Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм процесса с кинетикой

    Термическое разложение метана не вкл ю-ч бт принципиально новых факторов по сравнению с термическим разложением других углеводородов. Однако оно имеет некоторые особенности Тот факт, что метан не имеет связей С-—С заставляет учитывать частные аспекты термодинамики, механизма и кинетики реакций- с другой стороны, температуры, при которых эта реакция протекает интенсивно, определяют целый ряд технологических особенностей, отличающих этот процесс от процессов разложения Термическое разложение метана тесно связано с химической промышленностью (производством ацетилена, сажи, водорода). [c.97]


    На первый взгляд, проблема элементарного химического акта в мономолекулярной реакции может показаться более простой, чем в бимолекулярной реакции. В действительности это далеко не так. Трудность проблемы заключается в том, что большинство мономолекулярных реакций являются сложными реакциями, протекающими через ряд параллельных и последовательных стадий. В настоящее время общепринятой схемой описания мономолекулярной реакции является схема, предложенная Линдеманом (1922). Рассмотрим особенности мономолекулярной химической реакции типа Ai -> Аа, протекающей в газовой фазе при постоянном объеме. Не вдаваясь в подробности молекулярного механизма процессов активации, дезактивации и химического акта, выразим скорости отдельных стадий и всего процесса с помощью метода формальной кинетики. Скорость п процесса активации молекул Ai можно выразить как сумму скоростей бимолекулярных реакций [c.588]

    МЕХАНИЗМ И КИНЕТИКА ПРОЦЕССОВ КОКСОВАНИЯ [c.37]

    Специфика того или другого катализатора при сохранении механизма процесса, кинетики и области заполнений поверхности может проявляться тогда в численных значениях постоянных соотношения линейности С , а и р. [c.308]

    Здесь дано схематичное описание весьма сложного процесса. Более подробно механизм и кинетика сушки влажных материалов изложены, например, в книгах Г. К. Ф и л о н е н к о. П. Д. Лебедев, Сушильные установки, Госэнергоиздат, 1952 А. В. Л ы ч к о в, Теория сушки, Госэнергоиздат, 1950 и др.— Прим. ред. [c.244]

    За последние годы наибольший успех в области зкспериментальной кинетики был связан с развитием экспериментальных методов обнаружения и изучения небольших количеств активных промежуточных продуктов (главным образом свободных радикалов), образующихся в сложных химических системах. Эти методы составляют прочную основу для понимания механизма и кинетики химических процессов. Их обсуждению и математической обработке посвящена обширная литература. В настоящем разделе мы ограничимся описанием наиболее важных методов. [c.94]

    Эксперименты должны включать изучение статики, кинетики и механизма процесса. Однако часто полное исследование сложного процесса невозможно, и мы ограничиваемся нахождением зависимости производительности от отдельных параметров. [c.9]

    Чтобы определить стадии процесса, кинетику замещения водорода на галоген сравнивали с кинетикой взаимодействия галоидов с водородом. Энергия активации при образовании галоидоводородных кислот в результате взаимодействия галоидов с водородом была рассчитана с точки зрения бимолекулярного механизма и механизма образования через свободные радикалы. Сопоставление полученных результатов с экспериментальными показало, что в случае фтора, хлора и брома промежуточно образуются свободные радикалы, в то время как реакции иода с водородом протекают по бимолекулярному механизму. [c.264]


    Кинетика сополимеризации. Несмотря на большое число работ, посвященных исследованию механизма и кинетики процесса сополимеризации этилена, пропилена и диеновых углеводородов [15], по этому вопросу нет единого мнения. Опубликованные [c.297]

    Таким образом, установление механизма процесса и значений его параметров — одна из центральных проблем химической кинетики. Это весьма сложная задача, не имеющая универсального алгоритма решения. Каждый раз важнейшее значение имеет количество и качество априорной информации, которое зачастую определяет и саму процедуру поиска ответа. В этих условиях решающую роль играет проведение активного эксперимента, т. е. эксперимента, направленно спланированного на выяснение либо механизма процесса, либо значений его параметров. Речь идет именно о спланированном эксперименте (блок 12, см. рис. 14), потому что, к сожалению, оптимальные условия получения ценной апостериорной информации, как правило, не совпадают с оптимальными технологическими условиями проведения эксперимента [59]. Иными словами, то, что экспериментатору достается легко, не всегда достаточно информативно. [c.233]

    Разработка современного высокоэффективного контактно-каталитического промышленного процесса немыслима без реализации разветвленной многоэтапной процедуры принятия решений многоцелевого характера, начиная с исследования элементарных актов химического взаимодействия, установления механизма и кинетики каталитических реакций на элементах твердой поверхности катализатора и кончая созданием технологически и экономически оптимальных контактных аппаратов большой мощности. [c.9]

    Возможны также случаи со сложной лангмюровской кинетикой, когда проведение процесса в одну стадию с каталитической системой заведомо выгоднее, чем проведение его в несколько стадий с отдельными катализаторами, даже когда в целом механизм процесса не меняется. Подробнее эти вопросы рассмотрены в монографии [61]. [c.170]

    Исследования механизма и кинетики гидрогенизации ведутся широким фронтом как в СССР, так и за рубежом наряду с разработкой новых технологических процессов. Однако, если работы по технологии гидрогенизационных процессов обобщаются в обзорных статьях и монографиях достаточно регулярно и широкий круг читателей хорошо информирован о достижениях в этой области, многочисленные работы по механизму, кинетике и катализу гидрогенизационных -процессов практически не обобщаются, им обычно посвящаются лишь короткие главы в обзорных монографиях. [c.5]

    Сложные превращения веществ в реакциях изомеризации и рас-щеп.тения во многих случаях удовлетворительно объясняются соотношением радикальных и ионных. реакций. Изменением состава и свойств катализаторов уже возможно усиливать их способность ускорять либо ионные, либо радикальные превращения. Однако стройной и законченной системы взаимосвязи состава и свойств гидрирующих катализаторов с их активностью и селективностью нет. Во многих случаях эмпирически найденные весьма активные катализаторы не изучены даже настолько, чтобы судить об их химическом и фазовом составах. Это направление исследований — изучение взаимосвязи свойств катализаторов с механизмом и кинетикой протекающих в их присутствии реакций — является ключевым для создания новых гидрогенизационных процессов, в том ч сле процессов гидроочистки нефтей и нефтяных остатков и более селективных процессов гидрокрекинга. [c.336]

    Яблонский Г. ., Быков В. И. О нестационарной кинетике каталитических реакций,— В кн. Механизм я кинетика каталитических процессов. Новосибирск изд. ИК СО АН ССОР, 1977, с. 83-105. [c.25]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    Экспериментально изучена кинетика сульфатации образцов оксида алюминия, используемых в качестве катализатора в реакции Клауса, и определена количественная корреляция между сульфатацией и удельной поверхностью и содержанием железа в катализаторе. Атомы железа, находящиеся на поверхности структурных ячеек Y-Al O (тип - шпинель) и доступные действию окислителей и восстановителей, могут изменять свою валентность, т.е. могут служить донорами или акцепторами электронов, не образуя при этом отдельной фазы, а оставаясь в структуре шпинели. На основании этого предложен механизм процесса сульфатации [7]. [c.155]


    При неполном знании механизма и кинетики процесса гидроге-нолиза глюкозы для получения его математического описания представлялось естественным использовать также статистические [c.131]

    Для процесса производства реактива Гриньяра в полунепрерывном реакторе отсутствуют надежные и полные данные о механизме и кинетике реакции, поэтому непосредственное составление математической модели невозможно. Изучение процесса производства реактива Гриньяра было начато с анализа физико-химических особенностей процесса с целью определения видов опасностей, сопровождающих процесс, параметров контроля и защиты, а также каналов успокоения (защитных воздействий) процесса. [c.201]

    Проведено исследование кинетики окисления ароматических углеводородов и сернистых соединений остаточного нефтяного сырья. Показано, что окисление ароматических углеводородов в составе сернистых гудронов идет в режиме ингибированного окисления, вызванного присутствием в сырье сернистых компонентов. Предложена схема механизма процесса окисления. Илл.4, библ.5, табл.2. [c.146]

    Данные по механизму и кинетике химических реакций имеют не только чисто теоретическое, но и большое практическое значение. Познание механизма реакций заключается в установлении энерге — тически наивыгодных реакционных маршрутов, структуры образующихся в отдельных микростадиях промежуточных веществ (актив — ных комплексов, частиц и др.) в зависимости от типа и строения реагирующих молекул и способа активации реакций. В свою очередь, мехаьсизм реакций является основой для установления кинетических закономерностей протекания реакций во времени в зависимости от параметров химического процесса. [c.16]

    На основании многочисленных исследований механизма и кинетики (с использованием кинетических, адсорбционных, изо — тспных и других методов) установлено, что в процессе ПКК углеводородов протекают 2 типа гомолитических реакций через хемо — сорбцию реактантов на поверхности катализатора  [c.158]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Предварительный анализ химической концепции нового метода — это первый этап оформления технологического процесса. Если такой анализ не выявляет никаких принципиальных недостатков концепции, предпринимаются исследования в лабораторном и чет-вертьпромышленном масштабе. Цель их — исследование химических процессов, т. е. статики, кинетики и механизма процесса, определение достигаемых выходов, приблизительное установление оптимальных условий проведения основной реакции, испытание наносимых на оборудование покрытий и т. д. [c.343]

    Идеальным было бы такое изучение процесса, при котором можщ) проектировать промышленную установку в любом масштабе на основе теоретических расчетов с использованием данных, полученных при лабораторных исследованиях. Развивающееся в последние годы изучение механизмов процессов переноса количества движения, массы и теплоты, а также кинетики химических превращений позволило разработать расчетные методы масштабирования (методы математического моделирования). [c.441]

    В книге П. В. Данквертса подробно и, в целом на современном уровне, анализируются и обобщаются основные теоретические и практические проблемы химического взаимодействия газов и жидкостей. Механизмы процессов диффузии и химической кинетики, сочетающихся в разнообразных гидродинамических условиях, подробно рассматриваются автором, начиная с анализа элементарных актов и условий работы лабораторных моделей и кончая промышленными процессами и аппаратами. Теоретический материал широко иллюстрируется примерами конкретных газожидкостных реакционных систем, представляющих важный промышленный интерес. В сочетании с большим количеством хорошо подобранных числовых примеров расчета это облегчает восприятие часто весьма сложных вопросов. Некоторые разделы книги могут служить ценным посо- [c.7]

    Снаговский Ю. С., МылкинИ.И., Островский Г. М. IV Международный конгресс по катализу. Симпозиум Механизм по катализу . Симпозиум Механизм и кинетика сложных каталитических реакций Препр. докл. № 6 /7 Моделирование химических процессов и реакторов (Докл. IV Всесоюз. конф. по хим. реакторам — ХИМРЕАКТОР-71). Новосибирск, 1972. Т. 5, ч. 2. С. 97-115. [c.360]

    Янания о механизмах и кинетике физико-химических процессов основаны на различных идеализациях и приближениях, поэтому и математическое описание, использующее теорию физико-хими-ческих процессов, является приближенным. Однако достигаемое [c.53]

    В настоящее время мощным средством повышения эффективности научных исследований при решении задач расчета, анализа, отимизации и прогнозирования химико-технологических процессов стал метод математического моделирования [1]. При наличии полнот информации о механизме процесса (термодинамике, кинетике, гилродинамике) составляют детерминированную математическую модель, представляющую собой систему дифференциальных урав-не Ий обыкновенных или в частных производных. Для определения неизвестных констант, входящих в систему дифференциальных уравнении и проверки адекватности математической модели процесса, проводится эксперимент. [c.5]

    Понятно, что статистическое планирование отличается от обычно применяемого в научных исследованиях планирования физико-химического эксперимента, цель которого — исследование механизма и кинетики процесса. Исследовательское планирование экспериментов проводится таким образом, что меняется только одна переменная (один фактор х ), а все остальные поддерживаются постоянными. Из найденной оптимальной точки начинают новую серию экспериментов, в которых меняют другую неременную х , и т. д. [c.50]

    В основу книги положены лекции по вопросам экстракции, читавшиеся в виде специального курса для студентов химического факультета Вроцлавского политехнического института. В процессе подготовки книги выяснилось, что тематика лекций весьма разнородна и содержит много нового по сравнению с содержанием имеющихся монографий. Освещение процессов жидкостной экстракции до сих пор ограничивалось главным образом рассмотрением равновесных состояний, а механизму процесса и сопутствующим ему явлениям почти не уделялось внимания. Между тем для правильного понимания процесса экстракции необходимо учитывать не только етатику, но и кинетику процесса на основе новейших научных данных (как экспериментальных, так и теоретических), полученных исследователями в разных странах. [c.8]

    Кундо Н.Н. Особенности кинетики и механизма процессов получения серы при окислении H в газовой и жидкой фазе. //XX Всеросс. конф. по химиии и технолог, орг. соед. серы. Тез. докл. Казань, 1999. с. 35. [c.211]

    Таким образом, современные представления о механизме и кинетике гидрирования бензола, хотя и имеют определевные противоречия и неясности, приводят к ряду общепринятых основных выводов. К ним относятся обязательность геометрического соответствие структуры металла и ароматического соединения при плоскостной адсорбции, невозможность или трудность образования промежуточных продуктов, определение скорости процесса большею частью парциальным давлением водорода и, наконец, представление об образовании я-комплексов ароматического соединения с переходными металлами причем присоединение первого атома водорода является лимитирующей стадией процесса в целом. Все эти выводы сделаны в отношении гетерогенных катализаторов. [c.137]

    Механизм и кинетика реакций. Рассматриваемые процессы принадлежат к неразветвленыым цепным реакциям, протекающим через промежуточное образование свободных атомов и радикалов. [c.103]

    С 1955 по 1980 г. по методу Фишера — Тропша работал единственный завод в Сасолбурге (ЮАР). Здесь же продолжались работы по дальнейшему изучению и совершенствованию процесса. Эти и другие исследования, выполненные в то же время в других странах, рассмотрены в обзоре [6], содержащем сведения о разработке различных типов реакторов, теоретических и практических аспектах получения различных продуктов, механизме и кинетике реакции, а также о приготовлении и характеристиках используемых катализаторов. Данная глава посвящена главным образом процессу Фишера — Тропша, реализованному фирмой Сасол с использованием катализаторов на основе железа. Описаны также технологические усовершенствования, внесенные за время его эксплуатации, обсуждаются перспективы производства моторного топлива при сочетании процесса Сасол с другими. Следует заметить, что значительная [c.161]

    В настоящее время ни кинетика, ни механизм процесса Фишера— Тропша достаточно хорошо не выяснены. Особенно спорным является механизм процесса, как видно из обзора [6]. В данном разделе будут представлены лишь основные моменты и рассмотрены только железные катализаторы фирмы Сасол . [c.201]

    Вопросы качественной теории уравнений химической кинетики подвергнуты рассмотрению в монографии [194]. В ней исследованы условип множественности стационарных состояний в открытых системах и показано, что необходимым условием существования нескольких решений системы уравнений квазистационарности является наличие в механизме процесса стадии взаимодействип различных промежуточных веществ. В [194] делается попытка выделения структур, ответственных за появление критических эффектов для классических уравнений химической кинетики. Важным свойством структурированных форм является то, что они наглядно представляют, как "собирается"сложный механизм из элементарных стадий. Для линейных механизмов получены структурированные формы стационарных кинетических уравнений. На этой основе могут быть выяснены связи характеристик механизма процесса и наблюдаемых кинетических зависимостей. Показано, что знание механизма процесса и констант равновесия позволяет построить ограничения на нестационарное кинетическое поведение системы, причем эти ограничения оказываются существенно более сильными, чем обычные термодинамические. [c.236]

    Лекция II. Строение мицелл дисперсных систем. Строение двойного электрического слоя, термодинамический и электрокинетический потенциалы. Коах уляция, закономерности, механизм и кинетика процесса. [c.217]


Смотреть страницы где упоминается термин Механизм процесса с кинетикой: [c.343]    [c.200]    [c.93]    [c.177]    [c.184]    [c.60]    [c.201]    [c.2]    [c.11]    [c.31]    [c.92]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.22 , c.158 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Богданов. Кинетика и механизм каталитических процессов в растворе

ВЛИЯНИЕ АДСОРБЦИИ НА КИНЕТИКУ ЭЛЕКТРОХИМИЧЕСКИХ РЕАКЦИИ Веселовский, А. А. Раков, Э. В. Касаткин, А. А. Яковлева. Механизм процессов электрохимического синтеза при высоких кислородных потенциалах

ВЛИЯНИЕ РЕАКЦИЙ МЕЖЦЕПНОГО ОБМЕНА НА СВОБОДНУЮ ЭНЕРГИЮ, КИНЕТИКУ И МЕХАНИЗМ ПРОЦЕССОВ ОБРАЗОВАНИЯ И ПРЕВРАЩЕНИЯ МАКРОМОЛЕКУЛ

Заседание секции Механизм и кинетика каталитических процессов 17 апреля

Идентификация механизма кинетики и этапов, определяющих скорость процесса

Исагулянц, М. И. Яновский (СССР). Радиоизотопы и хроматография в исследованиях механизма сложных каталитических процессов Зо Темкин (СССР). Кинетика стационарных сложных реакций

Исследования механизма и кинетики реакций процессов горения и газификации твердого топлива . Методы исследования механизма и кинетики реакций горения и газификации топлива

КИНЕТИКА И МЕХАНИЗМ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ Гороховатский, Селективность медного катализатора в реакциях окисления олефинов

Кинетика и механизм гидрирования бензола и дегидрирования циклогексана на никеле в условиях обратимости процесса. С. Л. Киперман, Б. С. Гудков, Злотина

Кинетика и механизм катодных и анодных процессов при кислотной коррозии металлов

Кинетика и механизм процесса гидрирования

Кинетика и механизм процесса гидрирования окислов углерода и кислорода

Кинетика и механизм процесса горения углерода

Кинетика и механизм процесса получения изопрена из изобутилена и формальдегида через диметилдиоксаи

Кинетика и механизм процесса при низких степенях превращения

Кинетика и механизм процесса равновесной поликонденсации

Кинетика и механизм типовых реакций дегидрирования. Выбор оптимальных параметров процесса

Кинетика процессов

Механизм и кинетика процессов деструкции поливинилхлорида

Механизм и кинетика процессов коксования

Механизм и кинетика процессов формирования нефтяного углерода

Механизм и кинетика процессов экстракции

Механизм и кинетика электродных процессов

Механизм процесса

Механизм процесса и взаимосвязь его с кинетикой реакции

Некрасов Кинетика и механизм процесса электрохимического восстановления кислорода на металлах платиновой группы

О механизме и кинетике плазмохимических процессов

Основы кинетики процессов массопередачи Механизм переноса вещества и законы диффузии

Основы механизма, кинетики и химизма процесса

Основы механизма, химизма и кинетики процесса каталитического крекинга

Скорость и механизм химических процессов Основные положения и определения химической кинетики

Томашов, Л. П. Вершинина. Исследование кинетики и механизма электродных процессов методом непрерывного обновления поверхности металла под раствором



© 2025 chem21.info Реклама на сайте