Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация скорость инициирования, влияние

    Классические методы определения механизма процесса в жидкой фазе (порядок реакции по скорости инициирования, влияние соответствующих ингибиторов) неприменимы к твердофазной полимеризации. Селективные ингибиторы радикалов или ионов неспособны быстро диффундировать в твердом теле [3] и их действие реализуется лишь в отдельных случаях [34, 35]. [c.82]

    В настоящее время почти отсутствуют сведения о сравнении скоростей полимеризации в массе и эмульсии, полученные в строго сопоставимых условиях. Имеются лишь отдельные данные, свидетельствующие о более низкой энергии активации реакций полимеризации и инициирования в эмульсии [46—48], обусловленные влиянием ПАВ на коллоидную структуру систем (табл. 1). [c.153]


    В табл. 2 показано влияние природы инициатора на увеличение скорости инициирования полимеризации в эмульсии по сравне нию с полимеризацией в массе. Скорость инициирования полимеризации вычислялась по уравнениям гомогенной кинетики. [c.153]

    Из приведенных данных видно, что природа инициатора оказывает существенное влияние на скорость полимеризации в эмульсии. Наибольшие изменения скорости инициирования наблюдаются в тех случаях, когда инициатор полимеризации может концентрироваться в поверхностных слоях. Можно полагать, что Таблица 1 [c.153]

    С ацетиленом, разложение и полимеризация ацетилена протекают настолько" быстро, что алкилирование алкана алкином не наблюдается. Однако при наличии ядерного излучения реакцию конденсации удается инициировать при весьма мягких условиях. Эта новая реакция очень удобна для изучения, поскольку отсутствует фон , обусловленный одновременным протеканием аналогичной термической реакции. Поэтому степень превращения, инициируемого только радиацией, и скорость инициирования в данном случае удается измерить непосредственно. И в этом случае можно непосредственно обнаружить цепной характер реакции и влияние экспериментальных условий для систем, изучение которых обычными методами невозможно. [c.137]

    Вопрос о значениях эффективности инициирования при полимеризации этилена и влиянии на эту величину различных факторов практически не изучен. Эффективность инициирования, вероятно, имеет весьма низкие значения, так как температура процесса на 1(Ю °С и более превышает значения, при которых обычно используются соответствующие пероксиды. Учитывая высокие значения энергии активации (для различных пер оксидов Е— 1054-150 кДж/моль), скорость распада пероксидов в условиях процесса исключительно велика и побочные реакции радикалов (наприм,ер, зффект клетки) не могут не играть существенной роли. [c.55]

    Радиационно-инициированная эмульсионная полимеризация (РЭП) имеет свои особенности [42], которые в большинстве случаев являются ее преимуществами 1) в полимере отсутствуют остатки инициаторов, которые впоследствии могут ухудшать его Свойства при переработке и эксплуатации 2) отсутствует передача цепи на инициатор 3) скорость реакции инициирования постоянна во времени 4) можно легко и быстро менять скорость инициирования и тем самым регулировать скорость полимеризации и молекулярную массу 5) скорость радиационного инициирования не зависит от температуры, что позволяет проводить процесс при достаточно низких температурах, избегая нежелательных побочных реакций 6) ионизирующее излучение оказывает специфическое влияние на коллоидные системы, повышая их устойчивость, что дает возможность осуществлять РЭП с приемлемыми скоростями в присутствии малых количеств эмульгатора (ниже ККМ). [c.36]


    О возможном влиянии адсорбционных слоев эмульгатора на реакцию инициирования можно судить при сопоставлении скоростей инициирования полимеризации в гомогенных условиях и эмульсии, характеризующейся различной степенью дисперсности, достигаемой введением разных количеств эмульгаторов различного строения. [c.40]

    Таким образом, при увеличении поверхности раздела фаз независимо от того, каким способом оно достигается, увеличиваются скорости полимеризации и инициирования. Что считать ответственным за это увеличение — изменение скорости разложения инициатора или эффективности инициирования, не всегда можно решить однозначно. Хотя приведенные выше результаты получены при рассмотрении суспензионной полимеризации, для которой характерна меньшая степень дисперсности, чем для истинных эмульсионных систем, влияние диспергирования на реакцию инициирования весьма ощутимо. Вследствие того что природа и концентрация эмульгатора, а также соотношение водной и углеводородной фаз определяют дисперсность эмульсии, становится понятным влияние эмульгатора на скорость инициирования полимеризации в эмульсии. На преимущественное образование инициирующих свободных радикалов в зоне поверхности раздела фаз указывает увеличение скорости разложения инициаторов в эмульсиях, снижение общей энергии активации и энергии активации инициирования (см. табл. 1.1). Эмульгатор при этом обеспечивает высокую степень дисперсности системы и концентрационное перераспределение компонентов полимеризационной системы по фазам. [c.43]

    Кроме того, были исследованы реакции между полимерными радикалами и солями металлов в неводных растворителях. Эти реакции особенно полезны при определении скоростей инициирования, так как эти соли являются очень активными ингибиторами. Бэмфорд, Дженкинс и Джонстон [52] исследовали влияние окисных солей железа на полимеризацию акрилонитрила, нитрила метакри-ловой кислоты и стирола с М,Ы-диметилформамидом в качестве растворителя. [c.422]

    Пока, однако, опубликовано очень мало экспериментальных данных, которые можно было бы использовать для проверки предсказанных соотношений. Зависимость от концентрации мономера было бы трудно отличить от косвенных влияний, обусловленных изменением растворимости. Наиболее убедительной проверкой было бы исследование влияния скорости инициирования на число частиц, которое должно быть пренебрежимо малым в модели постоянного радиуса частиц. Результаты, полученные при дисперсионной полимеризации метилметакрилата в углеводородах, указывают на то, что скорость инициирования — относительно маловажный параметр, однако, эти результаты не охватывают достаточно широкую область значений, чтобы быть убедительными. Кроме того, следует помнить, что увеличение скорости инициирования понижает среднюю молекулярную массу, и это может, в свою очередь, уменьшить долю олигомеров, достигающих пороговой молекулярной массы зародышеобразования. [c.182]

    Очевидно, что на основе рассмотренного выше механизма нельзя ожидать простой зависимости между скоростью реакции и скоростью инициирования (или концентрацией инициатора), хотя в отдельных случаях скорость, измеренная в данное время или при данной глубине полимеризации, может быть пропорциональной корню квадратному из концентрации инициатора. Влияние окклюзии всегда проявляется в увеличении показателя степени при концентрации инициатора в уравнении для скорости полимеризации это можно качественно аргументировать следующим образом. Скорость реакции на любой стадии процесса определяется числом и размером имеющихся полимерных частиц и повышается с увеличением обеих величин. Чем больше концентрация инициатора, тем выше скорость образования полимера и, следовательно, возрастание скорости больше, чем это следует из прямой пропорциональности между скоростью и корнем квадратным из концентрации инициатора. Показатель степени при концентрации инициатора по этой причине должен быть больше /г- Более того, сильную окклюзию можно рассматривать как реакцию обрыва, протекающую по первому порядку, а это приводит к увеличению показателя степени при концентрации инициатора. Из этих эффектов в случае акрилонитрила должен преобладать первый, так как только незначительная часть от общего количества радикалов, генерированных при 25°, полностью застревает в полимере [25], [c.139]

    Второй путь, измерение кинетики образования растущих цепей, возможен в системах, где эта реакция сопровождается появлением характерной полосы поглощения в спектре. Тогда о скорости инициирования можно судить по увеличению интенсивности соответствующей полосы. Такие измерения выполнены при полимеризации стирола под влиянием бутиллития в углеводородной среде, где инициирование протекает с малой скоростью. К полученным при этом результатам мы вернемся при рассмотрении реакции роста. Указанные приемы в принципе пригодны для установления абсолютных констант реакции инициирования. [c.340]


    Полимеризация стирола под влиянием бутиллития в углеводородной среде характеризуется 5-образными кинетическими кривыми (рис. 94) [77, 78]. Это типично для процессов, в которых скорости инициирования и роста мало различаются. Момент, отвечающи максимальной скорости, может быть принят за окончание реакции инициирования падение скорости в конце процесса происходит из-за значительного уменьшения концентрации мономера. Появление отчетливого индукционного перио- [c.346]

    Переходя к данным по радиационной ионной полимеризации, необходимо прежде всего перечислить доказательства протекания тех или иных процессов по механизму, отличному от радикального. Наиболее общими доказательствами такого рода являются 1) характерные значения констант сополимеризации 2) отсутствие влияния ингибиторов радикальной полимеризации 3) особенности кинетики — первый порядок по интенсивности облучения, иной температурный ход скорости полимеризации (низкие или отрицательные значения энергии активации). Подобные доказательства требуются даже в таких случаях, как полимеризация изобутилена. Неспособность этого мономера к полимеризации по радикальному механизму в обычных условиях, строго говоря, не позволяет утверждать, что низкотемпературная полимеризация изобутилепа представляет собой ионный процесс. Можно было думать, что повышение термодинамической устойчивости полиизобутилена при низкой температуре будет способствовать развитию радикальной полимеризации в этих условиях. Поэтому для обоснованного вывода о катионном механизме полимеризации изобутилена иод влиянием у лучей при низкой температуре 1Д следует знать поведение этого мономера в той же температурной области по отношению к свободным радикалам. Такие данные были получены при фотохимическом инициировании процесса в присутствии соединений, распадающихся под влиянием ультрафиолетовых лучей на свободные радикалы (диацетила, бензоина и др.). Как оказалось, фотолиз этих соединений при —78° в среде изобутилепа не приводит к процессу полимеризации [8]. На ионный механизм полимеризации изобутилена при радиационном инициировании указывает также отсутствие чувствительности этого процесса к типичному ингибитору радикальной нолимеризации дифенилпикрилгидразилу. В соответствии с ионным механизмом находится пропорциональность скорости полимеризации изобутилена иод влиянием у-лучей при низкой температуре интенсивности облучения [7].  [c.448]

    Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10°. Увеличение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и облегчает их реакцию с молекулами мономера. Вследствие большей подвижности малых радикалов с повышением температуры увеличивается вероятность их столкновения друг с другом (обрыв цени путем диспропорционирования или рекомбинации) или с низкомолекулярными примесями (ингибиторами). Во всех случаях молекулярная масса полимера уменьшается, т. е. средняя степень полимеризации уменьшается с ростом температуры, и таким образом увеличивается количество низкомолекулярных фракций полимера в, общем балансе расиределения макромолекул по их молекулярным массам, возрастает доля побочных реакций, приводящих к образованию разветвленных молекул, увеличивается химическая нерегулярность построения цепи полимера вследствие возрастания доли типов соединения мономера голова к голове и хвост к хвосту . [c.18]

    Реакция радикальной полимеризации осуществляется при атмосферном или повышенном давлении (500—1000—1500 ат), что зависит от характера исходных мономеров и методов инициирования. Влияние температуры более однозначно — с ее повышением увеличивается скорость полимеризации, но снижается молекулярный вес полимера. [c.50]

    Были определены скорости полимеризации, константы инициирования, энергии активации полимеризации и инициирования. Все изученные несимметричные перекиси арилалифатического ряда обладают большей инициирующей активностью, чем перекись бензоила. Исключение составляет лишь перекись ацетил-лг-нитробен-зоила. Различные заместители в бензольном кольце оказывают существенное влияние на инициирующую активность перекисей. [c.92]

Рис. 5. Влияние скорости инициирования на молекулярно-массовое распределение при полимеризации с образованием живущих полимеров 1 — мгновенное инициирование, 2, 3— медленное инициирование, 4—инициирование с постоянной скоростью. Рис. 5. Влияние скорости инициирования на <a href="/info/82271">молекулярно-массовое распределение</a> при полимеризации с образованием живущих полимеров 1 — <a href="/info/894013">мгновенное инициирование</a>, 2, 3— <a href="/info/894077">медленное инициирование</a>, 4—инициирование с постоянной скоростью.
    На основании исследования влияния ряда других веществ различной основности да скорость полимеризации и молекулярный вес образующихся полимеров была предложена схема полимеризации, включающая инициирование путем присоединения КОН по силоксановой связи, реакции роста и деполимеризации, перенос активного центра при взаимодействии растущей макромолекулы с кислотой и конденсацию макромолекул. Обрыв цепей отсутствует [c.195]

    При полимеризации под влиянием окислительно-восстановительных систем, кроме обычных инициаторов перекисного типа (перекись водорода, перекись бензоила и др.), добавляют восстановители. Действие восстановителей сводится к увеличению скорости инициирования, что приводит к значительному увеличению скорости реакции (выхода полимера). [c.167]

    Процесс обрыва цепей влияние вязкости и ингибиторов. Кинетика полимеризации, особенно простая зависимость скорости полимеризации от корня квадратного скорости инициирования цепей, указывает на то, что радикалы погибают в результате бимолекулярного взаимодействия между двумя радикалами. Однако вопрос о том, включает ли это взаимодействие реакцию соединения или диснропорционирования [ср. уравнение 6], остается нерешенным, хотя большинство исследователей при рассмотрении кинетики предполагает реакцию соединения радикалов. Вероятно, имеют место оба процесса, причем относительные скорости их зависят от природы мономера и температуры. [c.128]

    Пример 50. Полимеризация винилового мономера, концентрация которого в растворе составляет 1,2 моль л", проходит с начальной скоростью 2,2 10 моль - л с при начальной скорости инициирования 8,3- 10 моль -л -с Концентрация растворителя при температуре полимеризации 12,4 моль-л , концентрация инициатора 0,008 моль л . Вычислите начальные скорости передачи цепи на мономер, растворитель и инициатор, если соответствующие относительные константы равны 1,05 100,95 10 и 3,3 10 Сколько актов передачи цепи на мономер, инициатор и растворитель приходится на 10 актов роста цепи Вычислите начальную степень полимеризации и покажите влияние на нее каждой из реакций обрыва и передачи цепи, для чего найдиае значения долей макромолекул, образующихся при помощи той или иной реакции обрыва или передачи цепи. Отношение скоростей рекомбинации и диспропорционирования равно 2 3. [c.33]

    Аналогичным образом можно рассмотреть влияние температуры на кинетику радикальной полимеризации. Обычно скорость полимеризации возрастает в 2—3 раза при повышении температуры на 10". Увеличение температуры увеличивает скорость инициирования полимеризации, так как облегчает распад на радикалы инициаторов и их реакцию с молекулами мономера. Вследствие большей подвижности Время, мим малых радикалов с повышением температуры увеличивается вероят-Рис. 1.3. Термическая полимериза- ность ИХ столкновения друг С дру- ZибитГoв (°брыв цепи путем диспропор- [c.28]

    Получают П. полимеризацией винилхлорида (В.). Скорость процесса в р-ре подчиняется кинетич. ур-нию для гомог. радикальной полимеризации. Однако поскольку П. не раств. в В., полимеризация в массе мономера, а также в водной среде носит гетерофазный характер. Из-за низкой подвижности макрорадикалов в твердой фазе затруднено их взаимод. и, следовательно, мала скорость обрыва полимерной цепи в то же время константы скорости инициирования и роста цепи остаются такими же, как в гомог. среде. Поэтому с увеличением кол-ва П. возрастает и общая скорость полимеризации (автокаталитич. процесс). Скорость р-ции увеличивается до степени превращ. мономера 60-70 Л, затем начинает уменьшаться из-за его исчерпания. Тепловой эффект р-ции 92,18 кДж/моль, энергия активации ок. 83,80 кДж/моль. Степень полимеризации в значит, мере зависит от т-ры, что объясняется склонностью В. к р-ции передачи цепи. Т-ра полимеризации оказывает нек-рое влияние и на степень кристалличности П. При т-рах от —10 до 20 °С получают П. с повыш. синдиотактичностью и т стекл. до 105 °С. [c.620]

    Роль среды в катионной полимеризации в основном сводится к двум эффектам стабилизации образующихся заряженных частиц и изменению реакционной способности АЦ. В первом случае компенсируются энергетические потери на гетеролиз химических связей при образовании инициирующих ионов. Во втором случае изменение реакционной способности АЦ в различных средах происходит благодаря а) влиянию полярности среды, б) ее сокаталитического действия, в) специфической сольватации, г) образованию комплексов с компонентами системы. Доминирующим, не считая химического действия как сокатализатора, является полярность среды. Обычно в катионной полимеризации при увеличении полярности среды скорость процесса и молекулярная масса образующихся полимерных продуктов возрастают, что обусловлено увеличением скорости инициирования и уменьшением скорости обрыва цепи. [c.95]

    Напомним, что, по-видпмому, впервые Стерн и Эйринг [221] воспользовались предположением о диффузионной кинетике процессов обрыва цепей при интерпретации влияния давления иа скорость реакций полпмеризации. Эти авторы предложили уравнение, связывающее константу скорости полимеризации к с константами скорости инициирования, роста и обрыва материальных ценей  [c.213]

    При изучении полимеризации Р-метакрилоил-а-хлорме-тилэтоксифеноксиметилфосфоната (ФФМ) было установлено, что скорость инициирования ДАК, найденная ингибиторным методом с использованием в качестве акцептора свободных радикалов 2,2,б,б-тетраметилпиперидин-1-оксила, зависит от концентрации мономера в растворе и мало зависит от природы растворителя (табл. 1) [И]. При разбавлении реакционной массы эффективность инициирования повышается. Этот факт находится в соответствии с известным положением о влиянии вязкости систем на скорость стадии инициирования радикальной полимеризации. Величина Кр/Ко° для ряда исследованных фосфорсодержащих моно- [c.90]

    Влияние неконтролируемых факторов на кинетику убывания концентрации полимерных радикалов может быть устранено, если послесветовой процесс проводить в условиях слабого, контролируемого инициирования. Этого можно достигнуть, если после наступления стационарной скорости полимеризации в некоторый момент времени резко уменьшить скорость инициирования, поместив на пути светового пучка металлическую сетку, ослабляющую интенсивность света в 10—<30 раз. Концентрация полимерных радикалов теперь будет стремиться к стационарной концентрации, соответствующей этому фоновому инициированию. Фоно- [c.104]

    Чрезвычайно важным фактором для катионной полимеризации является природа реакщ10нной среды. Наблюдаемые при этом закономерности весьма просты повышение полярности среды, благоприятствуя реакциям инициирования и роста, приводит к ускорению полимеризации. Насколько существенно это влияние, показывают данные Кокли и Дейнтона по полимеризации стирола под влиянием комплексов RSn ls в различных средах в четыреххлористом углероде полимеризация вообще отсутствует, а в нитробензоле протекает с большой скоростью [16]. Весьма важно, что изменение полярности среды влияет не только на скорость процесса, но и на кинетические зависимости, например на порядок реакции. Это является результатом различий в механизме инициирования. Приведенное выше уравнение (V-11), которое, как уже отмечалось, не является общим для всех катионных систем, справедливо для сред, отличающихся высокой полярностью. В подобных случаях образование активных центров протекает без участия мономера и общая скорость реакции имеет 1-й порядок по мономеру (V-15). Напротив, в средах с низкой диэлектрической проницаемостью возникновение активных центров, особенно для комплексов, образованных слабыми основаниями Льюиса, происходит только при участии мономера. Степень этого участия на- [c.303]

    По кинетике полимеризации под влиянием растворимых катализаторов Циглера—Натта пока имеется очень мало сведений. Каждая из изученных гомогенных систем отличается специфическими особенностями. Мы ограничимся рассмотрением системы этилен—(С Нд)2 A1G1— paTi lg, которую детально изучил Шьен [42]. Для нее кривая конверсия—время имеет S-образный характер, что указывает на относительно малую скорость инициирования (стр. 346). Использование меченого по углероду алюминий-органического компонента позволило установить, что на каждую полимерную цепь приходится в среднем по одной С Щд-группе. Следовательно, скорость инициирования может быть установлена по изменению содержания С в полимере (в начальной стадии процесса) как функции времени. Путем обработки отдельных проб реакционной смеси раствором радиоактивного йода и определения содержания йода в полимере (куда он входит по реакции [c.428]

    С точки зрения влияния на топологический уровень структурной организации удалось четко разделить процессы формирования сетчатых полимеров на три типа — поликонденсацию, сшивание и полимеризацию, причем показано, что каждый из указанных способов формирования сетки вносит определенную особенность в ее топологию, которая в конечном счете проявляется в их свойствах. Такой подход позволил более детально понять кинетические и структурные особенности процесса формирования сетчатого полимера а также найти управления структурными параметрами полимера. Например, при поликонденсации таким инструментом может явиться изменение соотношения кинетических констант реакции разветвляющих и удлиняющих агентов, при сшивании — влияние на размеры макромолекулярного клубка и соотношение реакций меж- и внутрицеппого сшивания, в случае полимеризационных процессов — влияние на размеры микронеоднородностей путем изменения скорости инициирования или использования агентов передачи цепи. [c.244]

    Рассмотрение кинетических закономерностей радикальной полимеризации дало возможность сделать ряд важных в практическом и теоретическом отношении выводов о влиянии различных факторов на этот процесс. Установлено, что скорость инициирования пропорциональна концентрации инициатора, а общая скорость полимеризации в стационарном периоде (когда скорость инициирования равна скорости обрыва цепи и, следовательно, общая скорость равна скорости роста цепи) пропорциональна квадратному корню из концентрации инициатора и первой степени концентрации мономера у = К[М][1п] /". Что касается степени полимеризации, т. е. молекулярной массы, то она обратно пропорпиут1 дь а.. квядратному [c.17]

    Вопрос о TOiM, по какому механизму протекает радиационная полимеризация в твердой фазе, весьма сложен и во многих случаях окончательно еще не выяснен. Рассмотрим в качестве примера полимеризацию метакрилонитрила, инициированную у излучением Со . В работе [91] было показано, что с увеличением температуры скорость полимеризации этого мономера ниже его точки плавления медленно возрастает (рис. 70) в точке плавления скорость резко уменьшается и, когда мономер облучается в жидком состоянии, вновь возрастает. На первом участке кривой (в области температур от —196 до —40° С) энергия активации равна 3 ккал1моль, а на втором (в интервале от —10 до 4-40° С) —примерно 6,3 ккал1моль. Пирогаллол оказывает значительное ингибирующее влияние на полимеризацию во второй области температур. В первом температурном интервале этот эффект незначителен. Эти. результаты говорят в пользу того, что полимеризация метакрилонитрила в твердом состоянии протекает по ионному механизму, тогда как в жидкой фазе процесс инициируется свободными радикалами. [c.266]

    Такебаяси, Сингаки, Ито [37] исследовали полимеризацию винилацетата под влиянием ряда ацильных перекисей и определили, что эти перекиси разделяются на две группы. В первую входят наиболее активные перекись бензоила и следующие ее замещенные п,л -СНзО м,м -СИ. О,п,п -СИз, м,м -СНз, п,п -С1, во вторую такие замещенные перекиси бензоила м,м -С, п,п -СЫ ж,ж -СЫ, п,п -Ы02, м,м -К02. Во второй группе наклон прямых скоростей и их абсолютные значения меньше, чем в первой. Скорость полимеризации винилацетата больше скорости полимеризации стирола в шесть раз при 40° и в десять раз — при 60 в случае инициирования перекисями первой группы, в то время как при инициировании перекисями второй группы различие меньше. Реакция распада перекисей в винилацетате имеет первый порядок при 40 и отклоняется от него при 60 . Скорость распада перекисей первой группы при [c.34]

    Полагают, что связь титан—углерод в указанных титанорганических соединениях претерпевает гомолитический распад с образованием свободных радикалов, которые инициируют полимеризацию [271—273]. Следовательно, скорость инициирования зависит от устойчивости связи титан—углерод, на которую в свою очередь оказывает влияние природа других заместителей. В разделе Д настоящей главы будет обсуждена точка зрения Ульцмана, в соответствии с которой каталитически активными центрами являются комплексные ионы, образующиеся после гомолитичеекого распада связи титан—уг.терод, а не свободные радикалы. [c.119]

    В работах Робертса [926] и Рестайно с сотр. [927] исследована полимеризация акриламида, инициированная радиационным излучением. Полимеризация осуществляется как в твердом состоянии, так и в водном растворе, причем надо отметить, что вообще полимеризация в твердом состоянии под влиянием жесткого излучения впервые была исследована именно на примере полимеризации акриламида. Полимеризацию в твердом состоянии проводят при температурах от —179 до -Ь65 . Кислород не оказывает влияния на скорость полимеризации. Полимеризация в твердой фазе обычно приводит к получению значительно менее разветвленных продуктов, чем при других методах синтеза. Коллинсон, Дейнтон и Мак-Нотон [928] установили, что при полимеризации в водном растворе средняя степень полимеризации пропорциональна (где / — интенсивность поглощенного излучения) и концентрации мономера в первой степени. В присутствии Ре , Си " и Ре " скорость полимеризации уменьшается. Зависимость характеристической вязкости водных рас- [c.586]

    О влиянии длины алифатической цепи диацилпероксидов на важнейшие параметры радикальной полимеризации можно судить по данным рис. 2.2. Эти данные показывают, что реакционная способность радикала при инициировании полимеризации зависит от длины цепи только при очен коротких цепях и что нет строгой количественной корреляции между активностью радикала, скоростью инициирования процесса и скоростью распада инициатора. Такие же закономерности наблюдаются в. гомологическом ряду грег-бутилперэфиров алифатических карбоновых кислот [40]. [c.45]

    Маслорастворимые инициаторы, такие, например, как бензоил-пероксид, инициируют эмульсионную полимеризацию в основном с такими же скоростями, как и в гомогенных системах [204], что вполне естественно, так как инициатор находится только, в мономерной фазе. Более сложным оказывается вопрос о влиянии водных растворов ПАВ на кинетику разложения гидропероксидов,, имеющих дифильцое строение и способных частично растворяться в воде. Скорость инициирования эмульсионной полимеризации гидропероксидами обычно превышает данный параметр для гомогенных полимеризационных систем в аналогичных температурных и концентрационных условиях на несколько порядков, что связано-прежде всего с увеличением скорости распада гидропероксидов в эмульсиях [204]. Это может быть обусловлено эффектами ми-целлярного катализа [205], проявляющегося в концентрировании дифильных молекул гидропероксидов в мицеллах эмульгатора. Аналогичным образом, вероятно, действует и адсорбционный слой ПМЧ, оказывая концентрирующее и ориентирующее действие на молекулы гидропероксида. , [c.121]


Смотреть страницы где упоминается термин Полимеризация скорость инициирования, влияние: [c.521]    [c.119]    [c.186]    [c.140]    [c.232]    [c.421]    [c.45]    [c.260]    [c.144]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Инициирование

Инициирование полимеризации

Инициирование полимеризации влияние на скорость концентрации инициатора

Полимеризация влияние

Полимеризация скорость инициирования



© 2024 chem21.info Реклама на сайте