Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг каталитический кинетика

    Поскольку с увеличением длительности работы катализатора внешняя поверхность его гранул покрывается слоем коксовых отложений и каталитическая активность этих участков резко снижается, в дальнейшем становится необходимым проникновение не-превраш,енных молекул сырья в более глубокие слои гранул катализатора. Другими словами, в связи с тем, что с увеличением длительности работы катализатора по сечению его гранулы послойно откладывается кокс, участки с повышенной каталитической активностью оказываются расположенными все дальше от поверхности гранулы. Поэтому при продолжительном крекинге для кинетики процесса все большее значение приобретает диффузия по порам катализатора молекул сырья к активным центрам и продуктов крекинга в свободный объем между гранулами катализатора. [c.114]


    При осуществлении химических процессов в нефтепереработке, таких, как пиролиз, каталитический крекинг, каталитический риформинг, алкилирование и другие, необходимо располагать данными о протекании химического процесса во времени, чтобы иметь возможность рассчитать требуемые параметры процесса и размеры аппаратуры для его проведения. Эти вопросы рассматривает так называемая макрокинетика (изучение химических реакций в больших объемах). Проведение реакции в аппарате значительного объема требует учета ряда факторов, которые обычно химическую кинетику не интересуют. [c.371]

    А. Дж. Гулли, У. П. Баллард. Гидрогенизационная очистка сырья для каталитического крекинга. Гидрирование как метод повышения крекируемости сырья и улучшения показателей последующего каталитического крекинга — в основном в результате изменения углеводородного состава сырьевых фракций. Реакции гидрирования и крекинга, их кинетика и устанавливающиеся равновесия. Расход водорода и глубина гидрирования. [c.391]

    Д. И. Орочко, А. В. Фрост [33], М. Ф. Нагиев, 3. Г. Петрова [36] изучали каталитический крекинг и кинетику распада цетана и узких фракций дестиллатных нефтепродуктов в широком диапазоне температур и глубин превращения. [c.100]

    Кинетика крекинга кумола на алюмосиликатном катализаторе. Каталитический синтез кетонов. [c.419]

    Кинетика каталитического крекинга рассматривается в работе Уилера [130]. Повышение давления увеличивает выход кокса и степень насыщенности бензина это сопровождается понижением его октанового числа. [c.343]

    Кинетика инициированного окисления прямогонного дизельного топлива, легкого газойля каталитического и термического крекинга, прошедших адсорбционную очистку [c.77]

    Несмотря на сложность реакций каталитического крекинга, кинетика превращения индивидуальны углеводородов во многих случаях описывается уравнением первого порядка вида йэф = i>o 1п (1 - X) — (и - 1) Л [c.108]

    Более точное описание кинетики каталитического крекинга нефтяных фракций достигается при использовании уравнений, учитывающих дезактивацию катализатора в ходе реакции. [c.109]

    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]


    В работах [52, 59, 60] указывается на небольшое увеличение активности единицы поверхности образцов, подвергнутых термопаровой обработке однако, по мнению большинства из авторов данных работ, это не свидетельствует об изменении фактической активности, а обусловлено меньшим влиянием внутренней диффузии у более крупнопористых образцов. Исследования кинетики крекинга кумола на образцах алюмосиликатного шарикового катализатора [61] показали, что после прокаливания удельная активность катализатора практически не изменяется, а после обработки паром 24 ч при 750 °С она уменьшается очень сильно. Относительные удельные активности для свежего, прокаленного при 900 °С и пропаренного при 750°С катализаторов оказались равными соответственно 0,66, 0,60 и 0,33. Это уменьшение удельной активности автор объясняет разрушением алюмосиликатных групп или соеди- нений, ответственных за каталитическую активность. [c.42]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    Кинетика каталитического крекинга, так же как и термического, приближенно описывается уравнением первого порядка (11.8). [c.67]

Рис. 22. Относительная эффективность антиокислителя ФЧ-16у (узкая фракция ФЧ-16) при оценке по кинетике поглощения кислорода [111] (бензин каталитического крекинга, 100 С) Рис. 22. <a href="/info/40931">Относительная эффективность</a> антиокислителя ФЧ-16у (<a href="/info/34021">узкая фракция</a> ФЧ-16) при оценке по <a href="/info/851690">кинетике поглощения кислорода</a> [111] (<a href="/info/189183">бензин каталитического</a> крекинга, 100 С)
    Панченков и др. [44], обработав опытные данные о кинетике реакций каталитического крекинга в кипящем слое катализатора, предложили следующее уравнение зависимости выхода бензина (Хб, % масс.) от глубины превращения сырья  [c.152]

    Кинетика реакций каталитического крекинга. Скорости конкретных стадий реакции каталитического крекинга, входящие в уравнения. материального баланса (П1-6), (Н1-7), зависят от многих факторов от температуры, концентрации реагентов, активности катализатора, свойств реагентов и т. д. [c.90]

    Кинетика каталитического крекинга описывается уравнением реакции первого порядка  [c.153]

    К настоящему моменту накопился уже обширный материал по химии и кинетике термических и каталитических реакций углеводородов Однако, материал этот носит разрозненный, а подчас и противоречивый характер. Так, константы скорости крекинга отдельных углеводородов, но данным различных исследователей, часто отличаются друг от друга в 5—10, а иногда и более раз (см. гл. 4). Совершенно очевидно, что для широких кругов химиков, проектировщиков, заводских работников и других лиц, не работающих специально в области химии и кинетики крекинга углеводородов, пользование подобными данными является чрезвычайно затруднительным, если не невозможным. [c.5]

    В настоящее время большое внимание уделяется изучению влияния металлов, отлагающихся на поверхности катализаторов в промышленных условиях, на свойства катализатора, материальный баланс процесса и качество продуктов крекинга. Металлы могут влиять не только на выход и химический состав продуктов крекинга. Накапливаясь на поверхности катализатора и обладая иными каталитическими свойствами, чем сам катализатор, они могут определенным образом влиять на характер распределения кокса по радиусу частиц в стадии крекинга и на кинетику и механизм выгорания кокса в стадии регенерации катализатора. [c.109]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]


Рис. XII, 12. Кинетика каталитического крекинга газойля на алюмоснликатных Рис. XII, 12. <a href="/info/473030">Кинетика каталитического крекинга</a> газойля на алюмоснликатных
Рис. XII, 13. Кинетика каталитического крекинга изомеров декалина на алюмо-силикатном катализаторе состава 30% А120а-1-70% ЗЮг. Рис. XII, 13. <a href="/info/473030">Кинетика каталитического крекинга</a> <a href="/info/107447">изомеров декалина</a> на алюмо-<a href="/info/1067447">силикатном катализаторе</a> состава 30% А120а-1-70% ЗЮг.
    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, науки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением ЗОг воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотонкажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рз смотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]

    Кинетика реакций гидрокрекинга. Кинетика реакций, проходящих при гидрокрекинге, изучена очень мало. Энергия активации гидрирования ароматических углеводородов на различных катализаторах имеет один порядок — около 42 кДж/моль (10 ккал/моль). Для кажущейся энергии активации бензинообразования при гидрокрекинге вакуумного газойля — величине в общем фиктивной — в литературе приведены значения порядка 125—210 кДж/моль (30—50 ккал/моль). Некоторое представление о соотношении скоростей различных реакций гидрокрекинга легкого газойля каталитического крекинга на катализаторе с высокой кислотной активностью при 10,5 МПа (105 кгс/см ) дает следующая схема (цифры на стрелках — значения относительной константы скорости)  [c.297]

    V. Химические процессы связаны с превращ,ениями обрабатываемых материалов с целью получения новых соединений. Например, каталитический крекинг, пиролиз, гидроочистка и др. Дви-жуш,ей силой химических процессов являются концентрации реагирующих веществ. Скорость процесса определяется законами химической кинетики. [c.16]

    Механизм превращений индивид/альных углеводородов в условиях каталитического крекинга изучен достаточно подробно, а в отношении переработки нефтяных фракций остается много нерешенных задач. Сложность изyчeн я кинетики и построения математических моделей таких процессов нефтепереработки, как каталитический крекинг, в ,1зывается многостадийностью процесса и использованием в качестве сырья смеси углеводородов различных классов. Скорость превращения промышленного сырья является величиной, характеризующей сумму различных реакций углеводородов. Поэтому при построении кинетической модели процесса каталитического крекинга обычно ограничиваются рассмотрением простых схем и реакций, протекающих по первому порядку, [c.250]

    Алюмосиликатные катализаторы не относятся к числу высокоактивных поэтому температурный режим прол1ЫШленного каталитического крекинга не намного мягче, чем для соответствующего термического процесса, хотя пр0Д0лжител])Н0сть реакции значительно меньше. Так, средняя температура в реакторе каталитического крекинга с псевдоожиженным слоем катализатора равна примерно 480—500° С. Однако продукты каталитического и термического крекинга значительно различаются по составу. Одной из существенных особенностей материального баланса каталитического крекинга является большой выход кокса (в среднем 5 мае. % на тяжелое сырье), что позволяет иметь довольно благоприятный по содержанию водорода состав прочих продуктов крекинга (в мае. %) бензина около 30 газа 15 и широкой газойлевой фракции 50 (из которой 40—50% выкипает до 350° С). Сопоставим кинетику и химизм каталитического, и термического крекинга. [c.152]

    Подсчеты значений кажущихся энергий активации процесса каталитического крекинга показали, что для крекинга легкого газойля при температурах от 450 до 500" С на промышленных крупногранулированных катализаторах энергии активации близки — к 20 ООО кал л оль, что соответствует температурному коэффициенту скорости реакции а= 1,15— 1,25 Выше упоминалось, что в указанных условиях крекинг протекает в области, промежуточной между кинетической и диффузионной. Энергия активации каталитического крекинга, протекающего )з кинетической области (что будет соответствовать или более низким температурам или более высокой степени дисперсности катализатора), составляет около 30 ООО кал/моль. Значительно ниже вехичины энергии активации для крекинга тяжелых газойлей они не превышают 10 000— 15 000 кал1моль , 7. е. кинетика крекинга таких видов сырья еще в большей степени осложнена диффузионными явлениями. Значения констант скорости реакций каталитического крекинга являются, таким образом, условными, так как в зависимости от фракционного состава сырья, степени измельчения катализатора и интервала температур процесс протекает в кинетической или смешангюй области. [c.154]

    В этой форме (27) похоже на уравнение, предложенное для описания кинетики гетерогенно-каталитических реакций, замедляющихся продуктами реакции, благодаря избирательной адсорбции последних на поверхности катализатора [23]. Но так как скорость реакций термического распада алканов, как показали многочисленные опыты, практически не зависит от отношения поверхности реакционного сосуда к объему, то сомнений в гомогенном характере термического крекинга алканов не возникало, и уравнение (3) интерпретировали как уравнение гомогенных, самозамедляющихся продуктами распада реакций. В связи с этим и реакции термического крекинга индивидуальных алканов стали классифицировать как гомогенные самотормозящиеся с глубиной реакции. [c.106]

    Выше мы рассматривали кинетику крекинга нормальных парафиновых углеводородов. Как известно, наиболее высокими октановыми числами обладают разветвленные парафиновые углеводороды. В настоящее время существует уже целый ряд промышленных процессов, 1 оторые ставят своей задачей получение в том или ином виде изонара-финовых углеводородов, например термическое превращение бензинов, каталитическая изомеризация, синтез изооктана и т. д. Поэтому изучение кинетики крекинга изопарафиновых углеводородов имеет в настоящее время большое практическое значение. [c.104]

    В книге изложены основы современного каталитического крекинга нефтяных фракций на цеолитсодержащих катализаторах. Рас-смотрена характеристика сырья, приведены состав и свойства современных промышленных цеолитсодержащих катализаторов (отечественных и зарубежных). Освещены вопросы термодинамики, механизма, химизма и кинетики каталитического крекинга, технологических закономерностей превращения нефтяных фракций, за-коксовывания и регенерации цеолитсодержащих катализаторов. Описаны инженерные основы процесса, включая газодинамику аппаратов с псевдоожиженным слоем и с восходящим потоком мик-росферического катализатора, конструкцию и расчет основных узлов реакторного блока. Приведены схемы реакторных блоков и обсуждены результаты внедрения катализаторов. Даны рекомендации по интенсификации действующих установок каталитического крекинга. Особое внимание уделено перспективной отечественной комбинированной ) станов - с каталитичес.кого крекинга с предварительной гит-роочисткой сырья Г-43-107 рассмотрены основные схемы комбинирования каталитического крекинга с другими процессами. [c.2]


Библиография для Крекинг каталитический кинетика: [c.224]   
Смотреть страницы где упоминается термин Крекинг каталитический кинетика: [c.3]    [c.39]    [c.170]    [c.141]    [c.335]    [c.410]    [c.159]    [c.77]    [c.26]    [c.27]    [c.362]    [c.110]   
Химия технология и расчет процессов синтеза моторных топлив (1955) -- [ c.212 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции расщепления углеводородов Кинетика и механизм реакций каталитического крекинга над активными алюмосиликатами.— А. В. Фрост и А. В. Очкин

Каталитический крекинг Крекинг каталитический

Кинетика гидрирования сырья каталитического крекинга

Кинетика и механизм реакций каталитического крекинга над активными алюмосиликатами

Кинетика инициированного окисления прямогонного дизельного топлива, легкого газойля каталитического и термического крекинга, прошедших адсорбционную очистку

Кинетика каталитического крекинга нефтепродуктов

Кинетика каталитического крекинга смеси химически индивидуальных веществ

Кинетика крекинга

Кинетика накопления и распада гидропероксидов в окисляющемся прямогонном дизельном топливе и легком газойле каталитического крекинга

Кинетика последовательных гетерогенных химических реакций и ее приложение для кинетического анализа реакций каталитического крекинга

Крекинг каталитический

О кинетике каталитического крекинга парафинов над активным алюмосиликатом

Основы механизма, химизма и кинетики процесса каталитического крекинга

СОДЕРЖАНИЕ I Глава I. Основные сведения по химизму и кинетике каталитического крекинга

Химизм и кинетика каталитического крекинга

Химизм и кинетика процесса каталитического крекинга



© 2025 chem21.info Реклама на сайте