Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы растворителях

    В процессах полимеризации бутадиена и изопрена в присутствии щелочных металлов и их органических производных обнаруживается существенная зависимость микроструктуры образующихся полимеров от условий полимеризации — природы щелочного металла, растворителя и в ряде случаев температуры. Некоторые результаты изучения микроструктуры полимеров приведены в табл. 16 и 17. Для сравнения в таблицы включены, помимо Na- и К-органических инициаторов, некоторые данные, полученные с литийорганическими соединениями., [c.519]


    Другим способом синтеза бифункциональных металлорганических катализаторов является взаимодействие щелочных металлов с некоторыми ароматическими углеводородами (нафталин, антрацен, фенантрен, дифенил, терфенил и т.- п.), а также с некоторыми ароматическими производными этилена (стильбен, 1,1-дифенил-этилен, трифенилэтилен и т. д.). Реакция протекает обычно в полярных растворителях через стадию образования ион-радикала [3, с. 365]  [c.413]

    Еще один способ получения бифункциональных металлорганических катализаторов — это взаимодействие дигалогенидов со щелочным металлом (обычно литием) в среде полярного растворителя при пониженных температурах  [c.414]

    Поверхностная активность щелочных металлов по отношению к ртути и ее рост с увеличением ионного радиуса были объяснены В. К. Семенченко влиянием электростатического потенциала кулоновских сил г г, зависящего от заряда е и радиуса г ионов растворителя (ртути), и растворенных в нем ионов [c.473]

    Межфазный катализ делает возможным или ускоряет реакции в малополярных растворителях между ионными соединениями и органическими (не растворимыми в воде) веществами. Наиболее часто используемыми катализаторами являются ониевые соли или комплексообразователи, которые могут связывать ионы щелочных металлов и таким образом переводить их в раствор. Основная функция катализатора состоит в переносе анионов реагирующей соли в органическую фазу в форме ионных пар. В апротонных растворителях они фактически не сольватированы и ничем не экранированы (за исключением, может быть, их противоионов) и, следовательно, обладают высокой реакционной способностью. [c.12]

    СИЛЬНО зависит от стерических эффектов, связанных с катионом. Для контактных ионных пар стереоспецифичность более вероятна это проявляется, например, в реакциях Н/О-обмена [28]. Известно, что краун-эфиры превращают многие (но не все см., например, [17]) контактные ионные пары катионов щелочных металлов в разделенные растворителем ионные пары. Последние реагируют менее специфично [28]. Влияние различных эфирных растворителей (например, эфиров поли-этиленгликоля или добавленных краун-эфиров) на структуру ионных пар рассмотрено в обзоре [32]. [c.20]

    Хелаты типа ион щелочного металла/краун представляют особый интерес при обсуждении МФК. Другие родственные явления, например введение анионов в криптаты [88], растворение щелочных металлов в различных растворителях с помощью краунов i[89], выделение устойчивой кристаллической соли Ыа-/криптат Na+ 90] и образование анион-радикалов из аро- [c.38]


    В разд. 1.1 межфазный катализ был определен как двухфазная реакция между солями (в твердой форме или в виде водных растворов), кислотами или основаниями и субстратами, находящимися в органических растворителях, протекающая в присутствии так называемых межфазных катализаторов. Типичными представителями таких катализаторов являются ониевые соли или вещества, образующие комплексы с катионами щелочных металлов, такие, как краун-эфиры, криптанды или их аналоги с открытой цепью. Как уже указывалось в разд. 1.1, определение МФК основано скорее на наблюдаемых эффектах, а не на каком-либо едином механизме. Впрочем, широкие исследования этих эффектов привели к выяснению механизма многих реакций МФК. [c.44]

    Как показывает опыт, такое окисление через карбанион протекает в случае многоядерных алкилароматических углеводородов, из которых могут образоваться карбанионы (например, дифенилметан) в сильно полярных безводных растворителях (например, в диметилсульфоксиде) при введении сильных оснований (например, алкоголятов щелочных металлов). Парафиновые и нафтеновые углеводороды так не окисляются, так как практически они не ионизуются. [c.27]

    Интересным свойством щелочных металлов является их растворимость в жидком аммиаке, в котором они образуют растворы интенсивного голубого цвета этот цвет сохраняется у металла после испарения аммиака. Атомы щелочных металлов диссоциируют в аммиаке на положительные ионы и электроны, и электроны ассоциируют с молекулами растворителя NHj. Такие электроны получили название сольватированных электронов. Установлено, что интенсивная окраска обусловлена сольвати-рованными электронами, а не ионами металла такая же окраска возникает при введении электронов в аммиак с платинового электрода. [c.434]

    В условиях химической лаборатории горение натрия или калия происходит значительно реже, чем горение растворителей, насыщенных щелочными металлами. В связи с этим тушение таких растворителей имеет свою специфику. Так, для тушения металлических натрия и калия непригоден диоксид углерода. Однако для ликвидации горения растворителя, в котором содержатся натрий или калий, можно использовать углекислотный огнетушитель. [c.32]

    При проведении работ, связанных с нагреванием исследуемых веществ до температуры 100 °С, в качестве теплоносителя наиболее целесообразно использовать воду. Однако следует помнить, что при работе с обезвоженными (так называемыми абсолютированными) растворителями использование водяных бань не допускается. Кроме того, водяные бани не допускается использо-вать для обогрева сосудов, в которых имеются бурно реагирующие с водой металлоорганические соединения и щелочные металлы. При постоянном использовании открытых кипящих водяных бань в вытяжном шкафу увеличивается вероятность выхода из строя находящегося в нем электрооборудования и поражения током обслуживающего персонала. Поэтому для уменьшения испарения воды наиболее целесообразно применение водяных бань закрытого типа с набором концентрических колец. [c.49]

    При снятии спектров в ИК-области работать с водными растворами практически невозможно вследствие сильного поглощения самой- воды в очень широкой области. Поэтому для съемки используют либо раствор в специально подобранном растворителе, не поглощающем в предполагаемой области поглощения исследуемого вещества, либо суспензию вещества в вазелиновом масле, если нет необходимости проверять область поглощения метнльных и метиленовых групп, либо наконец, пленку самого вещества. Часто используют таблетки, спрессованные из смеси исследуемого вещества с бромидом калня илн другим галогенидом щелочного металла. Растворители или вазелиновое масло должны быть тщательно высушены. Области поглощения некоторых функциональных групп приведены в приложении II. [c.86]

    Оптимальное мольное соотношение между полисульфидом щелочного металла, растворителем и гидроокисью щелочного металла составляет 1 12 4. Температура реакции 110—120 Однако в более мягких условиях при взаимодействии дисульфида натрия и ацетилена ларяду с ДВО образуется с выходом 10% 1,2-ди(вянилтйо)этен (XIX), смесь 1 мс-и транс-изомеров (2 3) [2091  [c.67]

    Наиболее ранней была работа Н. П. Федотьева и Р. Н. Кипкульской [11], в которой сформулированы требования, предъявляемые к электролитам и необходимые для осаждения щелочных металлов. Растворитель, используемый для электролиза, должен быть инертным по отнощению к щелочному металлу, обладать электрохимической устойчивостью, высокой растворяющей и ионизирующей способностью. [c.12]

    Растворимость большинства соединений довольно резко изменяется с изменением свойств растворителя, т. е. при прибавлении в водные .расгйорь1 о гаш ческих растворителей Т1ли при замене воды на органический растворитель. Например, растворимость ряда солей понижается при введении в раствор спиртов, ацетона и т. п., так Са804 заметно растворим в воде, добавление же 50 объемн.% этанола приводит к практически полному осаждению этсго соединения. Некоторые соли щелочных металлов—перхлорат [c.83]


    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    При разложении некоторых гидроперекисей наблюдалось выделение кислорода. Так в некоторых растворителях перекись m/iem-бутила разлагается меркаптобензимидазолом с выделением кислорода [62]. Гидроперекиси разлагаются также с выделением кислорода в присутствии таких добавок, как сукциннитрил, сероуглерод или щелочные металлы [68]. Выделение кислорода происходит, как полагают, в результате следующей реакции  [c.299]

    Этерификация дифенилолпропана обычно приводит к образова нию диэфира. Чтобы получить моноэфир, т. е. соединение, этерифи-цированное лишь по одному из фенольных гидроксилов, рекомен дуется проводить селективный алкоголиз низшими спиртам1 (предпочтительно метанолом) в среде инертного растворителя (то луол, ксилол, анизол) в присутствии каталитических количест алкоголятов щелочных металлов. Реакция проводится в безводно среде во избежание гидролиза образующегося моноэфира. Посл< удаления солей, отгонки (в вакууме) растворителя и других лету чих компонентов моноэфир отделяют от диэфира и остатка дифени лолпропана хроматографическим методом на окиси алюминия Моноацетат дифенилолпропана, перекристаллизованный из смес перхлорэтилена и петролейного эфира, имеет т. пл. 100—102 °С. [c.40]

    Таким образом, предпочтение следует отдать методам первой группы. Здесь проще всего достигается статистичность распределения мономеров вдоль цепи, реакции идут с высокой скоростью и технология процесса может быть удобно оформлена по непрерывному способу. Ниже более подробно рассмотрены два типа модификаторов электронодонорные растворители и алкоголяты щелочных металлов. [c.273]

    Одним из наиболее простых является полимеризация диена на щелочном металле в среде полярного растворителя. Так как в полярном растворителе константы роста цепи одного порядка с константой инициирования, то при достаточном избытке щелочного металла возможно выделение первичных продуктов, содержащих 2—10 звеньев мономера. В качестве мономеров употребляют днолефнновые гл пинпларол атпчсские углеводороды. Для увеличения повер.хности щелочного металла его обычно используют в виде дисперсии в парафине или вазелине. Чем больше полярность растворителя, чем больше отношение металл мономер, тем меньше звеньев мономера содержит катализатор [2]. [c.413]

    Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов ионная проводимость) и химические превращения в местах входа и выхода тока (электрохимические реакции), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твердые соли. Как правило, в проводниках второго рода электричество переносится положительными (катионы) и отрицательными (анионы) ионами, однако некоторые твердые соли характеризуются униполярной проводимостью, т. е. переносчиками тока в них являются ионы только одного знака — катионы (например, в Ag l) или анионы (ВаСЬ, ZrOa + aO, растворы щелочных металлов в жидком аммиаке). [c.384]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Наряду с гидроксидами щелочных металлов в МФК используют также и другие основания твердые фториды щелочных металлов, бикарбонаты и карбонаты, гидриды и амиды. Вопросы о механизме участия в МФК первых двух анионов не представляют особого труда, так как эти анионы могут экстрагироваться в органические растворители при обычном проведении МФК в системе жидкая фаза/твердая фаза (о солюбилизации НСОз см. в [75]). Однако что касается остальных анионов, то в противоречии с предположениями, высказанными во многих статьях, оказалось, что они экстрагируются в неполярные среды достаточно трудно как с помощью ониевых солей, так и с помощью краун-эфиров. [c.66]

    При отсутствии алкилирующего агента дихлорметан, являющийся растворителем, начинает взаимодействовать с фенолят-ным анионом, образуя в качестве побочного продукта диарил-оксиметан [29]. Небольшие изменения в условиях проведения этой реакции позволяют получать этот продукт с очень высоким выходом [234]. С этой целью твердый порошкообразный гидроксид калия и фенол перемешивают в метиленхлориде в присутствии 5—10 мол.% аликвата 336 в течение 8—16 ч при комнатной температуре. При использовании водного раствора гидроксида щелочного металла или менее липофильного катализатора— ТЭБА скорость реакции резко снижается. Метиловые эфиры катехинов получают, вводя в реакцию метиленбромид, водный гидроксид натрия и адоген 464 в качестве ката- [c.155]

    Обычно в растворе устанавливается равновесие между этими тремя формами, положение которого зависит от различных факторов (см. ниже), однако наличие в молекуле жесткого скелета может привести к тому, что будет существовать только одна форма. Свойства этих трех форм и особенно кислотность и способность к образованию ионных пар и к их диссоциации весьма различаются. Было показано [362], что в неполярных растворителях еноляты щелочных металлов ациклических р-ке-тосоединений находятся главным образом в О-форме и между анионом и катионом существует сильная ассоциативная связь. Это взаимодействие остается сильным даже в водных растворах [362]. [c.197]

    При перемешивании бензальдегида с 0,13 моля тетрабутил-аммонийцианида в воде при комнатной температуре проходит бензоиновая конденсация с выходом 70% [435]. Проведение реакции в ТГФ или ацетонитриле при комнатной температуре требует присутствия только 0,02 моля четвертичного аммониевого цианида [413]. В этом состоит сущ,ественное отличие от общепринятой методики (кипячение в этаноле или метаноле), в которой применяется 0,2—0,4 моля цианида щелочного металла на 1 моль бензальдегида. Очень гигроскопичные тетраалкиламмониевые цианиды приготовляют из бромидов в абсолютном метаноле путем ионного обмена на колонке со смолой IRA-400 ( N-форма) [436]. Если использовать водный раствор K N и аликват 336 [437], то образуются лишь следы бензоина, вероятно, потому, что хлорид и цианид имеют близкие константы экстракции. Бензоиновая конденсация осуществляется также в присутствии 18-крауна-б или дибензо-18-крауна-6 в качестве катализаторов при 25—60°С либо в системе водный цианид калия/ароматический альдегид без растворителя, либо в системе твердый K N/альдегид, растворенный в бензоле или ацетонитриле [437]. [c.228]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Свободные или нанесенные на трегеры (графит, M.gO, А12О3, К2СО3) щелочные металлы (Ма, К, Ь1) [214, 215] или их производные (гидриды, алкиламиды) [216—218], с растворителями или без них, при 150— 200° С и 70—350 атм легко димеризуют пропен в смесь изомеров 2-.метилпентена, содержащих двойную связь, причем основным продуктом реакции является 4-мегилпентен-1, как и следовало ожидать ввиду присоединения аллильного карбаниона к двойной связи [c.106]

    Основаниями в этом растворителе являются бромиды щелочных металлов и ЫН4Вг, так как ори их диссоциации образуются бромид-ионы  [c.275]

    Малый радиус Li+ обусловливает возможность координации лпгандов вокруг этого иона, образование большого числа двойных солей , различных сольватов, высокую растворимость ряда солей лития (в противоположность солям других щелочных металлов) во многих органических растворителях. [c.306]


Смотреть страницы где упоминается термин Щелочные металлы растворителях: [c.523]    [c.136]    [c.645]    [c.134]    [c.486]    [c.28]    [c.414]    [c.371]    [c.429]    [c.15]    [c.39]    [c.82]    [c.125]    [c.132]    [c.133]    [c.162]    [c.365]    [c.396]   
Ионообменные разделения в аналитической химии (1966) -- [ c.135 ]




ПОИСК







© 2025 chem21.info Реклама на сайте