Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обессеривание крекинг

    В Советском Союзе проведены работы по применению цеолитов для обессеривания крекинг-бензинов, очистки изобутилена, алканов С4— g и других углеводородных газов [44, 48, 53]. Очистка цеолитами позволяет снизить содержание серы в пропане до 1-10 %. Для сероочистки могут быть использованы цеолиты типа СаА и типа X. Применение последних дает возможность удалять из газа циклические сернистые соединения. [c.325]


    На некоторых нефтезаводах переход на переработку высоко сернистых нефтей может вызвать необходимость строительства установок для обессеривания одного или нескольких продуктов катали тического крекинга. Однако требуемое снижение содержания серы может быть достигнуто как обессериванием крекинг-продуктов, так и гидрогенизацией сырья, направляемого на крекинг. [c.139]

    Обессеривание крекинг-бензина [c.174]

    Скорость расходования водорода представляет собой сумму скоростей гидрирования всех индивидуальных компонентов, содержащихся в углеводородной фракции. Поскольку методы раздельного определения индивидуальных компонентов в сырье и продуктах процесса отсутствуют, проследить протекание реакции каждого компонента невозможно. Некоторое представление об относительных скоростях можно получить на основании работ, проведенных на сравнительно простых смесях, которые применялись для изучения отдельных реакций. Установлено, что обессеривание легких дистиллятов протекает быстро. Гидрирование меркаптанов и сульфидов успешно осуществляют при низких давлениях, низких температурах и высоких объемных скоростях, но присутствие олефинов, конкурирующих за активные центры катализатора, тормозит гидрирование подобных сернистых соединений [25]. Гидрирование тиофеновых соединений протекает гораздо медленнее кинетика его совершенно иная [20]. Скорость обессеривания крекинг-бензина снижается с повышением давления [25], но при гидроочистке тяжелых нефтяных фракций для удаления тиофеновой серы обычно наблюдается обратная зависимость [2, 32]. [c.208]

    Процесс крекинга проводился в обоих случаях с одинаковой глубиной (70 % об.). При гидроочистке содержание серы в деасфальтизате снизилось с 3,55 до 0,30 % (масс,), что соответствует примерно 90 %-ной глубине обессеривания. [c.126]

    Как показано в табл. 3, применение риформинга приводит к полному обессериванию продукта, значительному повышению его октанового числа и степени насыщенности. Повышение октанового числа бензинов крекинга является важным этапом в производстве высокооктановых топлив из нефти. [c.187]

Рис. 4. Изменение октанового числа с увеличением обессеривания. [9]. Три фракции бензина (калифорнийского) термического крекинга. Рис. 4. <a href="/info/1787651">Изменение октанового числа</a> с увеличением обессеривания. [9]. Три <a href="/info/317810">фракции бензина</a> (калифорнийского) термического крекинга.

    Основные соображения. При переработке нефти происходят следующие реакции изомеризация, гидрирование, дегидрирование, полимеризация, крекинг, циклизация, ароматизация, обессеривание и т. д. В большей или меньшей степени все эти реакции термодинамически возможны для углеводородных систем. Однако благодаря селективному действию катализатора и подбору условий процесса — давления, температуры — многие из этих реакций подавляются (скорость реакций становится незначительной), несмотря на то, что они могут быть термодинамически чрезвычайно благоприятными. Так, нанример, гидрокрекинг парафинов проводят только при высоких температурах, несмотря на то, что и при комнатных температурах происходящие при этом реакции характеризуются сильно отрицательными стандартными свободными энергиями. [c.374]

    Для сернистых дизельных топлив из нефтей Востока подбор присадок с большим антикоррозионным эффектом для подавления коррозии мотора продуктами сгорания этих топлив позволит сохранить государству значительные средства, которые потребовались бы для решения поставленной задачи различными методами обессеривания. Для ароматизированных дизельных топлив каталитического крекинга присадка может более оперативно и дешево решить задачу подавления нагарообразования и повышения цетанового числа, вместо того, чтобы подвергнуть это топливо селективной деароматизации. [c.101]

    Некоторые процессы имеют исключительно качественное значение, например различные формы очистки нефтепродуктов, синтез присадок и катализаторов, каталитический крекинг легких дистиллятов, пиролиз нефтяных фракций, ароматизация, обессеривание, окисление, сульфирование нефтепродуктов и т. п., которые, как правило, в конечном итоге снижают глубину отбора товарной продукции. [c.102]

    Гидроочистке подвергался продукт адсорбционного разделения легкого крекинг-бензина, содержавшего ароматические углеводороды, олефины и 3,4—4,5% серы. Остаточное содержание серы 0,05%, водород расходуется на обессеривание и насыщение олефинов в отношении 3 1, ароматические углеводороды не затрагиваются [c.48]

    Сообщается о дальнейшем усовершенствовании процесса ОиИ-НВЗ получения малосернистых котельных топлив и сырья для каталитического крекинга из нефтяных остатков. Из вакуумного остатка кувейтской нефти, содержащей 5,5% серы, получен гидрогенизат с содержанием серы 0,52%. Описываются две модификации процесса при 68 кгс/см идет обессеривание, при более высоком давлении (136—200 кгс/см ) — гидрирование ароматических углеводородов, что особенно благоприятно в случае сырья для каталитического крекинга. Усовершенствования достигнуты за счет улучшения катализатора — увеличения срока службы до 3—4 месяцев и подбора условий. Обессеривание выше 80% нецелесообразно, так как при этом идет сильная деструкция, что повышает расход водорода и удорожает процесс [c.66]

    Можно считать, что решены основные проблемы гидроочистки любых дистиллятных продуктов, хорошо проработаны вопросы сочетания гидроочистки и гидрокрекинга со многими другими процессами нефтепереработки — каталитическим крекингом, риформингом, висбрекингом и другими. В значительной степени решены проблемы селективного гидрирования непредельных и ароматических связей без изомеризации и расщепления, а также проблемы селективного расщепления без насыщения водородом ароматических колец. Близки к разрешению проблемы прямого обессеривания нефти и нефтяных остатков. Продолжают разрабатываться и станут, вероятно, в определенных экономических условиях конкурентоспособными с нефтепереработкой процессы гидрогенизационной переработки различных смол и даже твердых топлив. Но в то же время во многих важнейших направлениях прогресса гидрогенизации остается не мало, а иногда и очень много нерешенных и неясных вопросов, а также возможностей совершенствования. [c.335]

    Оптимальное давление для получения максимального количества жидких продуктов — 2,8 МПа, топливного газа — 4,2 МПа. Парциальное давление водорода составляет 0,88—1,05 МПа. При этом происходит заметное гидро обессеривание (в зависимости от сырья на 30—65%) и гидрирование диенов Выход кокса в процессе дина-крекинг в отличие от других процессов пере работки остатков очень мал и составляет 75—100% от коксуемости сырья Вероятно, высокий выход жидких продуктов и низкий выход кокса при отно сительно небольшом давлении водорода обусловлен существованием в зоне гидрокрекинга атомарного водорода. [c.124]

    Когда гидрообработкой необходимо снизить содержание серы в бензинах, полученных каталитическим крекингом, уменьшается октановое число бензинов вследствие неизбежного гидрирования олефинов. В таких случаях гидрообработку сырья для удаления серы нужно проводить еще до образования олефинов при каталитическом крекинге, и тогда обессеривание бензина будет сопровождаться повышением его октанового числа. [c.104]


    Концентрация сероводорода в газе крекинга на цеолитном катализаторе в 1,2—1,4 раза выше, чем в газе крекинга на аморфных катализаторах (5,0—4,9 против 3,6—3,7 вес. %). Менее сернистыми получаются также бензины и легкие каталитические газойли. Следовательно, реакции обессеривания на цеолитных катализаторах протекают более глубоко. [c.29]

    В результате гидрообессеривания мазута кувейтской нефти при среднем давлении процесса выход легких дистиллятов возрастает с 16 до 24 объемн. % на сырье, а степень обессеривания повышается с 67 до 93%. При этом остаток и дистилляты характеризуются низким содержанием серы [299]. Наиболее важно, что гидро-обессеривание остатков дает возможность получать из них дополнительное количество сырья для каталитического крекинга. Так, при гидрообессеривании 50%-ного мазута кувейтской нефти после [c.193]

Рис. 43. Зависимость качества бензина термического крекинга после его селективной гидроочистки (при давлении 20 ат и удельной циркуляции газа 300 м /м сырья) от температуры и давления процесса сплошные линии — степень обессеривания пунктирные линии — октановые числа. Рис. 43. <a href="/info/62676">Зависимость качества</a> <a href="/info/395875">бензина термического крекинга</a> после его <a href="/info/1470196">селективной гидроочистки</a> (при давлении 20 ат и удельной <a href="/info/332882">циркуляции газа</a> 300 м /м сырья) от температуры и <a href="/info/158066">давления процесса</a> сплошные линии — степень обессеривания пунктирные линии — октановые числа.
    Гидроочисткой дистиллятов вторичного происхождения— газойлей каталитического крекинга и коксования-глубина обессеривания, равная 90%, достигается при парциальном давлении водорода около 20—30 ат. Однако эти продукты имеют низкие цетановые числа. [c.204]

Рис. 51. Влияние удельной объемной скорости подачи сырья на глубину обессеривания при гидроочистке смеси дистиллятов прямой перегонки и каталитического крекинга. Рис. 51. <a href="/info/1738294">Влияние удельной</a> <a href="/info/1457787">объемной скорости подачи сырья</a> на глубину обессеривания при гидроочистке смеси дистиллятов <a href="/info/398476">прямой перегонки</a> и каталитического крекинга.
    Обессеривание крекинг-бензина (содержание серы уменьшается с 0,95 до 0,27%) температура 300° давление 70 ат раствор тиофена в толуоле, содержащий 0,85% серы, обессеривают действием окиси углерода, которая превращается в серо-окись углерода, при этом содержание серы понижается до 0,05% при парофазном обессеривании под обыкновенным давлением при 300° содержание серы в растворе тиофена в толуоле понижается с 0,60 до 0,32% [c.397]

    Отравляемые серой катализаторы после перехода в сульфидную форму также могут быть активными в реакциях гидрирования и гидрогенизационного обессеривания. Например, платиновые катализаторы в присутствии сернистых соединений обычно активны при умеренных давлениях водорода и температуре выше 371° их можно использовать для гидрирования ненасыщеппых углеводородов и гидрогенизационного обессеривания крекинг-бензинов дезактивация их протекает весьма медленно. При более низких температурах (напрпмер 316°) наблюдается сравнительно быстрая их дезактивация [139]. [c.394]

    Были проведены сравнительные испытания молибдата кобальта н молибдатов некоторых других металлов в реакщшх гидрогенизационного обессеривания крекинг-бензина при 343 [75]. Ниже приводятся скорректированные данные об относительных активностях равновесных катализаторов, вычисленные из опубликованных кривых. [c.408]

    В современной мировой нефтепереработке наиболее акту — а/.ьной и сложной проблемой является облагораживание (деметал — лизация, деасфальтизация и обессеривание) и каталитическая переработка (каталитический крекинг, гидрокрекинг) нефтяных остатков — гудронов и мазутов, потенциальное содержание которых в нефтях большинства месторождений составляет 20 — 55 %. [c.220]

    При каталитическом гидрооблагораживании нефтяных остатков наблюдаются два вида термодеструкции — термический крекинг и гидрокрекинг. Интенсивность протекания этих реакций с одной стороны обусловлена термической стабильностью сырья и с другой гидрокрекирующими функциями активных центров катализатора. Большинство опубликованных результатов по изучению реакций гидрокрекинга при обессеривании нефтяных остатков показьшают, что зти реакции идут лишь в начальной стадии процесса, т. е. на свежем катализаторе. Гидрокрекинг в основном обусловлен кислотными центрами [50], которые ввиду высокой концентрации азотсодержащих соединений, асфальтенов и смол быстро дезактивируются и степень Деструктивного разложения сырья на равновесном катализаторе в основном определяется реакциями термического крекинга, -протекающего в объеме. Длительность работы катализатора, в период которого заметны реад<ции гидрокрекинга обычно не превьпиает 100 ч. [c.58]

    Каталитический риформиг бензинов крекинга. Во многих случаях нуждаются в обессеривании, гидрировании и повышении октанового числа бензины, полученные в процессах крекинга. Так как октановое число бензинов крекинга в большой степени зависит от содержания в них олефинов, гидрирование последних приведет к заметному снижению октанового числа. Таким образом, для повышения октанового числа до требуемой величины необходимо прибегать к таким реакциям, как ароматизация, изомеризация и гидрокрекинг. Выше приводятся результаты платформинга смеси 70% дистиллята, полученного при перегонке нефти до кокса месторождения Санта-Мария и 30% бензина прямой гонки из нефти месторождения Лос Анжелос. [c.187]

    Процесс гидрогенизации можно также применить с целью обессери-вания и повышения стабильности крекинг-про-дуктов, используемых для получения автомобильных бензинов. В отличие от авиационных бензинов оценка октановых чисел автомобильных бензинов обычно проводится при более мягких условиях и с меньшей добавкой тетраэтилсвинца. В таких условиях желательно сохранение большей части олефиновых углеводородов в продукте гидрирования. Поэтому необходимо тщательно контролировать степень обессеривания и насыщения олефинов, чтобы избежать ненужных потерь в октановом числе. Из рис. 4 видны некоторые увеличения октанового числа для низкокипящих фрак- [c.278]

    Каталитический крекинг сопровождается достаточно полным обессериванием полученного бензина, но это обессеривание часто осуш ествляется ценой быстрого старения катализатора. Синтетические алюмосиликатные катализаторы более устойчивы к сернистым соединениям, чем активированные природные глины устойчивость последних к действию серы может быть повышена. Вследствие глубокого обессеривания бензины сравнительно легко поддаются очистке. Значительная часть серы удаляется в виде тиофенолов (ср. с тиофенами при термическом крекинге) при ш елочной промывке. [c.325]

    Увеличение в общем балансе нефтей доли сернистых и высокосернистых привело к широкому и быстрому развитию гидрогенизаци-онных процессов. Среди них наибольшее распространение получила гидроочистка светлых нефтепродуктов. В меньшем объеме осуществлена гидроочистка сырья каталитического крекинга и гидро-обессеривание остатков с целью получения малосернистого котельного топлива. [c.61]

    Ие исключено, что природные алюмосиликать[ играли большую роль не только в формировании качества уже возникшей в результате какпх о иных подземных процессов углеводородной смеси, го и в первичных процессах образования нефтяных углеводородов из первичного материала. По-видимому, минеральные породы, с которыми пефть соприкасается в подземных условиях, оказывали и оказывают медленное воздействие на состав нефти. Возможно, например, что степень сернистости нефтей зависит исключительно от условий подземного контакта нефтей с минеральными породами и от природы последних. В частности, нефти, залегающие в песчаных пластах, перемежающихся с пластами алюмосиликатных пород, могут быть менее сернистыми за счет медленного каталитического обессеривания их алюмосиликатами в условиях подземного давления и температуры. Наоборот, нефти, залегающие далеко от алюмосиликатных пород, могут быть более сернистыми вне зависимости от возможных микробиологических процессов, протекающих в тех же подземных условиях. С этой точки зрения реализованные в промышленности процессы каталитического крекинга и риформинга, в том числе над алюмосиликатными катализаторами, можно рассматривать как аналогию природных процессов нефтеобразования. [c.68]

    Приведены результаты гидроочистки различных нефтепродуктов легкий крекинг-бензин — содержание серы уменьшается с 0,065 до 0,0013%, бромное число с 56 до 5 г Вгг/ЮО г тяжелый газойль — соответственно с 0,26 до 0,002%, с 75 до 8,4 бензин соответственно с 0,51 до 0,008%, ароматизированный дистиллят с 0,08 до 0,003%, с 28 до 0,5. Расщепление практически не происходит, ароматические углеводороды не затрагиваются, обессеривание протекает несколько быстрее гидрирования олефинов, сохранить которые, однако, не удается При гидроочистке сырой нефти более активен катализатор I содержание серы снижается с 2,08 до 0,17%, тогда как в случае катализатора II — лишь до 0,32% Содержание серы в циркулирующем масле каталитического крекинга уменьшалось от 1,42 до 0,15%. При этом происходило заметное гидрирование ароматических колец (число ароматических атомов на молекулу при нейзменяющемся молекулярном весе 208—209 уменьшается с 11,5 до 8,8, неароматических — возрастает с 3,8 до 6,9), протекающее за счет бициклических ароматических углеводородов. Для полного насыщения ароматических углеводородов необходимо давление 200 кгс/см  [c.48]

    Описан процесс гидроочистки ОиИ-ИВЗ дистиллятных продуктов и остатков. Катализатор регенерируется через 4—24 ч перегретым паром и воздухом. Наряду с обессериванием—частично протекает гидрокрекинг Испытано влияние условий на селективность удаления серы и диолефинов при гидроочистке крекинг-бензинов. Лучший результат — полнота удаления серы 50—60%, полнота удаления диенов — 90% при сохранении 80 —90% моноолефинов. См. также 1 , 1 Описывается процесс В1е5иИогш1п5, разработанный в основном для очистки дизельных топлив. Установки гидроочистки потребляют водород каталитического риформинга. Содержание серы уменьшается в легких [c.52]

    Для новышения селективности гидроочистки крекинг-бензинов применены новые технологические приемы к сырью добавляется природный тормозитель гидрирования олефинов, гидроочистке подвергается не весь бензин, а фракция > 182 °С, в которой находится большая часть сернистых соединений, но мало олефинов, преобладающих в головных фракциях. В длительном опыте при 20 кгс/см глубина обессеривания фракции > 182 °С составляла 84% при остаточном содержании олефинов 40%. По отношению ко всему бензину достигалась 80%-пая очистка без изменения октанового числа, тогда как гидроочистка всего бензина понижала октановое число на 6 пунктов [c.56]

    Сообщается о разработке процесса облагораживания котельных топлив Н-011 В лабораторных условиях осуществлено деалкилирование метилнафталиновой фракции. Наряду с нафталином получено 6—15% продуктов деструкции нафталина Изучалась возможность гидрообессеривания сырой нефти (2,81% серы) с целью получения мазутов высокого качества. Обессеривание на 40—68% без заметного крекинга. Активность катализаторов сначала быстро падала, затем оставалась на уровне 30% Осуществлена гидроочистка сырого парафина из высокосернистых нефтей с температурой конца, кипения 480 °С и содержанием масла 5г0,8% расход водорода 0,15%. Срок службы катализатора без регенерации более 1000 ч Без сообщения условий гидрирования указывается, что при гидрогенизации пироконденсата (выход гидрогенизата 100%, расход водорода 0,64%) получается 47% бензола, 18 Х толурла, 10% ароматических углеводородов Се и 11% растворителя [c.65]

    Первый путь заключается в эксплуатации установок ГК в режиме низких степеней превращения — варианты ЛГК- По аналогии с переработкой дистиллятного сырья ЛГК остатков можно осуществить на установках гидрообессеривания (ГОС). Так, модификацией процесса ГОС является процесс ЛГК — вое — юнибон (фирма ЮОП, США), обеспечивающий превращение гудрона в дистиллятные фракции на 30—40% и его обессеривание на 70—80%. Фирмой Келлог (США) исследована модификация ЛГК, заключающаяся в избирательной конверсии смол тяжелого сырья, в результате которой образуется значительное количество легких дистиллятов и обессеренное сырье ККФ. Существуют различные варианты включения установок ЛГК остатков в общую схему НПЗ, обеспечивающие высокую гибкость в отношении производства моторных топлив, например ЛГК в сочетании с последующей деасфальтизацией или термической обработкой. Такие комбинированные установки внедрены на некоторых зарубежных НПЗ. В частности, на заводе в г. Сасолбурге (ЮАР) функционирует установка, состоящая из двух последовательных секций ЛГК юнибон — ВОС и термического крекинга. [c.120]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    Кокс из крекинг-остатка смеси малосернистых грозненских нефтей содержит в начале прокалки значительно меньше серы, чем кокс из крекинг-остатка сернистых нефтей. При прокалке до температуры выше 1700°С серы в малосернистом коксе остается больше, чем в сернистом. Кривая термического обессеривания пиролизного малосернистого кокса до 2000 °С прак- тическй параллельна кривой, обессеривания малосернистого грозненского кокса из крекинг-остатка. При температурах выше 2000 °С интенсивность обессеривания пиролизного малосернистого кокса уменьшается и в конце цикла (до 2500°С) в коксо1 остается серы 0,32%, т. е. в десятки раз больше, чем в коксе из сернистых нефтяных остатков. [c.155]

    Согласно литературным данным [7, 49, 54], за рубежом среднедистиллятные фракции вторичных процессов (преимущественно каталитического крекинга) добавляют в прямогонное ДТ, направляемое на гидроочистку с целью, прежде всего, обессеривания. В нашей стране в ДТ летней марки вовлекают лишь легкий газойль каталитического крекинга (ЛГКК), который также подвергают совместно с прямогонным дистиллятом гидроочистке. Содержание ЛГКК в топливе в настоящее время составляет 5% и только на некоторых НПЗ достигает 20% [10]. [c.27]

    Так, переработку нефтей малосернистых высокопарафини-стых (мангышлакской) и высокосернистых парафинистых (ар-ланской) осуществляют по топливному варианту с одновременным получением фракций бензина, керосина, дизельного топлива, вакуумного газойля и гудрона. При этом керосиновую фракцию из малосернистон парафинистой нефти используют как растворитель (уайт-спирпт) дизельное топливо и вакуумный газойль подвергают депарафинизации для получения соответственно жидких и твердых парафинов из гудрона получают сернистый электродный кокс. Фракции из высокосернистых нефтей — керосиновую, дизельную, вакуумный газойль — подвергают гидро-обессериванию для получения соответственно товарных реактивного и дизельного топлив, сырья каталитического крекинга. Гудрон используют в производстве остаточных и окисленных битумов, подвергают висбрекингу для получения котельного топлива. [c.70]

    В последние годы за рубежом и в нашей стране с целью расширения ресурсов сырья для каталитического крекинга или гидрокрекинга проводились исследования по разработке новых процессов деасфальтизации и деметаллизации тяжелых нефтяных остатков. Для этой цели наибольшее применеие получили процессы сольвентной де-а фальтизации ТНО с помощью различных растворителей пропана, бутана, пентана и легкого бензина. Большинство из них основано на технологии подобной пропановой деасфальтизации, применяемой в производстве смазочных масел. В этих процессах наряду с деасфальти-зацией и обессмоливанием достигаются одновременно деметаллизация, а также частичное обессеривание и деазотирование ТНО, что существенно облегчает последующую их каталитическую переработку. Как более совершенные и рентабельные можно отметить процессы РОЗЕ (фирма Керр-Макти ) и Демекс (фирма ЮОП ), проводимые при сверхкритической температуре, что значительно снижает их энергоемкость, а также процесс Добен, разработанный БашНИИ НП, в котором использование в качестве растворителя легкой бензиновой фракции позволяет снизить кратность растворитель ТНО, уменьшить размеры аппаратов, потребление энергии, и, следовательно, капитальные и эксплуатационные затраты. [c.122]

    Гидроочистка вакуумного газойля с к.к. до 500 С - сырья каталитического крекинга не представляет дополнительных трудностей и проводится в условиях и на оборудовании, аналогичных для гидрообессеричания средних дистиллятов. При давлении 4-5 МПа, температуре 36Э-400 °С и объемной скорости подачи сырья 1,0-1,5 ч 1 достигается 90%-я степень обессеривания, содержание азота снижается на 20-35, металлов - на 80, ароматических углеводородов - на 10%, коксуемость - на 70%. [c.185]


Смотреть страницы где упоминается термин Обессеривание крекинг: [c.122]    [c.361]    [c.79]    [c.295]    [c.37]   
Переработка нефти (1947) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте