Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление углеводородов парафина

    Парафиновые углеводороды относительно инертны к обычным химическим реагентам, в том числе и к молекулярному кислороду. При автоокислении н-парафинов окислению подвергается второй от конца цепи атом углерода. При наличии в основной цепи разветвления окисление направляется на третичный углеродный атом. При окислении н-парафинов образуются первичные моногидроперекиси. При последующем окислении моногидроперекисей образуется дигидроперекись. [c.44]


    Для окисления используют парафин молекулярного веса 250—420, что соответствует 18—30 углеродным атомам в молекуле с температурой плавления от 28 до 65°. Наиболее подходящей для этой цели является смесь парафиновых углеводородов с 19—24 атомами С, с температурой плавления 32—52°, содержащихся в мягком парафине 40/42 и твердом парафине 50/52. [c.162]

    НИЗКОТЕМПЕРАТУРНОЕ КИСЛЕНИЕ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ, ОКИСЛЕНИЕ ТВЕРДОГО ПАРАФИНА [c.270]

    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    В 1959 г. на Шебекинском комбинате СЖК была сооружена установка по получению высших спиртов методом прямого окисления парафиновых углеводородов. Несколько позднее на этом же комбинате был внедрен процесс по извлечению высших спиртов ИЗ" продуктов окисления твердых парафинов в синтетические жирные кислоты. Оба эти процесса будут рассмотрены ниже более подробно. [c.137]


    Весьма активными депрессаторами являются продукты окисления твердых нефтяных углеводородов — парафина и особенно петролатума. Использовать окисленный петролатум в качестве депрессатора, а также добавки, изменяющие кристаллическую-структуру депарафинируемых растворов, впервые предложил Н. И. Черножуков, и окисленный петролатум успешно применяли одно время в промышленных условиях. [c.73]

    Стимулом для развития промышленных процессов окисления простых парафинов до различных алифатических кислородных соединений послужила относительно низкая их стоимость. Эти углеводороды в больших количествах производятся нефтеперерабатывающими заводами, а также легко могут быть получены из природного газа. Углеводороды от пропана до пентана можно получить в достаточно чистом виде путем фракционирования природного бензина и сжиженного нефтяного газа, получаемого на газобензиновых установках. Эти установки могут также давать в большом количестве этан. В случае необходимости этан можно получать путем низкотемпературной абсорбции или конденсацией сухого газа. Метан и этан можно транспортировать посредством трубопроводов, сжиженные углеводороды посредством трубопроводов, в цистернах и океанских танкерах. [c.341]

    Продукты нитрования. Обычные газообразные углеводороды (включая н-пентан и изопентан) активно взаимодействуют в паровой фазе с азотной кислотой, в результате чего образуется смесь нитросоедпнений [296—299] (но вопросу о взаимодействии азотной кислоты с жидкими углеводородами см. гл. П.). Основной побочной реакцией при нитровании является окисление. Низшие парафины при высоких температурах образуют только мононитропроизводные, причем реакция идет с замещением водорода в связях С—Н и сопровождается разрывом связей С—С. Так, нанример, при нитровании этана получаются нитроэтан и нитрометан пропан образует нитрометан, нитроэтан, нитропропан-1 и нитропропан-2. Нитрование пропана на практике ведется 75 %-ной азотной кислотой при температуре 430—450° С. [c.584]

    Процесс совместного производства синтетических жирных кислот и натрийалкилсульфатов методом непрерывного окисления жидких парафинов. Сущность данного метода заключается в непрерывном окислении жидких парафинов в присутствии катализатора — нафтената марганца. Для обеспечения максимального выхода спиртов процесс ведется при относительно низкой температуре и ограниченном времени пребывания (а вместе с тем и глубины окисления) исходных парафинов в зоне реакции. Для понижения скорости окисления спиртов в качестве окисляющего агента используется азотокислородная смесь с содержанием кислорода 4—5%. В выбранном режиме окисления получаемые высшие жирные спирты представлены смесью первичных и вторичных спиртов. Однако в отличие от процесса прямого окисления парафиновых углеводородов в присутствии борной кислоты менее жесткие условия окисления рассматриваемого варианта обеспечивают более благоприятный состав смеси спиртов, в которой содержание первичных спиртов составляет 45—50%. [c.172]

    Окисление углеводородов кислородом протекает по цепному радикальному механизму как в жидкой, так и в газовой фазах. Одна из предложенных схем окисления парафинов С —С4 предполагает [c.134]

    Процесс проводят практически до полного окисления всех исходных углеводородов под давлением 10—20 ат и при 95—175° в зависимости от исходного сырья и желаемого продукта окисления. Кислород воздуха расходуется при этом почти нацело. В качестве катализаторов пользуются солями металлов жирных кислот или высокомолекулярными спиртами и кетонами от предыдущих операций. Продукты окисления омыляют и перерабатывают, как обычно. Недавно Кирк и Нельсон установили [106], что окисленный нефтяной парафин представляет втадающуюся по свойствам основу для смазок. Они окисляли парафин при 135 воздухом в присутствии смеси стеарата цинка и пиролюзита до кислотного числа 70—90 и соответственно до числа омыления 140— 180. Перед омылением добавляли определенное количество жира или насыщенных жирных кислот. Особенные преимущества дает применение натрового или литиевого мыла [107]. Почти половина оксидата состоит из кислот, а другая половина из спиртов и кетонов [108]. [c.476]

    Окисление твердого парафина в СЖК. Из-за большой длины цепи в этом случае получаются очень сложные смеси продуктов. Атака молекулы углеводорода осуществляется с равной вероятностью по любому нз вторичных атомов углерода, и разрыв цепи происходит по любой углерод-углеродной связи. Образуются недо-окисленные продукты — кетоны с тем же числом атомов углерода и спирты разного строения, Прп окислении твердого парафина Сзо полученные кислоты на 60% состоят из ф,ракции Сю—С20, но образуются кислоты l—С4, а также кислоты С5—Сд и высшие (более 20 атомов С), Особенностью высших карбоновых кислот является их способность к окислению в оксикислоты и лактоны, кето-кнслоты н дикарбоновые кислоты. Примесь последних ухудшает качество целевых кислот, заставляя ограничивать степень конвер-си исходного парафина и температуру процесса. [c.382]


    Окисление жидких м-парафинов С14—С20 в дикарбоновые кислоты. Метод превращения указанных углеводородов в смесь алифатических днкарбоновых кислот С4—Сю был разработан во ВНИИНЕФТЕХИМе. Окисление жидких парафинов проводится при 140—180 С и давлении 0,6—4 МПа. При 180 °С преимущественным продуктом реакции является янтарная кислота. [c.180]

    Газофазное нитрование парафинов при 350—500 °С протекает по радикальному цепному механизму, осложненному реакциями деструкции и окисления углеводородов  [c.437]

    Показано [8], что при окислении углеводородов, содержащихся в парафине и не образующих комплекса с карбамидом, основная часть их превращается в кислоты изостроения и нафтеновые кислоты, а небольшая часть (1—4 вес.%) образует низкомолекулярные кислоты. [c.23]

    Например, в гл. 4 приведены новые данные по некаталитическому окислению низших парафинов и по процессу окисления парафиновых углеводородов в присутствии бромистого водорода (однако в книге отсутствуют сведения о каталитическом процессе окисления бутана в жидкой фазе). Весьма увеличен раздел, описывающий производство этилена из этана и пропана, что отражает роль, которую играют эти два углеводорода в производстве олефинов и их переработке полимеризацией, с приведением нового фактического материала по производству полиэтилена и полипропилена (гл. 7). Значительно расширен и раздел, относящийся к производству окиси этилена, где даны сведения по эксплуатации промышленных установок. Здесь же приведен новый материал по получению акролеина окислением пропилена (гл. 9). В связи с использованием нафтенов и ароматических углеводородов для производства синтетических волокон, синтетических смол, фенола и ацетона в гл. 13 и 14 значительно расширены разделы, посвященные получению и выделению из нефтяных фракций нафтенов (циклогексана) и ароматических углеводородов (п-ксилола). [c.5]

    При жидкофазном окислении высших парафинов воздухом первое затруднение отпадает, а второе и третье в некоторой степени упрощаются. Окисление расплавленного парафина кислородом воздуха уже давно осуществляют в промышленном масштабе. Проводится также жидкофазное окисление более легких парафиновых углеводородов химическими окислителями, а в последнее время осваиваются процессы, использующие для этой цели в качестве окислителя воздух. [c.66]

    В табл. 5 для сравнения представлена характеристика товарных фракций кислот двух образцов полученных периодическим окислением твердых парафинов и непрерывным окислением жидких парафиновых углеводородов. [c.15]

    При окислении твердого парафина, представляющего собой преимущественно смесь парафинов нормального строения, следует ожидать, что должны получаться более простые смеси продуктов реакции, чем при окислении жидких при обычных условиях нефтяных фракций, например керосина, который содержит парафины нормального строения и изостроения, а также другие типы углеводородов. Так и происходит в действительности. Несмотря на это, окислению в промышленном масштабе подвергают оба эти продукта нефтепереработки, но твердый парафин в значительно больших количествах. [c.73]

    В начальной стадии неглубокого окисления жидких парафинов по непрерывному методу основным продуктом реакции являются жирные спирты. Температура непрерывного окисления парафина поддерживается на уровне 130°. На окисление направляются н-па-рафиновые углеводороды фракции 250—350°. [c.50]

    Окисление высокомолекулярных парафинов, предназначенных не для мыловаренной промышленности Глава 1П. Производство высших жирных спиртов методом окисления парафиновых углеводородов [c.221]

    Как известно, получение СЖК осуществляется методом окисления твердых парафинов [1] или жидких парафиновых углеводородов [2]. Первый метод получил уже промышленное развитие в ряде стран, в том числе и в Советском Союзе, второй метод находится еще в стадии исследовательской и проектной проработки. Являясь целевой продукцией, СЖК в дальнейшем могут быть превращены непосредственным гидрированием или гидрированием через эфиры в синтетические жирные спирты. [c.5]

    Исследованы составы синтетических жирных кислот, полученных окислением твердых парафинов из грозненских и восточных нефтей и жидких парафиновых углеводородов, выделенных из синтина и дизельного топлива. [c.42]

    Начавшийся в середине 30-х годов третий период в изучении окисления углеводородов (опять-таки главным образом парафиновых и лишь в небольшой мере олефиповых, нафтеновых и ароматических) продолжается и в настоящее время (конец 50-х годов), хотя уже достигнуты несомненные успехи в развитии наших знаний об истинном механизме окисления углеводородов в газовой фазе. За истекший промежуток времени продолжалось дальнейшее изучение всех возникающих по ходу окисления промежуточных и конечных стабильных продуктов, причем это изучение приобретало, особенно в отношении парафинов, все более количественный характер. Последнее, как увидим ниже, может придать больший вес предлагаемым радикально-цепным схемам и увеличить их достоверность. Был предложен ряд таких схем и в результате их сопоставления, а иногда и борьбы друг с другом, был произведен отбор относительно небольшого числа свободных радикалов, о которых в наши дни уже с большой вероятностью можно утверждать, что они участвуют в окислительном превращении углеводородов. [c.93]

    Материал, имеющийся в литературе о связи между строением углеводородов и их реакционной способностью к окислению, еще недостаточен для создания системы взглядов по этому вопросу. По существу только в последнее десятилетие появился ряд работ, главным образом Гиншельвуда и его школы, на эту тему. В полном соответствии с преобладающим вниманием, которое на всем протяжении исследования окисления углеводородов уделялось парафинам, последние явились объектом и этих работ. Ниже дается краткий обзор полученных результатов. [c.310]

    Изменение скорости окисления углеводородов в зависимости от их структуры, несомненно, связано с изменением путей претерпеваемого превращения. С целью установить, к чему сводятся эти отличия в окислении парафинов нормального и изо-строения, ниже проводится сравнение экспериментального материала, полученного разными авторами при изучении окисления, во-первых, н. гексана и 2-метилпентана и, во-вторых, н. бутана и изобутана. Соответствующих данных, которые допустили бы подобное сравнение для других нарафиновых углеводородов, в литературе найти не удалось. [c.312]

    Критическое рассмотрение результатов шестидесятилетнего изучения и разных странах газофазного окисления углеводородов приводит автора к принятию изложенной ниже, пока еще не полной картины химизма и кинетики этого процесса применительно к нормальным парафинам. [c.325]

    Во всем предшествующем изложении рассмотрение вопросов механизма газофазного окисления углеводородов проводилось главным образом на примере нормальных парафинов. Это ни в коем случае нельзя считать результатом свободного выбора автора и его особого интереса к окислению именно этих углеводородов. На самом деле преобладающее внимание, уделенное в настоящей монографии нормальным парафинам, вызвано тем обстоятельством, что они явились основными объектами, на которых развивалось исследование окисления углеводородов. Причина этого, по-видимому, кроется в представлении, живущем у исследователей, [c.414]

    Согласно ряду данных, причиной фитоцидности масел являются продукты окисления. В результате окисления углеводородов, парафинов, нафтенов, ароматических углеводородов и смесей этих соединений получаются кислоты и оксикислоты, которыэ могут вызвать повреждение растений. Очищенные масла окисляются меньше. [c.119]

    Переходя к практическому применению приведенных выше теоретических основ низкотемпературного окисления парафиновых углеводородов, можно указать на незначительный пробел в использовании парафинов между фракцией Сд—С4 и твердыми парафинами (выше g ), Следует отметить, что фирмы Селаниз Корпорейшн и Ситиз Сервис Компани проводят большую работу по окислению пропана и бутана с целью получения алифатических кислот, кетонов и подобных соединений. Однако эти операции проводятся, по-видимому, при гораздо более высокой температуре (выше 300° С), чем рассмотренные в данном обзоре, и об этой работе опубликовано мало литературных данных. Целесообразно завершить данную статью кратким описанием промышленного процесса окисления твердого парафина, применявшегося, в Германии. [c.279]

    Окисление газообразных парафинов (С —С4). В настоящее врем , опубликованы данные о промышленном применении окисления метана в формальдегид, природных газов, содержашлх углеводороды С1—С4, в метиловый спирт и формальдегид пропана и бутана в соответствующие спирты, альдегиды, кетоны и кислоты с тем же, что в сырье, или меньшим числом углеродных атомов) изобутана в гидроперекись трет-бутйла. [c.141]

    В табл. 20 показан групповой состав битумов, полученных по разны.м технологическим схемам из гудрона котур-тепинской нефти, а на рис. 70 — свойства этих битумов. Как видно, при равном выходе на нефть битумы, полученные по схемам с предварительным окислением, характеризуются более высоким отношением ароматические углеводороды парафино-нафтены, что обеспечивает им более высокую дуктильность. Это особенно заметно, когда окисляется только часть сырья, но более глубоко. В общем, рекомендуется гудрон первой ступени вакуумной перегонки (остаток выше 470°С, вы.ход на нефть 28% масс.— рис. 71) разделять на два потока, один из которых (15—45%) окислять до температуры размягчения 70—100 °С, после смешения окисленного и неокисленного потока их следует подвергать дополнительной вакуумной перегонке с получением остатка выше 510 °С — битума. [c.108]

    Спирты и карбонильные соединения являются следующими продуктами окисления углеводородов. Спирты получаются в значительном количестве только при окислении парафинов и нафтенов, но не из алкилароматических соединений. Согласно традиционной схеме Лангебека—Притцкова, эти продукты образуются при окислении через гидропероксид  [c.358]

    Ускорение процесса автоокисления углеводородов при помощи ионизирующих излучений. Стимулирование процесса автоокисления углеводородов может быть достигнуто не только при помощи катализирующих добавок, но, как установлено в последнее время, и действием проникающих у-излучений. Впервые систематические исследования действия излучений на автоокисление органических веществ, в том числе и углеводородов, были осуществлены Н. А. Бах с сотрудниками [48]. Авторы проводили окисление при относительно низких температурах 0°, 25° и 60° и установили, что при этом образуются перекиси как первичные продукты окисления, а затем все продукты окисления альдегиды, спирты, кислоты и др. В работе Н. М. Эмануэля [49] приведены экспериментальные данные по окислению технического парафина в условиях воздействия у-излучений Со . В этой же работе дается и теоретическое обоснование эффективности подобного воздействия на процесс автоокисления. Окислению парафиновых углеводородов ( -гексадекана) под воздействием у-излучбний посвящены также работы Ю. Л. Хмельницкого, М. А. Проскурнина, Е. В. Барелко и др. [50]. [c.292]

    Помимо указанных кислых соединений, в продуктах окисления ароматических углеводородов присутствуют соединения фенольного типа. Из нейтральных соединений, получающихся в результате окисления углеводородов, обнаружены сложные спирты, альдегиды, кетоны. Из нейтрального продукта от окисления парафина Наметкиным и Зворыкиной были выделены гексило-вый, гептиловый, октиловый, ноииловый, дециловый и другие спирты. Из смеси альдегидов цм же удалось выделить ряд фракций, которые соответствовали альдегидам от СбН1гО до СюНаоО. Наконец, к числу нейтральных продуктов окисления. углеводородов относятся смолы и асфальтены, получающиеся в больших или меньших количествах в зависимости от условий процесса и от характера окисляемых углеводородов. [c.159]

    В XIX в. было принято считать, что парафиновые углеводороды являются примерами нереакционноспособных соединений, что и послужило причиной их названия—парафины (parum aff inis—почти бездеятельный). Однако проведенные исследования показали обратное. Пресловутую химическую инертность парафинов еще в 1870 г. развенчал Кельбер [38], показавший, что воздух при 150—160° довольно легко окисляет парафины в соответствующие карбоновые кислоты. Далее было установлено, что карбонаты или гидроокиси металлов I н II трупа периодической системы заметно ускоряют окисление углеводородов, и добавки 1—2% стеарата магния способствуют образованию до 80% различных жирных карбоновых кислот. В продуктах реакции были установлены все кислоты от уксусной до стеариновой. Благоприятное действие при окислении углеводородов оказывают добавки небольших количеств воды, I—2% стеарата Zn или Мп, олеата Со или Мп, нафтенатов разных металлов и т. д. [c.218]

    При непрерывном окислении жидких парафинов ЛенНИИ предлагает оксидат по выходе из колонны нейтрализовать водным раствором едкого натра. В образующийся раствор мыла в силу сопряженной растворимости переходят спирты, углеводороды и другие кислородные соединения. Эти продукты, так называемые не-омыляемые-П, из мыльного раствора извлекали экстракцией серным эфиром. Выход неомыляемых-11 составлял 40%. от сырья, израсходованного на окисление. [c.50]

    Получение низкомолекулярных жирных кислот. ... Окисление высших парафиновых углеводородов в паровой фазе Окисление твердого парафина нитрозными газами (окислами зота в присутствии нитрозилсерной кислоты .... [c.221]

    Из сопоставления данных, приведенных в табл. 3, видно, что СЖК, полученные окислением жидких парафиновых углеводородов, обладают, как правило, несколько более высоким средним кислотным числом, большим содержанием неомыляемых и значительно более высокими эфирными числами, чем кислоты, полученные окислением твердых парафинов. Общее содержание кислот до С20 во всех с.(1учаях остается приблизительно одинаковым (75—77%)- [c.15]

    Первый период был заполнен чисто химическим исследованием окисления углеводородов, т. е. идентифицированпем стабильных промежуточных и конечных продуктов, возникающих в реагирующей смеси по ходу превращения. Было выяснено, что в процессе медленного окисления углеводородов (изучались главньш образом парафины и олефины) помимо конечных продуктов, т. е. окислов углерода и воды, действительно получаются кислородсодержащие соединения — перекиси, спирты, альдегиды, кетоны, кислоты. На основе полученных данных были созданы различные химические схемы механизма окисления, а именно гидроксиляционная, иерекисная, альдегидная и дегндрогенизациопная. Из них первая и третья устанавливают стадийную последовательность (через стабильные промежуточные вещества) всего окислительного превращения углеводородной молекулы вплоть до конечных продуктов — окислов углерода и воды, вторая же и четвертая схемы ограничиваются только установлением первичного стабильного продукта окисления. [c.8]

    Из схем следует, что первые этапы нижпе- и верхнетемпературного окисления нормального парафина полностью совпадают. Действительно, в обоих случаях молекула исходного углеводорода, проходя через стадии соответствующих вторичного алкильного и вторичного перекисного радикалов, превращается во вторичную алкилгидроперекись, распад которой приводит к образованию ацетальдегида, радикала ОН и первичного алкильного радикала с числом атомов углерода на два меньше, чем в исходном углеводороде. [c.208]

    Так как, в отличие от метана , в ходе окисления высших парафинов образуется не только формальдегид, а еще и высшие альдегиды, то возникает вопрос, какие альдегиды в этом случае являются разветвляющими агентами. Норриш считает, что нельзя дать единого ответа на этот вопрос. В согласии со взглядами, имеющими широкое распространение в литературе, он признает наличие двух механизмов, по которым протекает окисление высших углеводородов — верхнетемнературного, осуществляющегося выше 450°, и нижнетемпературного холоднопламепного, в пределах 260-400 . [c.255]

    В первом с лучае распад по О—0-связи происходит с выбросом атома водорода и приводит к образованию еще ацетальдегида и ацетона. Как мы видели, однако, Б.аанделл и Скирроу [36] (см. стр. 405), окисляя бутен-2, специально искали кетоны (в том числе и ацетон), но не смогли их обнарул ить. Во втором случае распад по О—О-связи должен привести к образованию альдегида и алкоксильного радикала, для которого естественней всего предположить дальнейшее превращение в соответствующий спирт. Но тогда в составе продуктов окисления как олефинов, так и парафинов, должны быть и альдегиды и спирты. Альдегиды были обнаружены при окислении углеводородов обоих этих классов. Что же касается спиртов, то относительно их образования в ходе окисления олефинов существуют противоречивые данные. Так, например, при окислении пропилена Мюллен и Скирроу [35] нашли спирты (правда, только [c.411]


Смотреть страницы где упоминается термин Окисление углеводородов парафина: [c.416]    [c.161]    [c.204]    [c.25]    [c.43]    [c.41]    [c.209]   
Основы технологии нефтехимического синтеза (1965) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Окисление парафина



© 2024 chem21.info Реклама на сайте