Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоновые кислоты жирного ряд производные

    Нафтеновые кислоты представляют собой карбоновые кислоты циклического строения и являются производными главным образом цикланов, в частности, пятичленных. В некоторых нефтях существуют нафтеновые кислоты би-, три- и тетра-циклического строения, а по данным А. Е. Чичибабина также карбоновые кислоты жирного ряда. [c.36]


    КАРБОНОВЫЕ КИСЛОТЫ ЖИРНОГО РЯДА И ИХ ПРОИЗВОДНЫЕ [c.184]

    Глава И. Карбоновые кислоты жирного ряда и их производные 184 [c.476]

    Ароматическими карбоновыми кислотами называются производные бензола, содержащие карбоксильные группы, непосредственно связанные с углеродными атомами бензольного ядра. Кислоты, содержащие карбоксильные группы в боковой цепи, рассматриваются как жирно-ароматические. [c.438]

    За последние годы опубликовано значительное число работ [51—55], в которых показано, что нефтяные кислоты как типично карбоновые образуют разнообразные производные (соли, эфиры, амиды и т. п.) подобно жирным кислотам. Аналогию в химических свойствах нефтяных кислот и алифатических легко объяснить, если исходить из предположения, что карбоксильная группа большей части содержащихся в нефтях карбоновых кислот соединена с циклическими элементами структуры молекулы (полиметиленовые или ароматические кольца) не непосредственно, а через алифатический мостик различной длины иными словами, если рассматривать нефтяные кислоты как кислоты жирного ряда, у которых один или несколько атомов водорода в углеводородной цепи замещены циклическими углеводородными радикалами. В этом случае строение нефтяных карбоновых кислот можно выразить одной из следующих структур  [c.319]

    О Значительно эффективнее карбоновые кислоты и их производные. Добавки жирных кислот к воде в 5—6 раз повышают устойчивость к питтингу, доводя ее до 5—6 ч, т. е. в 50—60 раз больше, чем у обычного бурового раствора. Добавки жирных кислот еще сильнее действуют на раствор. Время образования питтинга увеличивается в 10—15 раз (до 105 мин с кубовыми остатками производства СЖК [c.309]

    В качестве ПАВ в медные электролиты добавляют тиомочевину и ее производные, карбоновые и жирные кислоты, п-нитроанилин, натриевую соль 2,6—2,7-дисульфонафталиновой кислоты, сульфированные фенолы, нафталин [36]. [c.152]

    По числу карбоксильных групп различают моно-, ди-, три- и т. д. карбоновые кислоты. Алифатические монокарбоновые кислоты называют также жирными кислотами. Карбоновые кислоты вступают в многочисленные реакции, при которых карбоксильные группы специфическим образом могут быть преобразованы в группировки функциональ-ных производных. При других типах реакций изменениям могут подвергаться углеводородные радикалы, при этом образуются замещенные карбоновые кислоты с двумя или несколькими функциональными группами. Большое число незамещенных и замещенных карбоновых кислот в свободном состоянии или в виде функциональных производных было выделено из природных объектов животного и растительного происхождения. Важное значение имеют прежде всего липиды (см. раздел 3.2). [c.389]


    В результате р-окисления жирная кислота в конце процесса распадается с образованием ацетильного производного кофермента А ( активная уксусная кислота ). Последняя через цикл три-карбоновых кислот окисляется до СО2 и воды. Ненасыщенные жирные кислоты путем присоединения водородов по месту двойных связей сначала превращаются в насыщенные, а затем протекает их окисление. [c.65]

    Нафтеновые кислоты представляют собой карбоновые кислоти циклического строения, главным образом производные пятичленных нафтеновых углеводородов. В отдельных нефтях найдены би-, три- и тетрациклические нафтеновые кислоты, а также и карбоновые кислоты жирного ряда. Содержание нафтеновых кислот в нефтях невелико. Наименьшее количество нафтеновых кислот содержится в парафинистых нефтях и их фракциях, наибольшее — в смолистых нефтях. В Советском Союзе наибольшее количество нафтеновых кислот найдено в нефтях о-ва Сахалин (4,8 вес. % в одоптинскон и 2,8 вес. % в горской), в нефтях Азербайджана (1,67 вес. % в балаханской, 1,34 вес. % в бинагадинской и 0,3 вес. % в биби-эйбатской), Северного Кавказа (1,0 вес. % в грозненской беспарафиновой) и Эмбы (0,8 вес. % в доссорской). Распределение нафтеновых кислот по фракциям крайне неравномерно. Преимущественно они сосредоточены в легких и средних газойлевых фракциях, значительно беднее ими бензино-керосиновые и тяжелые дистилляты. [c.31]

    При действии окислов азота, образующихся при нагревании мышьяковистой кислоты с азотной кислотой, на ацетил-, бензоил-и формилзамещенные производные эфиров насыщенных карбоновых кислот жирного ряда и при отсутствии растворителя происходит отщепление ацильной группы [c.111]

    Состав для быстрого, в течение 15—30 мин, получения тридейтерометило-вых эфиров (R OO D3) жирных и других карбоновых кислот. Дейтерированные производные используют в газовой хроматографии, совмещенной с масс-спектрометрией. [c.366]

    Самостоятельные работы, которые Марковников здесь называет, посвящены были почти исключительно изучению изомерии карбоновых кислот жирного ряда и их производных. Но уже в это время его занимала проблема взаимного влияния атомов. Оп написал важную статью Об ацетоновой кислоте , в которой, с одной стороны, подведены итоги его исследованиям органических кислот, а с другой — положено начало изучению зависимости между химическими свойствами и химическим строением органических соединений. По этому поводу Марковников писал Бутлерову из Лейнцига в июле 1867 г. Я посылаю свою работу с ацетоновой кислотой в Annalen собственно потому, чтобы при сем удобном случае высказать некоторые соображения относительно взаимного влияния элементарных паев (атомов.— Авт.) в соединениях на их химический характер. Пришлось опять несколько напасть на Кекуле за высказанный им взгляд на порядок замещения водорода в бензоле хлором. Статья больше недели лежит у Кольбе, который взялся выправить ее относительно языка и все говорит, [c.31]

    Несмотря на то, что практическое значение простых алифатических сульфокислот в настоящее время сравнительно невелико, они хорошо описаны в литературе, и некоторые из их производных являются интересными с промышленной точки зрения. Наибольшее внимание было уделено исследованию производных метана, этана и карбоновых кислот. Эфиры, полученные из жирных кислот и 2-01 иэтан-1-сульфокислоты (изэтионовой кислоты), а также амиды 2-амипоэтан-1-сульфокислоты (таурина) нашли применение в качестве детергентов и смачивающих агентов. Сульфокислоты присутствуют в некотором количестве в сульфированных маслах , используемых для различных целей в текстильной промышленности. Строение продуктов сульфирования такого типа в большинстве случаев неизвестно, в связи с чем эта область богата интересными возможностями для исследования. Существующие данные носят главным образом эмпирический характер, и представляется затруднительным отличить факты от предположений в обширной патентной литературе. [c.105]

    Установлено, что образование оксикислот растет с глубиной окисления, поэтому в настоящее время окисление углеводородов проводят лишь на 20—30%, в результате чего образуются почти исключительно жирные карбоновые кислоты. По одному из многочисленных методов рекомендуется проводить окисление воздухом при 100° в течение 24 час. в присутствии солей тяжелых металлов, что дает смесь из 30% жирных карбоновых кислот и 70% неокислен-ных углеводородов. Повышение температуры выше 100° нежелательно, так как в этом случае полученный продукт представляет смесь жидких и твердых карбоновых кислот с оксикислотами и их производными—лактидами, лактонами и эстолидами. Эту смесь необходимо обрабатывать едким натром и содой при 300—400° под давлением в результате конверсии оксикислот и их производных повышается выход монокарбоновых кислот. [c.219]

    Номенклатура. Алифатические карбоновые кислоты называются часто жирными кислотами, так как многие средние и высшие члены этого ряда встречаются в жирах и были из последних выделены Большинство карбоновых кислот имеет тривиальные названия (муравь иная кислота, уксусная кислота, масляная кислота, стеариновая кис лота и т. д.). Можно, конечно, рассматривая кислоты как карбоксиль ные производные углеводородов, дать им также названия метанкарбо новая кислота СН3СООН, этанкарбоновая кислота С2Н5СООН и т. д [c.239]


    А. И кетоны называют также оксосо-единениями. По старой (тривиальной) номенклатуре названия А. производят от названий соответствующих карбоновых кислот, которые могут образоваться в результате окисления А муравьиный А., или формальдегид,— простейший член ряда жирных А.— соответствует муравьиной кислоте, уксусный А., или ацетальдегид,— уксусной кислоте и т. д. По современной научной международной номенклатуре названия производят от названий предельных углеводородов с тем же строением углеродного скелета и окончанием -ал(-аль) Н—СНО — метаналь, СНд—СНО — эта-наль и т. д. Наиболее распространенные методы получения А.— окисление первичных спиртов или восстановление производных кислот. Промышленное значение имеет синтез ацетальдегида, в основе которого лежит реакция Кучеро-ва — присоединение воды к ацетилену в присутствии солей ртути (И)  [c.20]

    Жирные кислоты (неразветвленные алифатические карбоновые кислоты с длинной цепью) в свободном состоянии встречаются только в следовых количествах, однако они являются одной из групп простых молекул, образующих многие липиды. Ацилированные фрагменты молекул, чаще всего содержащиеся в основных липидных группах, являются производными неразветвленных алифатических кислот с четным числом углеродных атомов, обычно Си—С22, но наиболее распространены кислоты С16 и С18. Найдены производные полностью насыщенных и моно-и полиненасыщенных кислот, однако производные карбоновых кислот с группой С С встречаются так же редко, как и с разветвленными цепями или с еще более сложными структурами. Среди ненасыщенных кислот более распространены соединения с г ис( 2)-стереохимической конфигурацией по сравнению с т ранс( )-стереоизомерами, и чаще встречаются несопряженные полиненасыщенные изомеры. Довольно обычны полинена-сыщенные ацильные производные, содержащие группу СН = СН—СНг. Некоторые из наиболее распространенных жирных кислот, входящих в состав липидных соединений, перечислены в табл. 20.1. [c.330]

    Пирролидин. При восстановлении молекула пиррола присоединяет два атома водорода (в положение 2,5) и образует дигидропиррол—пирролин. Дальнейшее гидрирование дает тетрагидропиррол—пирролидин. Пирролидин по своим свойствам подобен жирным вторичным аминам. Это—жидкость (темп. кип. 88,5 С) с характерным аммиачным запахом, сильно дымит на воздухе. Из производных пирролидина отметим а-пирролидин-карбоновую кислоту—пролит [c.587]

    Действие водорода на карбоновые кислоты и их производные в присутствии катализаторов обычпо ведет к образоСЕиию первичных спиртов Для этой цели пригодны хромитиые катализаторы, которые действуют довольно избирательно, главным образом па карбоксильную группу [205, 215, 401, 402] Однако часто, особенно при восстановлении низших жирных кнслот, образуются углеводороды, эфиры восстанавливаемых кислот и образующихся спиртов [407] Свободные кнслоты хорощо гидрируются над окисью рутения [404]. Сложные эфиры а-окси- н а-аминокнслот при мягких условиях реакции в присутствии инкеля Реиея образуют окси- или амино-спнрты с выходом около 75% [205, 405] Восстановление [c.338]

    Наличие карбоксильной группы,как главной функции в молекулах этого класса, обеспечивает соответствующие ей реакции жирных кислот. В первую очередь, это реакции этёрификации, имеющие важное значение в жизнедеятельности практически всех организмов. Об этом будет более детально сказано в соответствующем разделе. Остальные производные жирных карбоновых кислот (соли, амиды, ангидриды и т.д.) могут быть также получены стандартными реакциям (схема 5.1.1). [c.110]

    Производные пиридина встречаются в природе, и о некоторых из них пойдет речь в т. 2, разд. 17.5 и 17.7. Мы, однако, можем сразу же отметить тот факт, что очень важный биохимический окислительно-восстановительный процесс включает четвертичную соль амида никотиновой кислоты (никоти-намид, витамин РР). Биохимики называют это сложное соединение НАД (со-кращенпе от дкотиндмидаденинЗинуклеотид), и оно, вместе с подобным ему веществом Н А ДФ, играет значительную роль в процессах клеточного дыхания, фотосинтеза, синтеза карбоновых кислот с длинной углеродной цепью ( жирных кислот ), а также в процессе зрения. Ниже представлена схема процесса превращения НАД в его восстановленную форму. Заметьте, что окислительно- [c.635]

    Из числа ароматических двухосновных кислот три изомерные фта-левые кислоты при обработке азотистоводородной кислотой превращаются в соответствующие амннобензойные кислоты с небольшой иримесью диамннобензолов [7, 12]. Антраниловая кислота и ее производные, в которых один атом водорода аминогруппы замещен остатком уксусной, бензойной или л-толуиловой кислоты, не реагируют с азотистоводородной кислотой [12]. Таким образом, поведение этих соединений аналогично поведению а-аминокислот и их производных жирного ряда. Следующие кислоты ряда пиридина и хинолина ведут себя так же, как а-аминокислоты, и тоже не вступают в реакцию г1иридин-2-карбоновая кислота, пиридин-2,3-дикарбоновая кислота, [c.297]

    Многочисленными патентами в качестве стабилизаторов инвертных эмульсий предлагаются оксамиды — смеси различных окса-минов и олеиновой кислоты эмульгаторы гетероциклического строения — производные оксазола различные амиды, четвертичные аммониевые соли ненасыщенных жирных кислот, их амиды, например гексилглюкаминамид лауриновой кислоты, а также полиамиды олигомерного характера, фосфолипиды типа лецитина, поливалентные соли кислот таллового масла, смеси их с различными аминами и аминоамидами, смесь окисленного таллового масла и четвертичных аммониевых солей, неполные эфиры многоатомных спиртов и высших карбоновых кислот, например ангидросорбитмоноолеат. [c.384]

    АЛИФАТИЧЕСКИЕ СОЕДИНЕНИЯ (от греч. aleiphar, род. падеж aleiphatos - масло, смола, жир) (соединения жирного ряда, ациклич. соединения), углеводороды и их производные, углеродные атомы к-рых связаны межлу собой в открытые неразветвлеиные или разветвленные цепи. Об алифатич. углеводородах см. Насыщенные углеводороды, Олефины, Ацетилен, о производных углеводородах - Оп/р-ты. Амины, Карбоновые кислоты и др. [c.82]

    Фосфолипиды (или фосфоглицериды или фосфатиды) широко распространены в растениях, животных и микроорганизмах. Они содержатся во всех тканях и клетках организма особенно много их в клетках нервной ткани. Эти соединения рассматриваются как производные Ь-фосфатидной кислоты (кп-глицеро-З-фосфата) и относятся к сложным липидам, поскольку в их молекулы входят остатки не только глицерина и карбоновых кислот, но также и остатки фосфорной кислоты и соединений, содержашд х одновременно как аминогруппу, так и спиртовый ОН. При полном гидролизе 1 моля фосфатидов образуются 2 моля жирной кислоты и по 1 молю глицерина, фосфорной кислоты и аминосодержащего соединения. В зависимости от строения спирта фосфоглицериды делятся на фос-фатидилхолины (или лецитины 40-50 % общего количества фосфолипидов), фосфатиди л этанол амины (или кефалины 30-40 % общего количества) и фосфатидилсерины  [c.126]

    N-Зaмeщeниe. Подобно дифениламину, соединение Т-1 и его производные могут ацилироваться, алкилироваться и арилироваться. Ацетилирование соединения Т-1 уксусным ангидридом дает с прекрасным выходом М-ацетиль-ное производное [3201. Было предложено использовать М-ацильные производные соединения Т-1 для идентификации хлорангидридов жирных кислот, хотя все эти производные плавятся около 80° [348]. М-Сульфонильные производные вследствие слабой основности соединения Т-1 лучше всего, конечно, получать в растворе пиридина [349]. Был получен также с прекрасным выходом хлорангидрид фентиазин-Ы-карбоновой кислоты из фосгена и соединения Т-1, а также описаны многие Ы-карбоксамидопроизводные [350]. [c.573]

    Производные высших жирных спиртов (К — остаток спиртг и карбоновых кислот  [c.80]

    Высшие жирные кислоты проявляют химические свойства, характерные для карбоновых кислот вообще. В частности, они легко образуют соответствующие функциональные производные. Ненасыщенные жирные кислоты проявляют свойства непредельных соединений — присоединяют по двойной срязи водород, галогеноводороды и другие реагенты. [c.468]

    Липиды — под зтим названием объединяют обширную фулпу природных соединений, содержащихся в растительных и животных тканях. Л. — жиролодобные вещества, главным образом производные высших жирных кислот, спиртов или альдегидов. Они делятся на омыляемые и неомыляемые ло их способности гидролизоваться в щелочной среде с образованием соответствующих солей высших карбоновых кислот Неомыляемые Л. представляют собой производные одного не-гидролизующегося класса соединений. Омыляемые липиды в свою очередь делятся на простые и сложные. [c.181]

    В среде неводных растворителей успешно титруют алифатиче-ские и ароматические кислоты и их окси-, галоген-, нитро- и другие производные [128, 407, 451]. Особенно большое значение имеет титрование нерастворимых в воде высших жирных кислот, таких как капроновая, энантовая, каприловая, пеларгоновая, каприно-вая, лауриновая, пальмитиновая, стеариновая, бегеновая и другие [369, 388, 452]. Из ароматических карбоновых кислот в среде неводных растворителей можно титровать бензойную кислоту и ее нитро-, галоген- и оксипроизводные, а- и р-нафталинкарбоно-вые кислоты и их производные и ряд других ароматических кислот [376, 383]. Все карбоновые кислоты можно с достаточной степенью точности титровать в среде спиртов [369], кетонов [305, 353, 367], хлороформа [128, 386], бензола 1386, 452], толуола [386], пиридина [326], этилендиамина и диметилформамида [434], в смеси диоксана с водой [381, 382] и в ряде других растворителей [388]. [c.117]

    Из неионогенных ПАВ наиболее широкое применение находят продукты конденсации этиленоксида с высшими жирными спиртами, алкилфенолами, высшими карбоновыми кислотами и их амидами, представляющими собой полигликолевые эфиры. Неионогенные ПАВ обладают хорошими смачивающими, диспергирующими, эмульгирующими и моющими свойствами, стойкостью к действию солей жесткости. По способности к биохимическому окислению их подразделяют на легкоокисляемые и трудноокисляемые (производные алкилфенолов, препарат ОП-7). Трудности биохимической очистки сточных вод в присут- [c.81]

    Основные направления научных исследований — органический синтез. Нагревая глицерин с различными жирными кислотами, получил жиры. Занимался химией терпенов. Получкл (1899) диметил-гептенол из метилгептенона и подпетого метила в присутствии магния в среде эфира. Посоветовал (1899) своему ученику Ф. О. В. Гриньяру применить магний в органических синтезах по А. М. Зайцеву. Предложил (1914) метод превращения карбоновых кислот в их ближайшие низшие гомологи через третичные спирты и производные этилена (расщепление Барбье — Виланда). [c.39]


Смотреть страницы где упоминается термин Карбоновые кислоты жирного ряд производные: [c.1162]    [c.252]    [c.310]    [c.318]    [c.543]    [c.219]    [c.242]    [c.191]    [c.217]    [c.315]    [c.93]    [c.381]    [c.479]    [c.74]   
Руководство по малому практикуму по органической химии (1964) -- [ c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоновые кислоты производные



© 2024 chem21.info Реклама на сайте