Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление органических соединений ароматических альдегидов

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]


    Эффект, достигаемый перемешиванием за счет вращения катода, хорошо прослеживается на примере электровосстановления ароматических нитросоединений в соответствующие амины [359, 425, 494—497]. Так, выход по току о-аминофенола при восстановлении о-нитрофенола при плотности тока 30 а дм на стационарном катоде составляет около 46%, а на вращающемся — около 80% [425], Выход г-аминофенола нри восстановлении нитробензола на вращающемся катоде при плотности тока 30 а дм составляет 60—65% расход электроэнергии нри этом составляет 6000 квт-ч на тонну сульфата ге-аминофенола [494]. Существенно повысить плотность тока за счет вращения катода удается и нри электровосстановлении ж-динитробензола в 2,4-диаминофенол [494], о-нитрофенола в о-аминофенол [495], ге-нитрофенола в п-ами-нофенол [359], ж-нитротолуола в ж-толуидин [496]. Вращающиеся катоды были использованы нри электровосстановлении салициловой кислоты до салицилового альдегида, ряда ароматических альдегидов до спиртов, бензойной кислоты в бензиловый спирт. Во всех случаях удалось повысить катодную плотность тока при сохранении или даже увеличении выхода продукта. Аналогичный эффект наблюдается и в процессах электрохимического окисления органических соединений, например глюкозы в глюконат кальция, толуола в бензальдегид и ксилола в толуолальдегид, а также при получении йодоформа из этанола [494]. В литературе описаны электролизеры, в том числе и промышленные, для проведения процессов электросинтеза органических соединений на вращающихся электродах [494, 498]. [c.65]

    Для некоторых классов органических соединений успешно используют способы непрямого восстановления. Так, хлорангидриды ароматических кислот превращают в альдегиды восстановлением соответствующих имидхлоридов хлористым [c.87]

    Восстановление и гидрогенизация органических соединений фенолов, производных пиридина, ароматических и алифатических альдегидов и Гетероциклических соединений [c.151]

    Для электровосстановления алифатических кетонов до углеводородов желательно поддерживать относительно высокую температуру — порядка 60 °С. Для электровосстановления ароматических кетонов до углеводородов необходима более низкая температура, чтобы избежать образования побочных продуктов, в частности металл-органических соединений. Восстановление альдегидов может быть проведено при 10—12 °С. [c.114]

    В этом классе органических соединений как в фокусе собраны все или почти все черты, присущие восстановлению веществ любого другого класса — будь то альдегиды и кетоны, галогенпроизводные, ацетиленовые и этиленовые производные, кислоты, перекиси и т. д. На электролиз нитросоединений оказывают влияние очень многие факторы кислотно-основное равновесие, реакции с участием радикалов, адсорбция на электроде молекул исходных и конечных продуктов, диффузионные ограничения, кинетические ограничения и т. д. Чтобы описать все особенности механизма восстановления нитросоединений, пришлось бы перечислить практически все явления, имеющие место в органической электрохимии и полярографии. Не случайно в обширной и широко известной монографии К. Брокмана Электрохимия органических соединений (опубликованной на английском языке еще в 1926 г. и переведенной в 1937 г. на русский язык) половина раздела о катодных процессах посвящена ароматическим и алифатическим нитросоединениям они описываются в пяти главах из девяти. [c.19]


    Реакции азосочетания используют для определения ароматических аминов, фенолов и соединений, которые при гидролизе или восстановлении образуют ароматические амины — изоцианаты, ароматические нитросоединения, некоторые альдегиды, кетоны. Вообще говоря, соли диа-зония являются фотометрическим реагентом на органические соединения, содержащие при атоме углерода подвижный атом водорода. Группа методов основана на образовании хинониминовых соединений (индофенола, индамина и др.). Их используют для определения фенолов, аминов, аминокислот, гидразидов, сульфамидов и щ). Вторая — на образовании полиметиновых соединений. Третья — на реакциях конденсации. Список можно продолжить. В спектрофотометрическом функциональном анализе использован поистине громадный опыт, накопленный химикамич)рганиками. [c.282]

    Окись платины, полученная сплавлением платинохлористоводородной кислоты с азотнокислым натрием, предлагалась в качестве активного катализатора для восстановления органических соединений [466]. При применении такой окиси платины скорость восстановления фенолов, производных пиридина, ароматических и алифатических альдегидов, а также гетероциклических соединений выше, чем при обычной платиновой черни. К раствору платинохлористоводородной кислоты, соответствующему 0,9 г платины в 5 см воды, добавляется 20 г азотнокислого натрия, смесь осторожно нагревается при перемешивании до удаления воды, а затем нагревается дальше до температуры плавления смеси, после чего она выдерживается в течение 5—15 мин. при температуре 300—320° или до прекращения выделения бурых паров. Полученный коричневый осадок промывается в воронке водой до полного отсутствия следов азотной кислоты в фильтрате. Брук [77] применял вместо платинохлористоводородной кислотьь хлороплатинат аммония, смешанный с десятикратным количеством азотнокислого натрия, и медленно подогревал смесь до тех пор, пока она начинала плавиться с энергичным выделением газа. Сплав выдерживался при температуре 500° в течение 25 —30 мин. и полученная таким образом окись платины применялась при гидрогенизации малеиновой кислоты и бензальдегида. [c.258]

    Поскольку я решил более подробно рассмотреть некоторые вопросы синтеза органических соединений, мне пришлось опустить во втором издании описание устаревших, редко применяемых методов. К их числу относятся, в частности, восстановление по Стефену, окисление по Этару, синтез ароматических альдегидов по Гаттерману и реакция фенолов по Хёшу. Некоторые синтезы, например синтез изохинолипов по Бишлеру — Напиральскому, я перепел из основного текста в задачи. [c.7]

    Исследовано влияние времени и потенциала накопления на висящей ртутной капле, скорости перемешивания, температуры раствора и размера ртутной капли на пик восстановления предварительно адсорбированных органических соединений различных классов [104]. На примере ряда ароматических альдегидов (бензальдегид, дифенилальдегид, терфенилальдегид), кетонов, нитросоединений и других органических веществ показано, что при соблюдении постоянства найденных оптимальных условий накопления наблюдается прямая пропорциональность между высотой пика восстановления и концентрацией деполяризатора. Средняя относительная ошибка определения составляет 4% [105]. Этот прием был применен для количественного определения некоторых триазиновых красителей, а также диме-тилглиоксима, /г-хинондиоксима, порофора и других веществ в стоках предприятий химической промышленности с чувствительностью до 10 —10 М [106]. [c.81]

    Синтетические душистые вещества встречаются в очень многих классах органических соединений. Строение их весьма разнообразно это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом углеродных атомов в цикле. Среди углеводородов вещества с парфюмерными свойствами встречаются довольно редко. Большинство душистых веществ содержат в. молекуле одну нли несколько функциональных групп. Сложные и простые эфиры, спирты, альдегиды, кетоиы, лактоны, иитропродукты — вот далеко не полный перечень классов химических соединений, среди которых разбросаны вещества с ценными парфюмерными свойствами. Для получения душистых веществ применяется самое разнообразное сырье, переработка которого основана на использовании большого числа химических процессов органического синтеза. Некоторые химические превращения приводят к введению заместителей в органические соединения нитрование, алкилирование, галоидирова-ние. К другой группе химических процессов относятся превращения, связанные с изменением функциональной группы веществ окисление, восстановление, этерификация, омыление. Третьи химические процессы приводят к изменению углеродного скелета химических веществ пиролиз, конденсация, изомеризация, циклизация, полимеризация. Ниже рассмотрены химические процессы, наиболее часто используемые в синтезе душистых веществ. [c.232]


    Применяется как одно из исходных соединений, лежащих в основе современной промышленности органического синтеза. Используют для восстановления металлов из их оксидов, для получения карбонилов металлов, карбонилхлорида, карбонил-сульфида, ароматических альдегидов, формамида, муравьиной кислоты, гексагкдроксибензола, хлорида алюминия, метилового спирта, а также в реакциях карбонилировання (в которых СО взаимодействует с ненасыщенными органическими соединениями) и гидроформнлирования. Из смеси СО и На можно получать синтетический бензин, синтол (смесь карбоновых кислот, спиртов, альдегидов, кетонов и углеводородов). Как исходный продукт для синтезов, требующих совместного присутствия СО и На, применяют водяной газ. Для синтеза муравьиной кислоты применяют воздушный газ. В составе генераторных газов СО используется как топливо. [c.304]

    В зависимости от условий эксперимента (апротонная или про-тогенная среда, pH раствора, добавка органического компонента к водной среде, природа и концентрация электролита, тип электрода и т. д.) механизм восстановления ароматических альдегидов и кетонов меняется. С другой стороны, в одинаковых условиях опыта кетоны восстанавливаются примерно так же, как и соответствующие альдегиды, только при несколько более отрицательных потенциалах (например, потенциал ацетофенона на 150 мВ отрицательнее бензальдегида), поэтому механизмы восстановления этих двух классов соединений рассматриваются вместе. [c.174]

    При электрохимическом восстановлении альдегидов и кетонов, помимо нротонизации в приэлектродном пространстве, протекают также другие химические реакции. Так, в достаточно кислых растворах при потенциалах первой волны восстановления ароматических альдегидов и кетонов вслед за переносом электрона происходит димеризация свободных радикалов до пинако-на, причем в условиях, когда собственно электрохимическая стадия процесса обратима, димеризация оказывает влияние на положение и форму первой волны [45]. Подобный же механизм восстановления имеет место и в случае других циклических карбонилсодержащих соединений (см., например, [33, 35, 46—50]). Однако обратимый характер переноса электрона нри восстановлении альдегидов и кетонов удается наблюдать лишь в строго определенных условиях, когда сведено до минимума тормозящее действие адсорбированных на электроде димерных продуктов реакции [45], например при увеличении концентрации органического растворителя в водно-органической смеси [51]. Так, для получения обратимой волны бензофенона необходимо увеличить концентра- [c.84]

    Наиболее подходящим растворителем при определении перечисленных соединений оказалась смесь 0,5 н. водного раствора Li l с метиловым спиртом (1 4). Присутствие больших количеств органических соединений других классов, в том числе альдегидов и кетонов, не мешает определению. Конечно, посторонние вещества не должны содержать нитрозогрупп, нитратов, нитритов, а также групп, восстанавливающихся при потенциалах восстановления нитрогруппы или ниже этих потенциалов. Этот факт открывает большие возможности для определения суммарного содержания нитротел в различных органических продуктах. Особенно следует отметить пригод-ность этого метода для определения ароматических нитрокис-лот, которые другими методами определить трудно. Точность, достигаемая кулонометрическим методом, в большинстве случаев достаточная, так как отклонение среднего результата четырех и более параллельных определений от истинного содержания нитросоединения, как правило, не превышает 1%. [c.33]

    СЛИ альдегиды и кетоны наиболее тщательно изучены с электрохимической точки зрения, то среди них больше всего внимания уделялось ароматическим альдегидам и кетонам (в первую очередь бензальдегиду и ацетофенону). При этом найдено, что многие детали механизма восстановления бензальдегида и ацетофенона аналогичны деталям этого механизма для большого числа классов органических соединений. Поэтому мы особенно подробно рассмотрим классический случай восстановления бензальдегида и ацетофенона на капельном ртутном электроде. [c.46]

    Хорошо известным примером гидрогенолиза галогенсодержащих соединений является восстановление по Розенмунду, т. е. дегалогенирование хлорангидрида с образованием альдегида (см. разд. 7.5.3.1). Гидрогенолиз галогенпроизводных находит применение в органическом синтезе [177а] описано, например, использование атома галогена для блокирования активного центра в ароматическом ядре в конечной стадии синтеза галоген удаляется гидрогенолизом [1776] [схема (7.151)]. В качестве катализатора обычно используют палладий на носителе, в особенности палладий на угле. Так как выделяющаяся при реакции кислота ингибирует восстановление, обычно в систему добавляют основание [третичные амины или гидроксиды металлов I и И группы, например, Мд(0Н)2]. [c.316]

    Более детально рассмотрено восстановление арилгидразонов, которые интересны не только как аналитические формы карбонильных соединений и промежуточные продукты для органических синтезов, но и с точки зрения их строения и превращений в растворах. В первых исследованиях по полярографии арилгидразонов было обнаружено, что при хранении в спирто-водных растворах они претерпевают изменения, приводящие к появлению новых волн, что было связано вначале с таутомерными превращениями [119—121]. При этом приходилось считать, что в свободном состоянии фенилгидразоны алифатических и алициклических кетонов существуют в енгидразинной форме, тогда как производные ароматического ряда и алифатических альдегидов являются гидразонами. Такое предположение не противоречило имевшимся сведениям о химических различиях между этими группами арилгидразонов, так как в то время отсутствовали достаточно надежные физико-химические данные об их строении. [c.58]


Смотреть страницы где упоминается термин Восстановление органических соединений ароматических альдегидов: [c.28]    [c.297]    [c.462]    [c.102]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.152 ]




ПОИСК





Смотрите так же термины и статьи:

Альдегиды ароматические

Альдегиды ароматические, восстановление

Органические восстановление



© 2024 chem21.info Реклама на сайте