. При определении свинца по второму методу его выделяют из бензина в виде комплекса с 4-(2-пиридилазо)резорцином или с сульфарсазеном. Свинец в комплексе определяют на спектрофотометре, измеряя оптическую плотность при длине волны 500 или 520 нм. Возможно фотоко-лориметрическое определение в области длин волн 500-540 нм. Количественные расчеты проводят, пользуясь заранее приготовленными градуировочными кривыми. Недостатками метода являются трудоемкость и необходимость приготовления свежих реактивов. Более удобным и быстрым является метод атомноабсорбционной фотометрии. [c.25]

    Так как константа диссоциации второй ступени диссоциации меньше первой, свинец с указанными индикаторами дает кислые соли. Изменяя pH среды, можно регулировать условия титрования таким образом, чтобы изменение окраски индикатора вызывалось малым избытком ионов свинца после осаждения SO4 . Интервал оптимальных значений pH для дитизона 3,5—5 и для дифенилкарбазона4,5—6. При понижении pH дифенилкарбазон меняет окраску от оранжевой до бледно-желтой, а дитизон — от оранжевой до зеленой. [c.74]

    Раствор солянокислого гидроксиламина приготовляется растворением 4,5 г этого вещества в 100 мл этилового или изопропилового спирта. Прибавляется от 5 до 10 капель к 100 мл пробы после приведения pH к нужной величине. Илогда солянокислый гидроксиламин вводят в раствор индикатора при приготовлении. Гидроксиламин маскирует медь (до 0,3 мг л), марганец (до 1 мг1л), железо и алюминий (до 20 мг/л). Барий, кадмий, свинец, стронций, цинк, кобальт и никель не маскируются. [c.72]

    Раствор сульфида натрия приготовляется растворением 5 г МзаЗ-ЭНзО или 3,7 г НазЗ-бНаО в 100 мл дистиллированной воды. До введения индикатора к 100 мл титруемой пробы прибавляют 2 мл раствора сульфида натрия. Тогда при титровании не мешают цинк (до 200 мг/л), алюминий, кадмий и свинец (до 20 мг/л), железо (до "5 мг/л), марганец (до 1 мг/л), кобальт и никель (до 1,3 мг/л). Барий и стронций не маскируются. [c.72]

    Основные научные исследования связаны с изучением состояния радиоактивных изотопов в ультрараз-бавленных растворах, проблемами химического и радиохимического анализа. Независимо от Д. Хевеши предложил (1932) метод определения малых количеств свинца с применением радиоактивного изотопа свинца в качестве индикатора. Разработал (1936) оригинальный метод определения возраста Земли по концентрации изотопов свинец-207 и свипец-206 в [c.476]

    Из других методов определения свинца могут быть упомянуты 1) молибдатный метод 2, по которому уксуснокислый раствор ацетата свинца титруют титрованным раствором молибдата аммония, применяя таннин в качестве внешнего индикатора 2) гексацианоферратный метод , по которому уксуснокислый раствор соли свинца титруют титрованным раствором гексацианоферрата (И) калия с применением ацетата уранила в качестве внешнего индикатора 3) перманганатный метод в котором свинец осаждают в уксуснокислом растворе р виде оксалата, затем осадок растворяют в серной кислоте и титруют раствором перманганата. [c.267]

    Дитизонат свинца в различных органических растворителях использовали в ка естве индикатора в методе нейтрализации, при определении кислотности темноокрашенных жидкостей [678]. К раствору кислоты добавляли небольнюй объем разбавленного раствора свинца, дитизон в органическом растворителе и титровали раствор щелочью- Переход зеленой окраски экстракта в красную (цвет дитизоната свинца) указывал на конец титрования. Свинец начинал экстрагироваться при pH, почти совпадающем с pH изменения окраски метилового оранжевого. [c.214]


Смотреть страницы где упоминается термин Свинец индикаторы: [c.209]    [c.438]    [c.587]    [c.10]    [c.106]    [c.184]    [c.111]    [c.212]    [c.291]    [c.5]    [c.6]    [c.588]    [c.491]    [c.815]    [c.340]   
Введение в количественный ультрамикроанализ (1963) -- [ c.142 ]




ПОИСК







© 2024 chem21.info Реклама на сайте