Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрирование платиновых металлов

    Особое место занимает так называемый пробирный метод концентрирования, используемый при определении благородных металлов в различных объектах, например в рудах. В нем объединено разложение анализируемого объекта и концентрирование определяемых элементов. Существо этого очень старого приема состоит в том, что анализируемый образец сплавляют со свинцом, в расплав свинца переходит золото и большинство платиновых металлов. Королек застывшего после плавки свинца и есть концентрат его извлекают и после некоторых промежуточных операций анали- [c.89]


    Концентрирование платиновых металлов при помощи тиомочевины ]63]. Единственным реагентом, способным полностью извлечь иридий наряду с другими платиновыми металлами из растворов, содержащих преобладающее количество неблагородных металлов, является тиомочевина. Осмий также выделяется этим реагентом, но полнота извлечения его не изучалась. [c.254]

    Реакции замещения лигандов в координационных соединениях платиновых металлов протекают медленно, что затрудняет концентрирование, выделение и определение благородных металлов, в частности, родия. Все реакции базирующиеся на образовании комплексов и используемые в технологии и аначизе платиновых металлов, протекают во времени и нагревании. В работах [1-3] показана перспективность использования роданида, тиомочевины, цитрата для извлечения платиновых металлов. Из литературы [4,5] известно, что добавление в сульфатные электролиты родия сульфаминовой кислоты стабилизирует раствор, а сульфосалициловая кислота является лигандом -комплексообразователем, способным образовывать с ионами металлов хелатные структуры, устойчивость которых обычно больше, чем монодентатных комплексов [6]. В работе использовапи метод классической, тает- и переменнотоковой полярографии и метод кислотно-основного титрования. [c.89]

    Только платина и иридий вполне стойки к действию азотной и концентрированной серной кислот, остальные платиновые металлы медленно с ними реагируют (в виде порошка быстрее). Все плати новые металлы при нагревании реагируют с хлором. Жидкий бром медленно взаимодействует с платиной уже при комнатной темпе ратуре. При нагревании платиновые металлы реагируют с серой, фосфором, кремнием и другими элементными веществами. [c.575]

    Советский Союз обладает богатыми природными ресурсами благородных металлов, в частности металлов платиновой группы. Производство этих металлов расширяется. Важнейшей задачей является повышение степени извлечения этих элементов в процессе переработки руд, что невозможно без хорошо налаженного химико-аналитического контроля производства. В настоящее время для этой цели используют некоторые современные физические методы анализа — атомно-абсорбционные, радиоактивационные, рентгенофлуоресцентные. Однако наиболее сложные полные анализы материалов осуществляют в основном химическими методами, пробирно-спектральным способом, прямым эмиссионно-спектральным методом (в некоторых особых вариантах его). Для концентрирования платиновых металлов применяют осаждение тиокарбамидом. Основные трудности заключаются в отсутствии надежных методов анализа бедных платиновыми металлами производственных продуктов, а также руд, например хороших и разнообразных методов онределения очень малых количеств иридия. Применяющиеся методы полного анализа, как правило, длительны и трудоемки. Невелика точность ряда определений, особенно малых количеств платиновых металлов. Отсюда вытекают и задачи исследователей. Успехи и проблемы аналитической химии элементов платиновой группы, серебра и золота периодически обсуждаются на совещаниях по химии, технологии и анализу благородных металлов. Так, X совещание состоялось в Новосибирске в июле 1976 г. [c.137]


    Важной целью исследований является создание методов концентрирования благородных металлов. Так, существенна разработка методов группового концентрирования всех металлов платиновой группы (или всех благородных) с отделением их от цветных. Пока таких методов мало, имеющиеся длительны и довольно сложны, как, например, метод, основанный на осаждении тиокарб-амидом. Перспективы здесь за использованием сорбционных методов, экстракции, соосаждения. Часто оказываются необходимыми и способы выделения индивидуальных платиновых металлов, другими словами, методы разделения смесей этих металлов. Такое выделение обычно требуется при фотометрическом, радиоактива-ционном, кинетическом определении элементов платиновой группы. Для этой цели используют экстракцию, бумажную и тонкослойную хроматографию и другие приемы. [c.136]

    КОНЦЕНТРИРОВАНИЕ ПЛАТИНОВЫХ МЕТАЛЛОВ И ЗОЛОТА И ИХ ОТДЕЛЕНИЕ ОТ СОПУТСТВУЮЩИХ ЭЛЕМЕНТОВ [c.250]

    Исходя из этого, для концентрирования платиновых металлов из азотнокислых и сернокислых растворов рекомендованы аниониты, содержащие ароматический азот или фрагменты этилендиамина (для образования хелатного комплекса) АН-31, ВП-1П, АН-511 и др. Указанные иониты испытаны на производственных растворах, полученных от растворения золото-серебряного сплава (153 А 2,4 Си 0,12 Рс1), а также после азотнокислой (азотно-сернокислой) обработки электронного лома (г/дм 15 Си 4,5 Ре 2,4 N1 0,6 Ag 0,09 Р(1). В ходе испытаний получены фильтраты, содержащие менее 0,001 г/дм Рс1, что соответствует степени извлечения >99%. Как и ожидалось, количество сопутствующих металлов в фазе ионита составляло не более 1% к поглощенному палладию. Это обстоятельство позволяет в последующем вьщелить палладий в виде чистого металла или его соединений. [c.125]

    Сорбционно-рентгенофлуоресцентный метод — концентрирование (платиновых металлов) путем сорбции на полимерном тиоэфире с последующим исследованием рентгенофлуоресцентным методом [198]. [c.83]

    Важное значение имеет и аналитическая химия благородных металлов, особенно платиновых. Она весьма сложна и развивается не так интенсивно, как хотелось бы. Разработка химических методов выделения, концентрирования и определения платиновых металлов требует обширных и надежных данных об их состоянии и реакционной способности в зависимости от условий. Хотя за многие десятилетия накоплен огромный материал о степенях окисления платиновых металлов, их реакциях гидролиза и комплексообразования, имеющихся сведений недостаточно. Поэтому изучение состояния и поведения элементов платиновой группы в разнообразных средах, особенно в растворах различного состава, остается актуальной задачей. К числу частных, но важных задач можно отнести нахождение новых способов преодоления кинетической [c.135]

    Содержимое тигля — смесь родия(П1) и палладия(П) — выпаривают с 3 каплями концентрированной хлороводородной кислоты на водяной бане до получения влажных солей. (Не пересушивать ) Образовавшиеся комплексные хлориды платиновых металлов растворяют в 0,2 мл 2 Ai раствора НС1. [c.214]

    П а л л а д и й — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рё + %02 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем платина. Характерные особенности палладия — устойчивость в степени окисления +2, способность поглощать водород (до 800 объемов на 1 объем Рс1). При поглощении водорода объем металла заметно увеличивается, он становится более хрупким и ломким. Палладий широко используется как катализатор целого ряда химических реакций (его наносят на фарфор, асбест или другие носители). Сплавы палладия применяются в электротехнике, радиотехнике и автоматике как электроэмиссионные и другие материалы. Так, сплавы палладия с серебром идут для изготовления электрических контактов сплавы палладия с золотом, платиной и родием используются в термопарах и терморегуляторах. [c.299]

    В ряду напряжений никель расположен до водорода, палладий и платина —после водорода. По отношению к кислотам и щелочам никель ведет себя подобно железу и кобальту. В отличие от остальных платиновых металлов палладий (подобно серебру) довольно легко растворяется в концентрированной азотной кислоте и горячей концентрированной серной кислоте, а платина (подобно золоту) растворяется при нагревании лишь в царской водке  [c.646]

    В химическом отношении палладий отличается от других платиновых металлов значительно большей активностью. При нагревании докрасна он соединяется с кислородом, образуя оксид PdO, растворяется в азотной кислоте, горячей концентрированной серной кислоте и в царской водке. [c.532]

    Пробирный анализ —самый распространенный метод, применяемый лри определении благородных металлов в рудах и продуктах металлургического передела (4, 6—12]. Этот метод позволяет брать для анализа большие навески (1до2 г] и относительно легко и быстро отделять небольшие количества платиновых металлов и золота от породы и примесей. Метод основа на плавке исследуемых материалов в тиглях из огнеупорной глины с сухими реактивами, содержащими металл— коллектор благородных металлов и флюсы, состав которых меняется в зависимости от состава исходного материала. В качестве коллекторов золота, платины и палладия используютчаще всего сви- нец и серебро [12—16]. Коллектирование родия, иридия, рутения и осмия свинцом и серебром представляет значительно ббльшие трудности [10, 17—22], так как эти металлы легко образуют устойчивые при высокой температуре окислы (а рутений и осмий—летучие окислы), а также соли, многие из которых разлагаются только при высокой температуре. Однако родий и иридий довольно легко образуют сплавы с платиной и палладием, что облегчает их сплавление со свинцом и удерживание в сплаве с серебром [13], Для концентрирования платиновых металлов применяют также плавки навесок бедных материалов с ферроникелем [23—30], медью [31, 32] и оловом [33]. [c.251]


    Кислоты, в которых окислителем является ион водорода, на эти металлы не действуют, так как их электродные потенциалы лежат в положительной области. Окисляющие кислоты И смеси кислот действуют на платиновые металлы. Рутений и осмий реагируют с царской водкой , а осмий в тонкораздробленном состоянии растворяется даже в концентрированной азотной кислоте  [c.382]

    Переведение платиновых металлов в раствор при анализе и переработке сложных по составу материалов и концентратов остается одним из трудоемких и экологически опасных этапов. Эта операция, как правило, включает окислительное спекание или сплавление и последующую обработку спеков царской водкой, концентрированными серной и азотной кислотами при нагревании, хлорированием в соляной кислоте и др. Наибольшие трудности возникают при переведении в раствор материалов, содержащих родий, иридий, рутений и осмий. [c.88]

    Светло-серый металл семейства платины относительно мягкий, ковкий. Наименее плотный, самый низкоплавкий и наиболее реакционноспособный из всех платиновых металлов. В особых условиях образует коллоидный палладий и палладиевую чернь (тонкодисперсный палладий). Катион Pd в растворе имеет коричневую окраску. Благородный металл не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака. Реагирует с концентрированными серной и азотной кислотами, царской водкой , галогенами, серой. Окисляется при сплавлении с гидросульфатом калия. Поглощает максимальное (среди металлов) количество Н2, причем окклюдированный водород находится в атомном состоянии насыщенный водородом металл загорается на воздухе. В природе находится в самородном виде (сплавы на основе платины). Получение см. 885 , 886 ", 888 .  [c.444]

Рис. 86. Аппаратура для концентрирования выделения металлов платиновой группы керамических материалов Рис. 86. Аппаратура для <a href="/info/1219293">концентрирования выделения</a> <a href="/info/555909">металлов платиновой группы</a> керамических материалов
    В аналитической практике широко используется концентрирование примесей из большого объема анализируемого раствора связыванием их в малорастворимые соединения. С другой стороны, в последнее время в полярографическом анализе начали применять концентрирование определяемого веш ества непосредственно на электроде с последующей регистрацией поляризационной кривой электрорастворения и определением концентрации соответствующих ионов в растворе по величине максимального тока электрорастворения. Подробно описано концентрирование ионов металлов в виде соответствующей амальгамы на стационарном ртутном электроде [1—12]. В ряде работ предлагается накапливать определяемое вещество в виде осадка металла на твердом платиновом [13—15] или графитовом [16—18] электроде. [c.185]

    В ряду напряжений никель расположен до водорода, палладий и платина — после водорода. По отношению к кислотам и щелочам никель ведет себя подобно железу и кобальту. В отличие от остальных платиновых металлов палладий (подобно серебру) довольно легко раст1юряется в концентрированной азотной кислоте и горячей кон- [c.607]

    Смесь концентрированных HNOз и НС1 (1 3), называемая царской водкой, растворяет золото и платиновые металлы (Рс1, Р1, [c.410]

    Сорбционные методы можно применять также для концентрирования, разделения и определения благородных металлов (серебра, золота, металлов платиновой группы — рутения, осмия, родия, иридия, палладия, платины), содержащихся в малых количествах в природных водах и в различных растворах. При этом происходит концентрирование определяемого металла из большого объема раствора в небольшой массе сорбента за счет сорбции соединений этого металла на сорбенте. Сорбентами служат органические полимеры, силикагели, химически модифицированные ионообменными или комгаексообразующими группами (четвертичными аммонийными и фосфониевыми основаниями, производными тиомочевины), привитыми на поверхности силикагеля. [c.236]

    По указанным выше причинам приведенные в этих таблицах данные, касающиеся влияния примесей, могут быть истолкованы по-разному. В некоторых случаях авторы методов проверяли влияние благородных и неблагородных металлов, входящих в состав природных материалов, а в других проверяли влияние металлов, выбранных произвольно. При определении платины или палладия в присутствии сравнительно малых количеств родия или иридия вал<ны сведения об их влиянии. То же самое можно сказать и о влиянии меди, никеля и железа. К сожалению, в большей части спектрофотометрических методов не проверено влияние свинца, который применяют при пробирном способе концентрирования платиновых металлов. Иногда прн разработке спектрофотометрического метода проверяют влияние большего числа примесей, чем это необходимо. Длинный список немешающих катионов не представляет ценности, поскольку многие из этих катионов редко сопутствуют платиновым металлам. Не представляет ценности также проверка влияния примесей без учета предшествующих определению стадий, а также способов растворения. Нужно надеяться, что авторы новых методик проверят влияние меди, никеля, железа, хрома, платиновых металлов, золота, серебра и свинца и приспособят новые спектрофотометрические методики для определения платиновых металлов в природных и промышленных продуктах. Тогда в них не будет излишних данных. [c.140]

    Растворение золота и платиновых металлов в царской водке становится термодинамически возможным благодаря комилексо-образованкю, а большая скорость реакции обеспечивается наличием в растворе хлора и хлористого нитрозила, активно взаимодействующих с этими металлами. Указанные металлы растворяются в концентрированной азотной -кислоте и в присутствии других комплексообразователей, но процесс протекает очень медленно. [c.410]

    Индийские исследователи [155] разработали схему последовательного концентрирования платиновых металлов с помощью ДФТМ для спектрофотометрического определения всех шести металлов. В разбавленном растворе соляной кислоты палладий и осмий образуют комплексы с ДФТМ при комнатной температуре, платина, родиа,и рутений — при нагревании. В горячем ацетатном буферном растворе реагируют Р1, КЬ, Йи, 1г. Состав соединений М Ь для Pd 1 2, Оз 1 2, НЬ, Ни, Гг 1 3 (ацетатная среда). Определены константы диссоциации комплексов. Все соединения, кроме соединения рутения, экстрагируются хлороформом, комплекс рутения извлекается метилизобутилкетоном. Предложены способы выделения и определения каждого платинового металла из их синтетической смеси. [c.40]

    Здесь предполагается, что платиновые металлы присутствуют в растворах в виде хлоридов, полученных действием царской водки на минералы и сплавы. Обработка бедных руд и металлургических продуктов заключается в концентрировании платиновых металлов, золота и серебра в свинцовый королек, который получают методом, аналогичным применяемому при исследовании руд золота и серебра сухим путем последний будет приведен в разд. VII (пробирный анализ) вместе с описанием химических методов, применяемых при обработке свинцового королька и выделении из него индивидуальных платиноидов. Анализ осмирида и тех сплавов платины, которые требуют специальных методов разложения, описывается в разд. VIII. [c.380]

    Смесь концентрированных кислот HNO3 и H I (1 3) называется царской водкой, она растворяет золото и платиновые металлы (Pd, Г1, Ое, Ru). Реакцию с золотом обычно записывают так  [c.410]

    Палладий — самый легкий из платиновых металлов, наиболее мягкий и ковкий. В химическом отношении он менее инертен, чем платина и другие платиновые металлы. При нагревании палладий окисляется кислородом Рс1 + /2О2 = Рс10. Он растворяется в азотной и горячей концентрированной серной кислотах. С царской водкой палладий реагирует более энергично, чем пла- [c.332]

    Если королек содержит платиновые металлы, анализ его хим. методами представляет сложный и длительный процесс. Получили распространение комбинир. методы анализа с использованием пробирного концентрирования, т.е. определение благородных металлов (в т. ч. Pt, Pd, Rh, Ir, Ru) B корольке или свинцовом сплаве (масса 0,1-2 г) методами эмиссионного спектрального, атомно-абсорбц., активац, фотометрич. анализа и др. Пределы обнаружения Au при этом достигают 0,005 г/т, Ag-0,1 г/т. [c.96]

    Для получения более концентрированных растворов хлората калия проводят электролиз при повышенных температурах, однако при использовании графитовых анодов наблюдается их усиленное разрушение. Поэтому в электролизерах для получения K IO3 ранее применяли преимущественно магнетитовые аноды или аноды из платиновых металлов. Даже в этих условиях концентрацию K IO3 в электролитических щелоках не увеличивают более 150—200 г/л, чтобы избежать кристаллизации твердой соли в охлаждаемых частях электролизеров, коммуникаций и арматуры. [c.409]

    Электролизер представляет собой стеклянный цилиндр 1 длиной 50 см и диаметром 12 см, иа 2/3 заполненный 30%-ным КОН. Цилиндр 1 плотно закрывается крышкой 4, сделанной из материала, устойчивого к действию щелочей и по возможности влаги. Катодом 7 служит полый никелевый цилиндр, укрепленный в крышке 4 тремя никелевыми проволоками или одной спиралью из прочной 2-мм никелевой проволоки. Ток подводится но проводам, закрепленным в крышке 4 клеммами. Анод 6 (сиираль или пластина) подвешен в колоколообразном расширении 3 внизу трубки 2 (диаметром 20 мм) иа никелевой проволоке, которая прикреплена к запаянному концу 5 трубки 2. С этой целью никелевую проволоку смачивают каплей белого сургучного лака и вставляют при нагревании в соответствующее место прибора (сужение). Сверху укрепляют на сургуче или на пицеине шайбу из корковой пробки. Трубку укрепляют в крышке, где имеется соответствующая прорезь (отверстие). Крышка должна быть плотно подогнана, чтобы внутрь прибора не попадала пыль. Разумеется, водород должен выделяться свободно. В боковую насадку трубки 2 помещают кусочки стеклянной ваты, чтобы предотвратить неребрасывание щелочи, а также асбест с Pt илн Pd для окисления избыточного водорода (о приготовлении такого асбеста см. гл. 30 Платиновые металлы ). Трубку вставляют в электрическую трубчатую печь 8 с температурой не выше 350—400 °С. Печь и промывалку 9 со стеклянной спиралью, опущенной в концентрированную H2SO4, прикрепляют к цилиндру 1 с помощью кольца держателя. [c.382]

    Определение при помощи метилового голубого [265]. Соединение экстрагируется на 88—98% хлорбензолом, хлороформом, смесью бензола с нитробензолом, кетонами и дихлорэтаном. Максимумы светопоглощения экстрактов лежат при 664—674 нм, 8 = (5,5—8,8)-10 . Оптимальная кислотность водной фазы — 0,1—Э H2SO4. Не мешают ионы Си, Hg(II), Zn, d, Со, Ni, Mn, r(III), Fe(III), Bi, Pb, Te(IV), Se(IV), 20—40-кратные количества платиновых металлов. Реагент применяют для концентрирования золота и его определения в воде и сплавах с платиновыми металлами. [c.157]

    Отличительным свойством азотной кислоты является ее большая окислительная способность, причем, в отличие от других кислот, восстановление молекул HNOз протекает кинетически легко. Ионы N0 в щелочной среде восстанавливаются и термодинамически и кинетически заметно хуже, чем в кислой. С концентрированной азотной кислотой реагируют почти все элементы периодической системы, за исключением благородных газов, золота, платины и еще четырех платиновых металлов, но палладий легко растворяется в азотной кислоте. Целый ряд металлов, в частности железо, хром, алюминий, пассивируются концентрированной азотной кислотой, но легко растворяются в разбавленной. [c.296]

    Как мягкие основания, серосодержащие экстрагенты образуют наиболее прочные связи с легкополяризуемыми ионами (меди, серебра, ртути, золота и платиновых металлов), относящимися к классу мягких кислот по классификации Пирсона. Длина и строение алкильного радикала оказывают существенное влияние на экстракционную способность серосодержащих экстрагентов. Удлинение и разветвление алюшьных радикалов обычно приводит к уменьшению Кг). Аналогичный, но еще более сильный эффект вызывает замена алкильных радикалов на фенильные. Образующиеся в органической фазе комплексы, как правило, кинетически инертны, и процесс реэкстракции затруднен. Соответственно сфера применения серосодержащих экстрагентов ограничена гругшовым концентрированием или групповым вьщелением халькофильных элементов [45]. [c.162]


Смотреть страницы где упоминается термин Концентрирование платиновых металлов: [c.19]    [c.158]    [c.356]    [c.96]    [c.440]    [c.114]    [c.440]    [c.232]    [c.152]   
Руководство по химическому анализу платиновых металлов и золота (1965) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Платиновые металлы



© 2024 chem21.info Реклама на сайте