Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перекиси определение кислорода в них

    В литературе встречаются все такого рода обозначения в зависимости от привычки того или иного автора или желания его подчеркнуть известное явление. Пожалуй, наименьшую путаницу дают такие обозначения, как система перекись водорода—кислород или система вода—пе[)екись водорода , но можно также использовать и любое другое обозначение для указания направления реакции. Направление, в котором пишутся реакции на электродах, и знаки, присваиваемые потенциалам, являются условными мы придерживаемся системы, принятой Латимером (98]. В книге этого автора имеются и другие необходимые определения, например определение термина стандартный , рассматриваются также и теоретические аспекты. [c.216]


    Определение перекиси водорода сводится, по существу, к определению кислорода. Перекись окисляют сильными окислителями, в частности перманганатом, и проводят определение по току восстановления кислорода на платиновом электроде [7—9]. [c.187]

    Учебник Введение к полному изучению органической химии открывается главой Общие понятия , в которой автор прежде всего подводит читателя к определению предмета органической химии. А. М. Бутлеров показывает при этом несостоятельность виталистических представлений, обосновывавших выделение органической химии особым происхождением органических веществ. Он отмечает далее, что отличительным признаком органических веществ не может служить и их легкая изменяемость органическое вещество нафталин устойчиво при температуре красного каления, а неорганическая перекись водорода пли бертолетова соль ра зла-гаются при небольшом повышении температуры. Между органическими и неорганическими веществами нельзя провести и резкой грани в составе хотя чаще всего в органических соединениях встречаются углерод, водород, кислород, азот, но в них можно встретить также галогены, серу, фосфор, мышьяк, ртуть, олово, свинец. Такие факты заставляют предполагать, — пишет А. М. Бутлеров, — что все элементы способны находиться в составе органических веществ . В этих его словах содержится предвидение грядущего бурного развития химии элементоорганических соединений. Рассмотрев и отбросив критерии происхождения, свойств и состава, А. М. Бутлеров логически подводит читателя к выводу, что органическая химия — это химия углеродистых соединений. [c.19]

    Перборат, содержащий псрекись натрия, не пригоден для медицинских целей. Анализ на перекись натрия производят путем, определения потери при прокаливании, которая для нормального препарата с 10,4% активного кислорода составляет 56—57%, [c.455]

    При определении макроколичеств молибдена получают удовлетворительные результаты несмотря на то, что при встряхивании металлической ртути с раствором соляной кислоты в присутствии кислорода воздуха (и в отсутствие соединений молибдена) образуются значительные количества перекиси водорода [1117]. Дело в том, что когда в растворе находится соединение молибдена, то образовавшаяся перекись водорода быстро разлагается каталитически. Весь молибден находится в пятивалентном состоянии. Однако при определении микроколичеств молибдена --0,005 г) необходимо проводить восстановление в атмосфере инертного газа, чтобы исключить влияние кислорода воздуха и образование перекиси водорода. [c.191]


    Медь даже в небольших количествах очень сильно мешает определению молибдена. (717, 1117]. Для него получают слишком низкие результаты. Медленная реакция аутоокисления пятивалентного молибдена кислородом воздуха резко ускоряется в присутствии меди как катализатора. Предполагается, что при этой реакции образуется перекись водорода в качестве промежуточного продукта. Когда раствор соединения пятивалентного молибдена, полученного в ртутном редукторе, фильтруют в присутствии воздуха, то происходит окисление следовых количеств ИОНОВ одновалентной меди кислородом с образованием перекиси водорода, которая затем окисляет некоторое количество пятивалентного молибдена. Вследствие протекания этой реакции для молибдена получают низкие результаты. В то же время при определенных условиях (1Л НС1) пятивалентный молибден спо собен восстанавливать медь до одновалентного состояния. [c.191]

    При окислении пропана и этана в определенных условиях можно получить перекись водорода. Так, в результате окисления пропана кислородом в соотношении 9 1 при 470°С и длительности реакции 4—5 сек с последующим сильным охлаждением газов образуется конденсат, в 1 л которого содержится 13,2 г активного кислорода — 30% за счет перекисей и 70% за счет перекиси водорода. [c.174]

    Однако не все известные реакции на перекисный кислород могут ыть использованы для качественного и количественного определения активного кислорода в органических перекисях. Так, например, титановая и, повидимому, ванадиевая кислоты специфичны только для перекиси водорода, а с органическими перекисями они реагируют только, поскольку последние способны образовать перекись водорода (расщепляясь под влиянием воды или серной кислоты, присутствующей в реагенте). [c.74]

    Перекись водорода далее по реакции Фентона (стр. 71) дегидрирует определенное количество винной кислоты до диоксималеиновой кислоты. Последняя восстанавливает ионы железа (III) обратно до ионов железа (II) , которые вступают в комплекс с вновь образующейся диоксивинной кислотой. Комплекс железа (II) с диоксивинной кислотой может снова образовывать с кислородом перекись водорода, причем, как и в случае реакции Фентона, вслед за этим могут происходить цепные реакции. Катализ удается провести только в кислой среде, так как в щелочной он затруднен вследствие каталазного действия ионов железа. Действие добавленного комплексообразователя, без сомнения, основывается на большей реакционной способности комплексов железа. [c.78]

    Был поставлен ряд опытов с целью прямого измерения электродных потенциалов перекиси водорода и выяснения точных реакций, определяющих эти потенциалы [100]. В значрпельиой мере эти исследования были посвящепы изучению влияния природы электрода и обработки его поверхности на потенциал, который он принимает в растворе перекиси водорода. Изучалось также влияние изменения концентрации перекиси водорода и водородных ионов, а также присутствия добавок. Пожалуй, наиболее цепная работа в этой области принадлежит Борнеману [101]. Этот автор исходил из гипотезы, что наиболее положительный потенциал по отношению к кислородному электроду [т. е. реакции (47)], который может быть измерен в перекиси водорода и который подчиняется надлежащей зависимости от концентрации, ближе всего подходит к значению потенциала системы перекись водорода—кислород [т. е. реакции (46)]. Наиболее подходящим электродом оказалась платина, причем был разработан способ химической и электролитической обработки, которая за счет изменения каталитической активности поверхности сообщала ей наиболее положительный и воспроизводимый статический потенциал в разбавленных растворах перекиси водорода (однонормальных по кислоте). Результаты этой работы при экстраполировании к одномолярной перекиси водорода дают потенциал—0,69 в. Борнеман вывел из этой величины и значения — 0,63 е, определенного раньше для потенциала образования перекиси водорода на электроде, насыщенном кислородом, среднее значение Е = —0,66 0,03 в для потенциала системы перекись водорода — кислород. Суммирование с реакцией (47) дает — 1,80 в для потенциала системы вода — перекись водорода. Учитывая экспериментальные трудности, получение такого результата можно считать значительным достижением. [c.217]

    Харт и Фильден [33] провели определение таких типичных акцепторов гидратированных электронов, как ацетон, закись азота, перекись водорода, кислород и тимин в области их концентрации от 10 до 10" М. Константы ско- [c.284]

    Молекулы состоят из атомов. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ — из различных атомов. Атомы входят в состав любой молекулы данного индивидуального вещества в строго определенном соотношении. Так, при комнатной температуре гелий — это совокупность атомов гелия (в данном случае молекула состоит из одного атома), кислород—это совокупность молекул О2, озон — Оз, молекула воды имеет формулу Н2О, перекись водорода — Н2О2 и т. д. [c.8]


    И8) Кроме надкислот были описаны перекиси серы. При действии тлеющего электрического разряда на сильно охлаждаемую смесь SO2 с большим избытком кислорода образуется белое кристаллическое вещество, отвечающее формуле SO4 (молекулярный вес определен по понижению точки замерзания H2SO4). При 3°С оно плавится и с частичным отщеплением кислорода переходит в маслянистую жидкость состава S2O7, затвердевающую при О °С. Водой SO4 разлагается с отщеплением кислорода лишь медленно, причем ни мононадсерная кислота, ни перекись водорода не [c.342]

    Бесцветный в кристаллическом состоянии гексафенилэтан при растворении в неполярных растворителях, таких, как бензол, образует желтый раствор. Растворенный гексафенилэтан легко-реагирует с кислородом воздуха, образуя перекись трифенилметила, и с иодом, давая иодистый трифенилметил. Кроме характерной окраски этот раствор обладает парамагнетизмом, т. е. способен определенным образом вести себя в магнитном поле, что характерно для соединений, имеющих неспаренные электроны. Соединения, имеющие только спаренные электроны,, диамагнитны, т. е. не способны к подобному взаимодействию с магнитным полем. Эти особенности растворов гексафенилэтана были интерпретированы, исходя из предположения о л иссоциа-ции соединения на радикалы трифенилметила  [c.277]

    Согласно этому определению окислителями могут служить следующие сильноэлектрофильные реагенты азотная кислота, кислород и перекисные соединения (перекись водорода, перекиси металлов, неорганические и органические надкислоты), сера, двуокись селена, хлор, бром, кислородные кислохы галогенов — гипохлориты и гипобромиты, хлорная кислота, йодная кислота, соединения металлов в высших степенях окисления [например, соединения железа (III), двуокись марганца, перманганат калия, хромовая кислота и ее ангидрид, двуокись свинца, тетраацетат свинца]. [c.7]

    Фишер и Ринге получил перекись подорода при тихом разряде п трубке, заполненной смесью подяных паров и кислорода. В трубке поддерживалась определенная температура (130"), благодари чему предотвращалась конденсация ti аров поды и таким образом не допускалось нарушение изоляции. Количества перекиси были весьма незначительны ряст пор содержал лишь [c.43]

    Интерес представляет также способ, согласно которому для получения перекисных соединений применяется как катод-ний, так и анодный процесс. Благодаря двойному использованию тока, количество электричества, затрачиваемое на получение определенного количества активного кислорода, умень-и1астся примерно вдвое, с большим эффектом используется аппаратура, однако напряжение на ванне при этом также возрастает вдвое, а именно до 3,7 е. В анодное пространство электролизера, разделешюю керамиковой диафрагмой, вводят раствор сульфата аммония с серной кислотой, в катодное — 0,П%-ную серную кислоту, через которую пропускают сильный ток кислорода. При анодной плотности тока 0,02 а/см и катодной 0,04 а см в анодном пространстве с платиновым анодом получают персульфат аммония, в катодном — с амальгамированным золотым катодом - - перекись водорода. [c.145]

    Определение перекиси водорода в присутствии персульфата. Хотя персульфат не реагирует с перманганатом, все же нельз непосредственно производить титрование перманганатом перекио водорода в присутствий персульфатов, так как перекись водородг в процессе титрования может реагировать с персульфатом. Поэтому сперва при помощи сульфата железа и перманганата определяют иесь активный кислород. Затем я отдельной пробе титруют перекись водорода перманганатом калия и там же определяют персульфат при помощи сернокислого же.леза и перманганата калия. Из этих трех определений вычисляют содержа- вйе Н2О2. [c.460]

    Согласно этой теории, окисление тех соединений, которых структура и наличие определенных функциональных групп делает способными к окислению их свободным кислородом, протекает через стадию промежуточного образования нестойких и очень реакционноспособных перекисей с активным кислородом. Такие перекиси для соединения А будем обозначать Л [Оа]. По Муре и Дюфрессу, такая первая ступень соединения А с молекулой кисло-рода образуется без потери энергии или падения потенциала, но часто с повышением потенциала. Обладая различными уровнями энергии, не все молекулы Л и О2 участвуют в образовании такой первичной перекиси, но только те немногие из них, которых энергетический уровень выше энергии активирования ( omplement ritique d energie). При этом первичная перекись образуется за счет энергии окружающей массы без передачи системе какой-либо внешней энергии. Молекулы первичной перекиси Л [Оа], если они не диссоциируют на составные части, в дальнейшем эволюционируют в направлении стойких форм, где кислород уже не имеет тех свойств, которые отличают первичные перекиси, где он переходит в неактивное состояние. [c.473]

    Кроме методов определения перекисей, основанных на окислении солей двухвалентного железа или иодистых солей, значительное внимание было уделено методу, основанному на окислении хлористого олова. Пехман и Ванино применили этот метод для определения фталоилперекиси. Он был использован также для определения активного кислорода тетралил- и цикло-гексенилгидроперекисей в растворе нефтепродуктов . Анализ проводился следующим образом. Пробу, содержащую перекись, нагревали с избытком хлористого олова в 6 п. соляной кислоте при 95° С, после чего оттитровывали оставшееся хлористое олово раствором хлорного железа. Полученные данные составили 95—97% от теоретических позднее было найдено, что точность этого метода не превышает [c.433]

    Анаэробное дыхание. При анаэробном дыхании у микроорганизмов происходят различные биохимические и окислительные процессы органических веществ, основанные на дегидрировании (отнятии водорода) без участия свободного кислорода. Акцептором водорода являются промежуточные продукты процесса окисления субстрата (например, органические молекулы, имеющие ненасыщенные связи). Этот процесс происходит по следующей схеме 1) окисляемый субстрат — Нг + фермент дегидраза = окисленный субстрат + дегидраза — Нг 2) дегидраза — Нг -1- акцептор водорода (органическая молекула) =дегидраза-I-акцептор — Нг. При таком окислении выделяется определенное количество энергии, которое необходимо для жизнедеятельности анаэробных микробов. Последние не могут использовать для окисления органических соединений молекулярный кислород, так как у них дыхательными ферментами являются только дегидразы, а для использования молекулярного кислорода микроорганизмы должны иметь и другие ферменты. Например, несмотря на наличие кислорода в среде, молочнокислые бактерии (В. Ое1Ь-гйск ) совершенно не могут им пользоваться, так как у них нет фермента каталазы, которая разлагала бы перекись водорода, образующуюся в процессах дыхания и являющуюся ядом для микробов, и пероксидазы, которая вовлекала бы перекись водорода в окислительный процесс. [c.528]

    Ход определения. 20 жл испытуемой воды вливают в стакан вместимостью 100 мл и кипятят для удаления свободного аммиака и сероводорода затем раствор охлаждают, добавляют 3 мл перекиси водорода и оставляют на холоду, периодически взбалтывая содержимое стакана до прекращения выделения пузырьков. Затем раствор нагревают на водяной бане до полного прекращения выделения пузырьков кислорода. При полном окислении раствора бурый цвет его исчезает. Производят пробу на полноту окисления роданистых соединений 2 капли раствора на фарфоровой пластинке (крышке тигля или чашке) подкисляют каплей 0,1-н. раствора соляной кислоты и добавляют 1 каплю раствора РеС1з или ЫН4ре (804)2. В случае появления красного окрашивания продолжают окислять, добавляя перекись водорода и нагревая. [c.216]

    Обсуждая этапы реакции окисления ортофосфористой кислоты в фосфорную кислоту с помощью перекиси водорода, которая аналогична реакции Фентона окисления винной кислоты над солями двухвалентного железа как катализаторами, Нерц и Вагнер [34] высказали предположение, что кислород передается от перекиси водорода к ортофосфористой кислоте и что ион двухвалентного железа участвует в повторяющейся произвольное число раз цепи реакций, проходя соответствующие промежуточные степени окисления железа, причем ион двухвалентного железа регенерируется. Обрыв цеш вызывается превращением иона двухвалентного железа или любого из его промежуточных продуктов в ион трехвалентного железа, который не обладает способностью передавать кислород. Ход реакции можно проследить, определяя изменение отношения количества превращенной перекиси водорода к соли двухвалентного железа при изменении концентрации отдельных компонентов реакции. В отсутствии воздуха наблюдалось, что количество превращенной перекиси водорода увеличивается пропорционально добавленному количеству соли двухвалентного железа и приближается при больших количествах ее к определенному пределу. Перекись водорода, оказывается, играет положительную роль в обрыве цепи. Быстрое введение раствора соли двухвалентного железа вызывает увеличение концентрации носителей цепи и ведет к их взаимному разрушению. Кроме тогс установлено, что воздух или кислород, присутствуя в реакционной массе, вызывает главным образом обрыв цепи реакций. [c.574]

    Перекись бензоила можно определять в мономерном и полимерном метилметакрилате. Прямое определение перекиси в мономере проводят в смеси, состоящей из 25% мономера, 50% метанола и 25% воды и содержащей Li l в качестве фона [23]. Для определения перекиси бензоила в полиметилметакрилате или в эмульсии полимера [23, 24] образец весом 1,5—1,8 г растворяют в 20 мл бензола и к раствору приливают метанол до полного осаждения полимера. Затем добавляют 2 г NH4NO3 и 1 мл 0,2%-ного метилового красного и раствор разбавляют метанолом до 100 мл. Через 20 мин отбирают пробу объемом 10 мл, удаляют кислород и снимают полярограмму в интервале от +0,45 до —0,2 в. [c.390]

    Имеются указания на образование перекиси водорода при восстановлении атмосферного кислорода. Бердикутверждает, что перекись образуется только в том случае, когда вместо кислоты в цинковом редукторе в качестве растворителя используется вода. Действительно, Лендел и Ноулз показали, что перекись полностью разрушается при восстановлении кислорода цинком в кислом растворе. С другой стороны, Силл и Петерсон обнаруживали образование перекиси водорода при быстром пропускании пузырьков воздуха через колонку с сильно амальгамированным цинком. При использовании свинцового редуктора образуются значительно большие количества перекиси. Следы перекиси водорода были обнаружены также при использовании серебряного редуктора в присутствии воздуха. При определении малых количеств железа нужно особенно следить за тем, чтобы растворенный воздух был предварительно удален, что осуществляется пропусканием водорода или двуокиси углерода 5. [c.386]

    Все полученные разными путями соединения октагидра-та переки си натрия были подвергнуты термографическому исследованию. Кривые нагревания их тождественны (рис. 4). На кривой нагревания имеется два эндотермических эффекта первый — в интервале температур 50—70° С — соответствует разложению октагидрата, идущего с полным выделением активного кислорода и образованием концентрированного раствора гидрата окиси натрия второй эффект, в интервале температур 110—130° С, соответствует процессу выкипания раствора гидрата окиси. Было проведено определение удельного веса октагидрата перекиси натрия в пикнометре со спиртом при 0° С. Он оказался равным 1,56, что близко к данным В. П. Котова [31]. [c.132]

    Она появлялась не во всех опытах окисления эфира. Отсутствие этого вещества в количестве, достаточном для детального анализа, не позволило исследовать его подробно. Удалось только испытать его на некоторые качественные реакции и определить содержание активного кислорода. Эта жидкость имеет резкий запах, свойственный перекисным соединениям (не пахнет изопропиловым эфиром), и дает характерные для перекисей реакции, интенсивно (но не сразу) выделяя иод из раствора иодистого калия и окисляя раствор титановой кислоты реакция на перекись водорода с хромовой кислотой отрицательна. Содержание активного кислорода отвечает расходу 15,6 мл 0,1 N раствора РеС1з на 0,1 г перекиси при станнометрическом определении. [c.136]

    Остаток после отгонки эфира в вакууме от продукта первого опыта (окисление эфира при 50° без облучения) и откачки в течение 1,5 часа при 30° и 1 мм рт. ст. по виду не отличался от соответствующих продуктов, получавшихся нами при окислении эфира в прежних условиях (легкой перекиси в дестиллате не получено). / = 1,055 По = 1,4380 мол. вес, определенный криоскопическим путем в бензоле, —169 содержание активного кислорода отвечает расходу 38,3 мл 0,1 N раствора РеС1з на миллимоль (станнометрическим методом). Он легко растворяется в органических растворителях и смешивается с водой, гидролитически разлагаясь ею на перекись водорода и ацетон (количественно определены и охарактеризованы как выше Н2О2—качественной реакцией с хромовой кислотой, ацетон —температурой плавления п-нитрофенилгидразона и пробой смешения с синтетически -полученным л-нитрофенилгидразоном ацетона). [c.138]

    После вакуумной разгонки осталась бесцветная прозрачная жидкость, которая откачивалась в течение 1,5 часа при 30° С и 1 мм рт. ст. (перекиси в дестиллате не было получено) и непосредственно после этого исследовалась (выход 5,06 г). Она интенсивно выделяла иод из раствора KJ. Коэфициент рефракции ее оказался тем же, что у двухатомной перекиси изопропилового эфира (По = 1,4368), остальные же физические, а также химические свойства резко отличались. Она обладала меньшим удельным весом ( 4 = 0,947) и молекулярным весом (при криоскопическом определении в бензоле М = 149), значительно более низким содержанием активного кислорода (10,5 мл 0,1 N раствора РеС1з на 0,1 г или 15,8мл на миллимоль вещества), не смешивалась с водой и в пламени горелки сгорала спокойно, без вспышки, сначала синеватым, затем коптящим пламенем. Полученная жидкость давала положительную реакцию на перекись водорода с хромовой кислотой, что связано, повидимому, со способностью ее легко отщеплять перекись водорода. [c.138]

    Перекись н-бутилбензола (1-фенилбутангидропероксид-1) получена Ивановым, Савиновой и Жаховской фотоокислением н-бутилбензола при 80°. Элементарный анализ, данные определения молекулярного веса и активного кислорода и качественные реакции подтверждают формулу С10Н14О2 и присутствие гидроперекисной группы. [c.146]

    Циклогексен, оставленный в контакте с кислородом на продолжительное время, дает небольшие лоличества перекиси циклогексена Это вещество, являющееся подвижной жидкостью, кипящей при 54—56° при 0,5 мт, обладает остры.м запахом и служит энергичным окислителем. Определения. молекулярного веса показывают, что эта перекись мономолекулярна, а сиропообразный остаток от перегонки перекиси, и. леющий такой же состав, как перекись, димерен. Этот факт повидимому указывает на то, чго две молекулы перекиси, соединяются, образуя новое вещество со свойствами перекиси. Определение содержания активного кислорода димерной формы показало, что она содержит только одну перекисную группу. [c.962]


Смотреть страницы где упоминается термин Перекиси определение кислорода в них: [c.16]    [c.34]    [c.35]    [c.322]    [c.454]    [c.81]    [c.54]    [c.90]    [c.376]    [c.90]    [c.376]    [c.433]    [c.81]    [c.256]    [c.49]    [c.16]    [c.85]    [c.322]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.969 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород определение



© 2025 chem21.info Реклама на сайте