Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация напряжение

    Потенциал ионизации — напряжение поля, при котором происходит отрыв электрона от нейтрального атома потенциал ионизации находится в прямом соответствии с энергией ионизации. [c.78]

    Второй режим. Отличие этого режима от первого состоит в том, что пока происходит процесс ионизации, напряженность электрического поля == О (потенциалы электродов 5 и б равны). Ионы выталкиваются из области I после прекращения электронного тока, когда между электродами 5 я 6 прикладывается положительный импульс напряжения, создающий электрическое поле Ед. Этот импульс длится до тех пор, пока все ионы [c.214]


    Сущность этого способа, который в последние годы широко применяют в промышленности, заключается в нейтрализации поверхностных электростатических зарядов ионами, которые образуются при применении прибора-нейтрализатора. Этот прибор создает большое число ионов, взаимодействующих с противоположными по знаку зарядами. Ионизация воздуха осуществляется двумя способами действием электрического поля высокого напряжения и радиоактивным излучением. [c.342]

    В промышленности используют дугу напряжением около 7800 в, силой тока 900 а и длиной около 1 м (ток постоянный) пропускная способность установки около 2800 м /ч. Переменный ток неэффективен из-за слабой ионизации, что может привести к угасанию дуги. [c.110]

    Хотя отношение заряда электрона к его массе было измерено Томсоном в 1897 г., абсолютную величину заряда электрона удалось установить только в 1911 г., когда Роберт Милликен (1868-1953) поставил остроумный опыт, иллюстрируемый рис. 1-13. Он впрыскивал пульверизатором мельчайшие капельки масла между горизонтально расположенными пластинами конденсатора и затем облучал эти капельки рентгеновскими лучами. Возникающие при ионизации воздуха электроны прилипали к капелькам масла, на которых таким образом возникало один, два или несколько электронных зарядов. Милликен сначала измерял скорость свободного падения заряженных капелек в воздухе с известной вязкостью. Затем он измерял напряжение, которое необходимо приложить к пластинам конденсатора, чтобы заставить капельки масла неподвижно повиснуть между пластинами. Он вычислил, что заряд на любой капельке масла всегда представляет собой целое кратное величины 1,602 10 Кл, и пришел к правильному выводу, что это и есть заряд 1 электрона. [c.50]

    В масс-спектрометрах для бомбардировки образца обычно используются электроны с энергией 70 эВ, хотя напряжение можно варьировать в широких пределах. В спектрометрах с ионизацией полем [8], чтобы добиться эффекта ионизации, используют электрическое поле напряженностью 10 —10 В/см. В этом методе молекула получает значительно меньшее количество энергии, и ионизационный процесс называется мягким . Электрон при этом удаляется за счет квантовомеханического туннельного эффекта. В последующих разделах обсуждаются некоторые достоинства различных ионизационных методов. [c.316]

    Многие молекулы либо не обладают достаточной летучестью, либо недостаточно устойчивы по отношению к электронной бомбардировке, чтобы можно было определить молекулярную массу с помощью масс-спектрометрии, если только не применять метод ионизации полем. Если молекулярные ионы нельзя зарегистрировать при температуре испарения вещества и бомбардировке электронами с энергией 70 эВ, то они обычно не наблюдаются и при более низкой энергии электронов. Хотя снижение энергии электронов приводит к у-величению интенсивности пика молекулярного иона по сравнению с пиками фрагментов, абсолютная интенсивность пика молекулярного иона снижается. В методе ионизации полем в зазоре между двумя металлическими электродами создается электрическое поле напряженностью 510 В/см. Как только газообразная молекула попадает в такое поле, она ионизуется. Этот процесс носит название ионизации полем. На силу тока образующихся [c.325]


    Потенциал ионизации, усредненный по числу валентных связей металла в решетке окисла Молярный дипольный момент Сумма угловых напряжений Молярная магнитная восприимчивость Структурный фактор [c.167]

    Средство представления информации в системах машинной графики — графический дисплей, управляемых от ЭВМ. Наиболее распространены графические дисплеи на электронно-лучевых трубках (ЭЛТ) двух типов — запоминающих и с регенерацией. Экран запоминающей ЭЛТ покрыт слоем специального люминофора, фиксирующего изображение, нарисованное на нем электронным лучом при небольшом постоянном напряжении. Запоминающие ЭЛТ отличаются высоким разрешением и невысокими требованиями к объему памяти вычислительного оборудования. Однако специфика их работы не позволяет стирать с экрана от-дельные линии. Для удаления линии или части изображения необходимо стереть изображение полностью и затем возобновить его без ненужного фрагмента. При использовании ЭЛТ с регенерацией изображение, нанесенное на экран электронным лучом, довольно быстро гаснет и его необходимо возобновлять (регенерировать) с частотой 30 Гц или чаще. Такой способ отображения информации более глубок, но требует большего объема памяти, чтобы запомнить изображение. Меньшее распространение получили плазменные дисплеи, которые представляют собой плоские панели из двух слоев стекла, пространство между которыми заполнено газом, например неоном. Между стеклами находится тонкая сетка электродов. Подача напряжения на пересечения электродов приводит к ионизации и свечению газа в данной зоне экрана. [c.237]

    При приближении к электродам с максимальной напряженностью частицы сорбируют на своей поверхности ионы, образовавшиеся в результате ионизации масла, приобретают при этом заряд и движутся к электроду, имеющему заряд противоположного знака. [c.174]

    Поскольку выход ядра дислокации а поверхность является центром травления, повышение плотности дислокаций в металле должно сопровождаться снижением перенапряжения ионизации металла. Места скоплений дислокаций влекут за собой образование мест локального растворения металла и возникновение концентраторов напряжений. Несмотря на то, что электрохимическое растворение металлов не лимитирует работоспособность конструкции, эксплуатируемой в средах, содержащих сероводород в условиях действия растягивающих нагрузок, роль анодного процесса связана с образованием концентраторов напряжений на поверхности стали с повышением ее хрупкости. При этом чем сильнее повышается хрупкость стали, тем активнее сказывается роль участков локального растворения металла — концентраторов напряжений, тем скорее разрушается сталь. [c.29]

    При прохождении электрического тока образуются дополнительные ионизированные молекулы от ультрафиолетового излучения, сопровождающего свечение короны. Положительные ионы газа и фотоны направляются к отрицательному электроду и освобождают электроны с его поверхности. Последние, проходя сквозь сильное поле рядом с электродом, образуют новые электроны и положительные ионы в результате столкновения с молекулами. Электроны удаляются из этой зоны, замедляя свое движение настолько, что их скорость становится недостаточной для ионизации столкновением, и присоединяются к молекулам газа, образуя ионы газа. Эти ионы газа затем движутся по направлению к осадительному электроду со скоростью, пропорциональной их заряду и напряженности электрического поля. [c.438]

    В электрохимическом ряду напряжений металлов все щелочные металлы стоят значительно левее водорода, причем с увеличением атомного номера (и уменьшением потенциала ионизации) электрохимическая активность металлов увеличивается. Исключение составляет литий — расположение на левом фланге электрохимического ряда напряжений металлов обусловлено исключительно высокой энергией гидратации лития, максимальной среди металлов. [c.144]

    Ион, находящийся в поле, приобретает определенную скорость в зависимости от напряжения поля. При превышении некоторого критического значения напряжения кр ионы уже имеют настолько большую скорость (а следовательно, и кинетическую энергию), что могут путем соударения ионизировать нейтральные частицы. Вновь образовавшиеся ионы приобретают такую же высокую скорость и становятся способными вызывать дальнейшую ионизацию. Происходит лавинная ионизация газа, которой сопутствует стремительный рост электропроводности (проявляется в виде искр.) [c.121]

    При полной ионизации газа между электродами возникают условия для электрического разряда. С дальнейшим увеличением напряженности электрического поля возможен проскок искр, а затем электрический пробой и короткое замыкание электродов. Чтобы избежать этого, создают неоднородное электрическое поле путем устройства электродов в виде проволоки, натянутой по оси трубы (рис. У-50, а), или проволоки, натянутой между параллельными пластинами (рис. У-50, б). Густота силовых линий и, следовательно, напряженность поля в этих условиях наиболее высока у провода и постепенно убывает по мере приближения к трубе или пластине. Напряженность поля непосредственно у трубы (пластины) является недостаточной для искрообразования и электрического пробоя. [c.239]


    При напряженности поля, достаточной для полной ионизации, между электродами возникает коронный разряд, сопровождающийся голубовато-фиолетовым свечение.м, образованием <о оро.ны вокруг каждого провода и характерным потрескиванием. Электрод, вокруг которого образуется корона , носит название коронирующего электрода, а другой, противоположно заряженный электрод, выполненный в виде трубы или пластины — осадительного электрода. Коронирующие электроды присоединяются к отрицательному полюсу источника тока, а осадительные — к положительному. При этом можно использовать более высокое напряжение без появления искрового разряда между электродами. [c.239]

    Электронное возбуждение, ионизация, образование радикалов, окисление и сшивка также являются основными процессами, происходящими в твердых полимерах под действием ядерного облучения (а, р,у-излучение, нуклоны). С учетом влияния подвижности молекул на кинетику деградации и сшивку материала усиливающее действие напряжения возможно, но это еще нельзя считать доказанным. Перед современными исследователями стоит задача понять взаимосвязь между характеристиками облучения (зависимость дозы облучения и скорости дозирования), структурой сетки и макроскопическими свойствами материала после его облучения [198, 200,219]. [c.322]

    Введение алкильных заместителей в ядро и увеличение числа конденсированных ароматических колец снижает потенциал ионизации. Аналогично влияет и разветвление цепи у этиленовых углеводородов. Следовательно, возможно подобрать такую величину энергии ионизирующих электронов, при которой будет происходить ионизация только этиленовых и ароматических углеводородов. Ионизирующее напряжение, при котором получаются лишь молекулярные ионы, выбирается с учетом величины разности между потенциалом ионизации и наиболее низким потенциалом появления численное его значение зависит от типа соединений. Для ароматических углеводородов эта разность получается наибольшей — около [c.186]

    Третья проблема заключалась в экспериментальном выборе условий селективной ионизации метановых и ароматических углеводородов, без их заметной диссоциации. Выбор оптимального значения энергии ионизирующих электронов может быть осуществлен путем исследования образца, состоящего из метановых и нафтеновых углеводородов, выделенных из типичной анализируемой фракции с добавлением эквимолекулярных количеств бензола и толуола. Эффективное значение ионизирующего напряжения, соответствующее исчезновению в спектре пиков насыщенных углеводородов, устанавливалось по соотношению пиков молекулярных ионов бензола и толуола [308]. [c.187]

    Для этой цели подходят металлы, ионизация и разряд ионов которых происходит с низкой поляризацией (обычно серебро или медь). Напряжение на хемотроне в процессе переноса сохраняется поэтому низким до тех пор, пока на первом электроде остается металл М. Когда весь металл М окажется перенесенным с первого электрода на второй, на металле — основе электрода I должен начаться другой процесс, идущий при более положительном потенциале, а потенциал электрода И смещается в отрицательную сторону. Напряжение на хемотроне резко возрастает, что указывает на конец интегрирования. При перемене полярности процесс накопления информаши может быть продолжен. Так как количестао перенесенного металла М известно, а анодный и катодный процессы протекают со 100%-ным выходом по току, то по закону Фарадея можно определить количество прошедшего электричества. При введении в хемотрон третьего электрода появляется возможность промежуточного считывания величины интеграла. [c.386]

    Низкая реакционная способность ЗЕд объясняется кинетическими факторами, обусловленными валентным и координационным насыщением центрального атома молекулы 8Ев и ее высокой энергией ионизации (19,3 В). 5Ев является диэлектриком, который благодаря химической инертности и большой молекулярной массе используют в качестве газообразного изолятора в генераторах высокого напряжения и других электрических приборах. Довольно инертен и ЗОзЕг, который разлагается лишь растворами щелочей. [c.332]

    Более чувствительным является дифференциальный метод, когда сравнивается некоторое свойство (обычно физическое) потока газа, выходящего из колонки, с таким же свойством потока чистого газа-носителя. Для этой цели применяют дифференциальный детектор. Такой детектор, регистрирующий изменение теплопроводности газа, называется катаромет.ром. Он состоит из двух камер с нагретыми металлическими нитями через одну из этих камер (сравнительную) протекает чистый газ-носитель, а через другую (измерительную)—газ, выходящий из колонки. Нагреваемые нити включены в мост Уитстона. Если первоначально через сравнительную и измерительную камеры пропускать чистый газ-носитель и при этом сбалансировать мост, а затем через измерительную камеру пропускать газ-носитель, содержащий определяемый компонент с иной теплопроводностью, то баланс моста нарушится и возникнет разность потенциалов. Эту разность потенциалов усиливают и записывают на ленте самописца (8, на рис. 1). Более чувствительными дифференциальными детекторами являются ионизационные, измеряющие ток, проходящий через ионизированный газ между двумя электродами, к которым приложено постоянное напряжение. Ионизация выходящего из колонки газа производится либо в водородном пламени, либо посредством облучения р-лучами.  [c.548]

    Энергию ионизации можно определить путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее напряжение поля, при котором скорость электронов становится достаточной для ионизации атомов, называется потенциалом ионизации атомов данного элемента и выражаегся Б вольтах. [c.100]

    Для меди и циика затрата энергии иа ионизацию свободных атомов и выигрыш ее нрн гидратации иоиов близки. Ыо металлическая медь образует более прочную кристаллическую решетку, чем цинк, что видно из сопоставления температур плавлс [ ия этих металлов цинк плавится при 419,5 °С, а медь только при 1083 С. Поэтому энергия, затрачиваемая на атомизацию этих металлов, существенно различна, вследствие чего суммарные энергетические затраты на весь процесс в случае меди гораздо больше, чем в случае цинка, что и объясняет взаимное положение этнх металлов в ряду напряжений. [c.293]

    Малый радиус атомов объясняет также более высокие значения энергии ионизации металлов этой подгруппы, чем н[елоч 1ых метал. юв. Это приполит к большим различиям в химических свс)й-стлах металлов обеих подгрупп. Элементы подгруппы меди — малоактивные металлы. Они с трудом окисляются и, наоборот, нх ионы легко восстанавливаются они не разлагают воду, гидроксиды их являются сравнительно слабыми основаниями. В ряду напряжений они стоят после водорода. В то же время восемнадцатиэлектронный слой, устойчивый у других элементов, здесь еще пе вполне стабилизировался и способен к частичной потере электронов. Так, медь наряду с однозарядными катионами образует и двухзарядные, которые для нее даже более характерны. Точно так же для золота степень окисленности -)-3 более характерна, чем -f-1. Степень окисленности серебра в его обычных соедннен[ их равна - -1 однако известны и соединения со степенью окисленности серебра -j-2 и +3. [c.570]

    Принцип работы очистителей, в которых создается неоднородное электростатическое поле, основан на ионизации частиц загрязнений и их последующем осаждении на противоположно заряженном электроде. Предполагается, что вследствие неоднородности поля частицы движутся в сторону большей напряженности, т. е. к электродам, выполненным в виде игл, проводов и т. п. Движение незаряженных частиц в неоднородном поле происходит под действием силы, возникающей вследст- [c.173]

    Количественной характеристикой восстановительной снособно-оти атомов является значение энергии ионизации, т. е, энергии, необходимой для отрыва одного электрона от нейтрального атома. Отношение этой величины к заряду электрона есть ионизационный потенциал, т. е. напряжение электрического поля, достаточное для отрыва электрона. Ионизационный потенциал выражают обычно в вольтах (В), а энергию ионизации — в электронвольтах (эВ) или в других единицах энергии. Характерно, что для отрыва второго электрона требуется затрата большего количества энергии, а для отрыва третьего э.пектрона — егде большего. Значения ионизационного потенциала и энергии ионизации атомов различных элементов приведены в табл. 1.2 Прило кения (в конце книги). [c.39]

    Метод основан на ионизации и заряжении взвешенных частиц пыли при прохождении газа через поле высокого напряжения, создаваемое коронирующими электродами. Осаж дение частиц происходит на зазе мленных осадительных электродах Для улавливания туманов применя ют мокрые электрофильтры. Электро статическая очистка — один из лучших способов улавливания пылей, сочетающий простоту, низкое гидравлическое сопротивление и высокую производительность с высокой степенью очистки. Метод универсален, т. е. применяется для любых пылей полидисперсного состава. Недостаток — большие капиталовложения на сооружение очистной установки и необходимость расхода электроэнергии на очистку [c.233]

    Типовым электрофильтром для очистки окружающего воздуха является двухступенчатая установка с положительной короной (рис. Х-26). В ступени ионизации установлены тонкие (0,13 мм) атроволоки из вольфрама, заряжаемые напряжением 13 кВ оса- [c.491]

    Ионизация воздуха или среды, в частности внутри аппарата, емкости и т. д. Сущность этого способа заключается в нейтрализации поверхностных электроста-тических зарядов положительными и отрицательными ионами, которые образуются при -использовании специального прибора, называемого нейтрализатором. Ионы, взаимодействуя с положительным зарядами статического электричества, нейтрализуют их. Ионизация воздуха достигается двумя способами действием электрического поля высокого напряжения и радиоактивным излучением. [c.151]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    При реакциях, протекающих по механизму 5л 1, аксиальные электроотрицательные заместителн отщепляются быстрее, чем экваториальные. Стадией, определяющей скорость таких реакций, является ионизация, при которой атом углерода переходит из тетрагонального состояния в тригональное. При ионизации аксиальной группы происходит большее уменьшение напряжения, что и приводит к ускорению реакции. [c.807]

    Значительная часть начального участка кривой эффективности ионизации является следствием использования пучка не моноэнергетических электронов. В большинстве масс-снек-трометров электроны, получаемые путем эмиссии с раскаленного катода, имеют максвелловское распределение энергии и разброс достигает 4 эв. Трудность получения объективных и надежных данных связана также с падением напряжения на [c.176]

    Изучение потенциалов ионизации сложных органических молекул и потенциалов появления осколочных ионов открыло широкие перспективы для аналитического применения низких ионизирующих напряжений. Масс-спектр, получаемый при ионизации многоатомных молекул электронами с энергией 50—70 эв, представляет собой совокупность молекулярных и осколочных ионов. Если ионизирующее напряжение больше потенциала ионизации, но меньше потенциала появления осколочных ионов, то масс-спектр анализируемого соединения будет содержать только один пик, отвечающий молекулярному иону. Такое упрощение масс-спектра обладает определенными преимуществами и может быть использовано для качестве1гного анализа смесей, а при наличии соответствующих калибровочных данных и для количественного определения концентрации компонентов в смеси. При этом исключаются сложные вычисления, неизбежные при расчетах обычных масс-спектров. [c.185]

    Впервые метод низких ионизирующих напряжений был применен для анализа смеси азота, кислорода, окиси угле рода и углекислого газа. Несколько позже [307] аналогичным способом анализировались смеси дейтерированных предельных углеводородов. Использование ионизирующего напряжения, величина которого была выше потенциала иоршзации радикала, но ниже потенциала ионизации исходной молекулы, [c.185]


Смотреть страницы где упоминается термин Ионизация напряжение: [c.320]    [c.335]    [c.292]    [c.293]    [c.48]    [c.489]    [c.58]    [c.196]    [c.323]    [c.300]    [c.230]    [c.239]    [c.266]    [c.186]    [c.192]   
Курс неорганической химии (1963) -- [ c.138 ]

Курс неорганической химии (1972) -- [ c.123 ]




ПОИСК







© 2025 chem21.info Реклама на сайте