Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление, влияние его на абсорбцию

    Влияние давления на процесс абсорбции определяется законом Генри. Согласно этому закону растворимость газа в жидкости пропорциональна его парциальному давлению в парах над жидкостью. Если, не изменяя температуры, повысить давление над раствором, то в жидкость перейдут новые количества газа. Увеличение давления способствует абсорбции. [c.288]


    Растворимость этилена увеличивается с повышением концентрации серной кислоты, поэтому применяют 97—98%-ную кислоту. Оптимальная температура процесса 65—75°С. С дальнейшим повышением температуры уменьшается количество образующейся этилсерной кислоты. Влияние давления на абсорбцию этилена представлено на рис. 66. С повышением давления возрастают скорость абсорбции и растворимость этилена в серной кислоте. Большое значение для процесса имеет интенсивность перемешива- [c.169]

    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]

    Влияние давления на абсорбцию сероводорода. Повышение давления увеличивает количество сероводорода, абсорбируемого раствором амина. Количественные данные, характеризующие это влияние, в литературе не сообщались. [c.349]

    Влияние давления на абсорбцию сероводорода. Скорость абсорбции сероводорода возрастает с повышением давления. В области давлений выше 21 ат скорости больше, чем при более низких давлениях [94, 95, 237]. Скорость растворения сероводорода, а также общее абсорбируемое его количество могут значительно увеличиться при давлении выше 21 ат. Было показано, что при давлениях выше атмосферного в системе двуокись углерода — сероводород — азот — карбонат натрия — бикарбонат натрия — гидросульфид натрия — вода [201] и в аналогичной системе двуокись углерода — сероводород — карбонат натрия — бикарбонат натрия— сернистый натрий — вода [379] могут присутствовать свободные сероводород и двуокись углерода. [c.357]


    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    Влияние давления на абсорбцию двуокиси углерода водой [c.290]

    Влияние давления на абсорбцию этилена представлено на рис. 185. С повышением давления возрастают скорость абсорбции и степень насыщения серной кислоты этиленом. [c.509]

    Различают физическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа не сопровождается химической реакцией (или, по крайней мере, эта реакция не оказывает заметного влияния на процесс). В данном случае над раствором существует более или менее значительное равновесное давление компонента и поглощение последнего происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления над раствором. Полное извлечение компонента из газа при этом возможно только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего компонента. [c.10]

    В табл. 41 приведены данные о влиянии давления на абсорбцию этилена. [c.190]

    Влияние давления на абсорбцию этилена [c.190]

    ВЛИЯНИЕ ДАВЛЕНИЯ НА АБСОРБЦИЮ ОКИСЛОВ АЗОТА 179 [c.179]

    Влияние давления на абсорбцию окислов азота [c.179]

    В соответствии с растущим влиянием полимеризации и других процессов, требующих применения концентрированных олефинов, низкотемпературная ректификация под давлением приобрела за последнее время гораздо большее значение в мировом масштабе, чем низкотемпературная абсорбция. К тому же вредные примеси, мешающие дальнейшей переработке, легче удалить из нефтехимических первичных продуктов, чем из готовых продуктов. [c.47]

    При экспериментальном определении каа с помощью физической абсорбции хорошо растворимых газов (чаще всего аммиака водой) требуется соответствующий учет равновесного давления газа над раствором, а также нередко и частичного сопротивления массопередаче со стороны жидкости. Если прн этом необходимо работать с колоннами сравнительно большой высоты (например, при специальном исследовании влияния высоты насадки на k( a), использовать систему аммиак — вода можно лишь заменив обычный метод измерения концентрации NH3 на более точный. Доп. пер. [c.207]

    Влияние давления на процесс абсорбции................679 [c.542]

    Влияние давления на процесс абсорбции [c.579]

    Влияние давления паров абсорбента на равновесие. В приведенных зависимостях не учитывалось влияние давления паров поглотителя на равновесие, что допустимо, если это давление мало по сравнению с парциальным давлением абсорбируемого газа. Если же давление паров поглотителя велико, то его влияние на равновесие при абсорбции учитывают следующим образом. [c.437]

    Скорость химических реакций в ряде случаев может зависеть от давления. Для некоторых каталитических реакций необходимо принять во внимание изменение степени абсорбции и величины константы скорости под влиянием изменения давления. При пропускании газообразных веш еств через зону реакции с одинаковыми массовыми скоростями повышение давления приводит к, увеличению времени контакта. [c.17]

    Изучение процесса абсорбции осуществлялось в условиях, близких к промышленным. Работы проводились в полом реакторе при интенсивном, контакте кислоты с диспергированным пропиленом. Изучалось влияние концентрации кислоты, температуры, давления газа и линейной скорости. [c.265]

    Изучение влияния парциального давления на скорость абсорбции пропилена показало, что с увеличением парциального давления возрастают предельная степень насыщения кислоты пропиленом и скорость его поглощения. В связи с этим при пониженной концентрации пропилена в исходной  [c.265]

    Следует указать, что окислы азота обладают способностью к активной абсорбции и адсорбции. Так, например, сорбционная способность азота на стекле ири нормальном давлении n, =6,93-10-5 см, а окиси углерода только со = = 0,00024-10 см. Расчет же погрешности анализа от сорбционных явлений крайне сложен и подчас невыполним. Погрешность в определении может быть за счет каталитического действия материала системы пробоотбора повышенной влажности и температуры продуктов сгорания, влияния сопутствующих компонентов. Большое значение имеет скорость отбора, которая должна тщательно контролироваться и, обеспечивая необходимую точность и быстроту анализа, не нарушать процесс сжигания газа на газогорелочных устройствах и не приводить к значительным подсосам в пробоотборник избыточного воздуха. Для определения окислов азота в настоя- [c.71]


    Влияние давления. Если между давлением и константой равновесия компонента в соответствии с уравнением (7.8) существует обратная зависимость, с ростом давления увеличивается значение фактора абсорбции А, а следовательно, также величина ф. Это объясняется еще и тем, что повышение давле- ния способствует переходу углеводородов в жидкое состояние. После определенного значения давления, характеризующегося в основном перегибами кривых констант равновесия углеводо-Тродов (ретроградным явлением), с ростом давления значе- [c.200]

    Влияние свойств абсорбентов на абсорбцию. При выборе абсорбента следует стремиться к тому, чтобы по природе он был- подобен разделяемому газу, так как при этом процесс массообмена протекает более интенсивно. При абсорбции углеводородных газов в качестве абсорбента обычно применяют бензиновые или керосиновые фракции, а в. последние годы и газовый конденсат. Выбирая абсорбент, учитывают также давление и температуру процесса и производительность установки. [c.204]

    Равновесное давление компонента на границе раздела фаз учитывает влияние свойств жидкой фазы и происходящих в ней процессов на скорость абсорбции и является функцией концентрации свободных молекул абсорбтива на границе раздела фаз. Последняя при прочих равных условиях уменьшается при увеличении концентрации хемосорбента, константы скорости химической реакции м коэффициента диффузии молекул активной части хемосорбента. Противоположное влияние наблюдается при увеличении коэффициента диффузии самих молекул абсорбтива. Значение Рр, может быть найдено из экспериментальных данных по зависимости скорости абсорбции от Р и С, как это показано в работах [248, 307, 335]. [c.143]

    Повышение давления абсорбции снижает отрицательное влияние остаточных компонентов. [c.218]

    Этилен поглощается серной кислотой медленнее, чем другие газообразные олефины (например, в сотни раз медленнее, чем изобутилен). По мере образования этилсерной кислоты (этилсульфата), в которой этилен растворяется лучше, скорость поглощения этилена увеличивается. Но в связи с тем, что в то же время уменьшается концентрация серной кислоты, общая скорость реакции снижается. Нужная степень насыщения до 0,6 моля С2Н4 на 1 моль Нз804 в верхней части абсорбционной колонны достигается для 97,5%-ной кислоты за 1 ч 15 мин, т. е. почти вдвое быстрее, чем для 95%-ной Н- ЗО (2 ч 15 мин). Следовательно, целесообразно применять 97— 98%-ную кислоту. Оптимальная температура процесса 65— 75° С. С дальнейшим повышением температуры уменьшается количество образующейся этилсерной кислоты. Влияние давления на абсорбцию этилена представлено на рис. 76. С повышением давления возрастают скорость абсорбции и степень насыщения серной кислоты этиленом. Большое значение для процесса имеет интенсивность перемешивания. В производстве применяют барботажные колонны, эбеспечивающие более сильное перемешивание, чем насадочные башни. В ходе второй стадии идет гидролиз этил- и диэтилсульфата [c.191]

    Влиянием волн можно пренебречь. Произвести следующие расчеты а) вычислить толщину пленки б) вычислить продолжительность контакта поверхности с газом в) вычислить общую скорость абсорбции СО2 при ее давлении 1 атм г) проверить характер движения пленки д) определить для низа стержня расстояние от поверхности в глубь жидкости, на котором концентрация СО2 составляет 1% от Л е) вычислить скорость в этой точке, выразив ее значение в виде доли от скорости жидкости у поверхности ж) если бы СО2 абсорбировали раствором 0,5 моль л NaOH в тех же условиях, как следует уменьшить давление СО2, чтобы устранить обеднение реагентом у поверхности з) какова тогда будет общая скорость абсорбции  [c.83]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Давление газа относительно мало влияет на поглощение, но оказывает значительное влияние на растворение газа. При низком давлении поглотительная емкость растворителя настолько ниже емкости химического поглотителя, что использование принципа растворения неэффективно, так как требуется циркуляция большого количества абсорбента. С повышением давления поглотительная емкость растворителя растет, становится сравнимой и даже превосходит поглотительную емкость химического поглотителя. Выбор поглотителя поэтол1у определяется давлением абсорбции. Физические поглотители применяют только при высоком давлении. [c.114]

    Дэвис и сотрудники [56а] обстоятельно исследовали абсорбцию газообразных олефинов серной кислотой различной концентрации. Они нашли, что скорость абсорбции пропорциональна давлению олефина, если реакция проводится при постоянном объеме, и не зависит от перемешивания серной кислоты, не считая влияния увеличения поверхности кислоты при перемешивании, Повидимому, в поверхностной пленке реакция идет быстрее, чем в основной массе жидкости. Скорость абсорбции зависит в значительной степени от природы олефина. Например, 80%-ная и более концентрированная серная кислота растворяет пропилен в 300 раз скорее, чем этилен. Пропилен и бутилен-1 растворяются приблизительно с равной скоростью, которая в 1,7—2,6 раза меньше скорости растворения бутилена-2. Триме-тилэтилен абсорбируется в несколько раз быстрее, чем изобутилен, который в свою очередь реагирует в 10—80 раз скорее, чем бутилен-2. Изопропилэтилен реагирует с серной кислотой приблизительно с той же скоростью, что и пропилен. Отмечено, что при абсорбции 60%-ной серной кислотой изобутилен непосредственно превращается в третичный бутиловый сиирт, в то время как пропилен дает только изопропилсерную кислоту. При действии 80%-ной серной дислоты бутилен-2 превращается главным образом в спирт [566]. В оригинальной литературе [56 подробно рассмотрена возможность использования различия [c.15]

    При температуре /1 отсчитывается по точке А. Чтобы определить энтальпию абсорбируемого газового компонента при температуре 1, нужно отсчитать на изотерме /1 (при Х = 1) изобару соответствующую. давлению жидкого компонента при этой температуре и, следовательно, проходящую через точку В. Энтальлию насыщенного пара абсорбируемого компонента при температуре А определяет точка С. В действительном процессе абсорбируемый компонент может иметь давление ниже, чем давление насыщенного пара, но влиянием этого изменения давления на энтальпию можно пренебречь. Теплота абсорбции при температуре /1 отсчитывается по расстоянию между прямой смесей АС и изотермой АВ. [c.449]

    С гавышение.м температуры увеличивается наклон линии равновесия, так как растет парциальное давление в состоянии равновесия с данным раствором, поэтому разность У — У будет уменьшаться, а величина Л г увеличиваться (рис. УП-19). Повышение гемпературы вызывает также увеличение вязкости газа и толщины пограничного слоя. г. По уравнению (УП-27) коэффициент диффузии О пропорционален Т следовательно, отношение 01Т будет пропорционально 7 . Но в итоге, как показывает опыт, ббльплим оказывается влияние вязкости, и коэффициент несколько уменьшается с ростом температуры. Поэтому выражение перед знаком интеграла (ВЕП) увеличивается при повышении температуры. В результате высота абсорбера й растет с увеличением температуры. Таким образом, процесс абсорбции хорошо растворимого компонента следует проводить при низкой температуре. [c.578]

    Зсли абсорбция проводится под повышенным давлением, то, как указывалось ранее, потеря напора иа преодоление гидравлического сопротивления абсорбера в данном случае составляет незначительную долю общего давления в системе и не оказывает существенного влияния на экономические показатели абсорбционной установки. При этом целесообразно использовать наибольшие возможные скорости газа в абсорбере, близкие к предельной, т. е. равной, например (0,8—0,9) где [c.458]

    Для получения гликоля концентрацией более 99% масс, наряду с вакуумной регенерацией широко применяют способ регенерации гликолей с помощью отдувочного газа (стрнппинг-газ), позволяющий получить ДЭГ и ТЭГ концентрацией 99,5—99,9% [14]. Обычно в качестве отдувочного газа используют отбензинен-ный газ, который подают в рибойлер или непосредственно в нижнюю кубовую часть десорбера. Стриппинг-газ уменьшает парциальное давление водяного пара над раствором, что способствует переходу воды из жидкой фазы в паровую. Влияние удельного расхода отдувочного газа на регенерацию триэтиленгликоля показано на рис. П1.12 [14]. Как видно из рисунка, более высокая эффективность регенерации обеспечивается при подаче газа непосредственно в низ десорбера. Количество отдувочного газа определяют по уравнению Кремсера, которое широко используется для расчета процессов абсорбции и десорбции. [c.127]

    Водная абсорбция. В производстве азотной кислоты окислы азота поглощают водой из газов, образующихся при окислении аммиака. В этих газах окислы азота присутствуют в виде окиси азота N0, двуокиси азота NOj, трехокиси азота N2O3 и четырех-окиси азота N3O4. Находящаяся иногда в газах в небольших количествах закись азота N,0 не оказывает заметного влияния иа поглощение. Трехокись азота присутствует в газах в заметных количествах лишь при низких температурах и значительных давлениях обычно ее содержанием можно пренебречь. [c.74]

    Влияние давления. Из уравнения Nur=ARei"(Prr)" следует, что Рг пропорционален величине Di" 7pr- Так как обратно пропорционален общему давлению Р (стр. 95), а рг прямо пропорциональна Р, то Рг обратно пропорционален Р (при постоянной массовой скорости). Отсюда следует, что коэффициент массоотдачи Рр тоже обратно пропорционален Р, а коэффициент Ру не зависит от Р. Указанная зависимость Р от давления подтверждена экспериментально в опытах по абсорбции при Р от 1 до 14 бар [71] и в опытах по возгонке нафталина при Р=0,26—1 бар 1551. [c.121]

    Коэффициент Г енри растворенного в жидкости газа — это характеристика растворимости, которая не искажается влиянием отклонения растворяемых газов от идеальных и присутствием в жидкости растворенного газа. В общем случае коэффициент Г енри зависит от гидростатического давления, оказываемого на жидкость. При повышенных давлениях вычисление коэффициента Генри сопряжено с рядом сложностей. Лишь в условиях низких давлений, при которых обычно отклонение газов от идеальных несущественно и влиянием гидростатического давления и содержанием растворенного газа можно пренебречь, коэффициент Г енри определяется по следующим уравнениям через величины /V или коэффициент абсорбции Куенена [c.23]

    Когда селективность растворителя недостаточна, то для уменьшения потерь разделяемых газов и получения их в чистом виде используется промежуточная десорбция с рециркуляцией десорбированных газов. Однако это связано с дополнительным расходом электроэнергии и усложнением технологической схемы. Рециркуляция газов промежуточной десорбции целесообразна лишь при физн-ческой абсорбции, когда изменение парциального давления газов не оказывает существенного влияния на соотношение жидкость — газ. [c.48]


Смотреть страницы где упоминается термин Давление, влияние его на абсорбцию: [c.92]    [c.242]    [c.105]    [c.157]    [c.461]    [c.236]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбция окислов азота влияние давления

Влияние линейной скорости газа и давления на скорость абсорбции окислов азота

Влияние температуры и давления на процесс абсорбции

Давление при абсорбции

Давление, влияние его на абсорбцию бензина парофазного крекинга

Давление, влияние его на абсорбцию бутана

Давление, влияние его на абсорбцию диолефинов

Давление, влияние его на абсорбцию метана

Давление, влияние его на абсорбцию олефинов

Давление, влияние его на абсорбцию олефинов с ароматическими углеводородами

Давление, влияние его на абсорбцию олефинов серной кислотой

Давление, влияние его на абсорбцию пентана

Давление, влияние его на абсорбцию пропана

Давление, влияние его на абсорбцию с фенолами

Давление, влияние его на абсорбцию углеводородов

Давление, влияние его на абсорбцию циклогексена

Давление, влияние его на абсорбцию этан-пропановой смеси

Давление, влияние его на абсорбцию этана

Давление, влияние его на абсорбцию этилена



© 2025 chem21.info Реклама на сайте