Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические аминокислоты в пепсине

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Пепсин, катализирующий гидролиз пептидных связей, образованных остатками ароматических аминокислот, расщепляет практически все природные белки. Исключение составляют некоторые кератины, протамины, гистоны и мукопротеины. При их гидролизе образуются различного размера пептиды и, возможно, небольшое число свободных аминокислот. В желудочном соке детей грудного возраста, а также в секрете четвертого желудочка телят и других молодых жвачных животных содержится отличный от пепсина весьма активный фермент реннин. Он катализирует свертывание молока (превращение растворимого казеиногена в нерастворимый казеин). У взрослых людей эту функцию выполняет пепсин. Механизм этого процесса, несмотря на кажущуюся простоту, в деталях пока не выяснен. Предполагают, что реннин превращает растворимый казеиноген молока в параказеин, кальциевая соль которого нерастворима, и он выпадает в осадок. Интересно отметить, что после удаления ионов Са из молока образования осадка не происходит. Наличие активного реннина в желудочном соке детей грудного возраста имеет, по-видимому, важное физиологическое значение, поскольку при свертывании молока, являюще- [c.424]

    Пепсин Гидролизует пептиды, особенно по связям, прилегающим к остаткам ароматических или дикарбоновых L-аминокислот [c.193]

    При воздействии пепсина на белок происходит разрыв (гидролиз) пептидной связи между аминогруппой ароматической аминокислоты и карбоксильной группой моноаминодикарбоновой кислоты (аспарагиновой, глютаминовой). Действует пепсин также и на некоторые иные пептидные связи [c.335]

    Однако, как показывает табл. 3, многие связи, в которых не участвуют остатки ароматических аминокислот, гидролизуются, в то время как многие связи, которые должны были бы разрываться в данных условиях, оказались устойчивыми. По-видимому, это можно объяснить тем, что субстрат фактически подвергается действию нескольких ферментов, или тем, что до настоящего времени недостаточно выяснены особенности структуры, необходимой для осуществления атаки со стороны пепсина. [c.209]

    Сложную смесь пептидов, полученных при расщеплении пепсином нативного лизоцима, разделяли в 1%-ной муравьиной кислоте на длинной колонке, заполненной сефадексом 0-25, При этом наблюдалось сильное удерживание фрагментов, содержащих остатки ароматических аминокислот [23] (рис. 34.4). [c.401]

    НОМ соке в активный пепсин в результате ферментативного действия самого пепсина, т. е. путем автокатализа. В ходе этого процесса (рис. 24-4) с Н-конца полипептидной цепи пепсиногена отщепляются 42 аминокислотаых остатка в виде смеси коротких пептидов. Остающаяся интактной остальная часть молекулы пепсиногена представляет собой ферментативно активный пепсин (мол. масса 33 ООО). В желудке пепсин гидролизует те пептидные связи в белках, которые образованы ароматическими аминокислотами-тирозином, фенилаланином и триптофаном, а также рядом других (табл. 24-1) в итоге из длинных полипептидных цепей образуется смесь более коротких пептидов. [c.748]


    Пепсин обладает очень широкой специфичностью. Хотя в опытах с синтетическими субстратами преимущественно расщеплялись связи, образованные аминогруппами ароматических аминокислот, имеется много примеров, когда такие связи в белках устойчивы к действию пепсина. Атаке подвергаются только пептидные связи амиды и сложные эфиры не расщепляются. Специфичность пепсина повышается при уменьшении количественного соотношения фермент/субстрат и при ограничении времени реакции до 30 [78]. [c.125]

    При рассмотрении вопроса о природе ферментов и их компонентов нужно всегда помнить, что наличие ферментов обнаруживается только по их действию на соответствующий субстрат. Чтобы определить специфичность фермента, необходимо исследовать его действие на различные субстраты, отличающиеся друг от друга лишь некоторыми особенностями строения молекулы. Этот метод исследования специфичности ферментов был в особенности развит Бергманом и его сотрудниками, работы которых имели исключительное значение для выяснения специфичности действия протеолитических ферментов. До появления этих работ не было известно, какие именно пептидные связи расщепляются пепсином, трипсином и другими протеолитическими ферментами. Бергман и его сотрудники [21] по разработанному ими методу синтезировали большое число различных пептидов и использовали эти пептиды в качестве субстратов для протеолитических ферментов. В результате этих исследований было установлено, что трипсин расщепляет преимущественно пептиды, содержащие основные аминокислоты — аргинин или лизин, тогда как пепсин действует главным образом на пептиды, содержащие ароматическую аминокислоту тирозин [22]. Эти данные позволили заключить, что щелочные боковые цепи аргинина или лизина специфически реагируют с молекулярными группами, расположенными на поверхности трипсина, тогда как структура ароматического кольца тирозина соответствует строению поверхности пепсина. [c.278]

    Связь а) разрывается химотрипсином, так как ее СО-группа принадлежит ароматической аминокислоте — тирозину. Связь б) расщепляется трипсином, который действует на пептидные связи, образованные карбоксильной группой основных аминокислот. Пепсин и карбоксипептидаза не могут расщеплять связей (а) и (б), однако они могут разорвать связь (б). Действие пепсина обусловлено тем, что группа МН у (в) принадлежит ароматической аминокислоте. Расщепление связи карбоксипептидазой зависит от смежной со связью конечной карбоксильной группы [14]. [c.364]

    Частичный гидролиз полипептидных цепей кислотами, щелочами и ферментами до полипептидов меньшей сложности. Три названные группы реагентов производят гидролиз в различных участках полипептидной цепи. Особенно много ценного дает гидролиз различными ферментами. Например, фермент трипсин гидролизует преимущественно пептидные связи аминокислот лизина и аргинина, пепсин — связи ароматических и некоторых других аминокислот. [c.307]

    Пепсин гидролизует пептидную связь, в образовании которой участвует аминогруппа ароматической аминокислоты, при условии, что кислота, связанная Х-связью, не содержит свободной аминогруппы, Х-Связь может быть гидролизована пепсином, г-связь не гидролизуется (свободная ЫНг-группа в остатке лизина). [c.338]

    Пепсин, вырабатываемый слизистой желудка, катализирует гидролиз пептидных связей, образованных с участием аминогрупп ароматических аминокислот. Химотрипсин ускоряет гидролиз пептидных связей, образованных карбоксильными группами ароматических аминокислот. Фермент трипсин специфически гидролизует пептидные связи, созданные карбоксильной группой аргинина или лизина. [c.10]

    Химотрипсин преимущественно расщепляет те пептидные связи, карбоксильная функция которых относится к ароматическим аминокислотам. В длинных полипептидных цепях гидролизуются также связи, образованные лейцииом, валином, аспарагином и метионином. Пепсин обладает слабо выраженной специфичностью. Расщепляются связи, образованные триптофаном, фенилаланином, тирозином, метионином и лейцином. [c.365]

    Б. Пепсин. Основная пищеварительная функция желудка заключается в том, что в нем начинается переваривание белка. Пепсин продуцируется главными клетками в виде неактивного зимогена, пепсиногена. Пепсиноген активируется в пепсин ионами Н+, которые отщепляют защитный полипептид, раскрывая активный пепсин, а также самим пепсином, вызывающим быструю активацию дополнительных молекул пепсиногена (аутокатализ). Пепсин преобразует денатурированный белок в протеозы и затем в пептоны—большие полипептидные производные. Он представляет собой эндопептидазу, поскольку осуществляет гидролиз пептидных связей в составе главной полипептидной структуры, а не N- или С-концевых последовательностей, что характерно для экзопептидаз. При этом фермент специфически атакует пептидные связи, образуемые с участием ароматических аминокислот (например, тирозина) или дикарбоновых аминокислот (например, глутамата). [c.287]


    Белковые вещества входят в состав протоплазмы и часто составляют больше половины ее массы. Общее содержание белков в растениях зависит от их принадлежности к тому или иному виду (см. табл. 4). В деревьях оно меньше и колеблется от 1 до 10%. Значительно больше белковых веществ в простых водорослях (20—30%), а в некоторых бактериях их содержание достигает 80%. Молекулярная масса различных белков колеблется в широких пределах от (17500 до 6800000). Изучение белков затруднено тем, что они представляют собой сложные смеси, выделение которых из растений в неизмененном виде почти невозможно. Основной способ выяснения их строения состоит в изучении продуктов их гидролитического распада, осуществленного с помощью минеральных кислот или оснований. Белковые вещества легко гидролизуются не только в присутствии кислот и оснований, но и под действием различных ферментов (протеаз, пепсина, трипсина и др.). При их распаде образуется смесь до 30 различных аминокислот. Большинство из них относится к группе аминокарбоновых кислот, а некоторые имеют ароматический и гидроароматический характер [10, с. 90]. [c.25]

    Имеется доказательство того, что пепсин менее однороден, чем трипсин и химотрипсин [128]. Этим отчасти объясняется широкий спектр действия пепсина в отношений пептидных связей. Результаты изучения действия пепсина на синтетические субстраты показывают, что пепсин вызывает разрыв связей, в которых участвует аминогруппа аминокислот с боковой цепью ароматического характера. [c.207]

    Аминокислоты по взаимному расположению карбоксильной и аминогруппы делятся на а-, Р , у- и т. д. аминокислоты, причем имеются некоторые специфические способы синтеза аминокислот каждого из этих классов и свойства их в некоторых отношениях различаются. С биологической точки зрения колоссальное значение имеют а-аминокислоты, ряд которых (табл. 49) можно получить из природного материала, гидролизуя белки — мясо, кожу, желатин, шерсть, волос, перо, белки протоплазмы и ядра любой растительной или животной клетки, казеин из творога, ряд гормонов, подобных инсулину, ферменты (например, пепсин) и т. д. а-Амино-кислоты являются простейшими кирпичами в структуре высокомолекулярных веществ — белков, без которых никакая жизнь не существует. Белки включают как жирные а-аминокислоты, так и ароматические и гетероциклические, поэтому их удобнее рассмотреть в конце курса (часть П). [c.484]

    Пепсин расщ ляет в сильно кислой среде почти все белки, за исключением муцинов, кератинов, фиброина, гидролизует также синтетические пептиды. Действует ка пептидные связи концевых аминокислот белковой цепи и на пептидные связи внутри цепи, образованные а-карбоксильными группами д икарбо-новых аминокислот (аспарагиновая, глутаминая кислоты) и аминогруппами ароматических аминокислот. Оптимальное действие пепсина проявляется при pH = 1,2—2,0. 1 г кристаллического фермента за 2 ч расщепляет около 50 кг денатурированного яичного белка. Изоэлектрическая точка при pH ==1,0. Стабилен в сильно кислых растворах, при нагревании сухого препарата до 100 °С и его водных и глицериновых растворов до 70 0 активность фермента не снижается .  [c.311]

    Пепсин — протеолитический фермент класса гидролаз, расщепляющий в кислой среде белки и пептиды преимущественно по связям, в образовании которых принимают участие ароматические или дикарбоновые аминокислоты. Образуется в желудочном соке. [c.223]

    Предшественники (зимогены) — пепсиноген, трипсиноген и химо-трипсиноген получены в чистом виде. Активация заключается в удалении небольшого пептидного фрагмента и катализируется либо активной формой самого фермента, либо энтерокиназой, другим ферментом, имеющимся в пищеварительном тракте. При превращении трипсиноге-на в трипсин с N-конца белка отщепляются гексапептид вал— (асп)4 — лиз и N-концевой аминокислотой становится изолейцин (Нейрат , 1955). Активация других зимогенов более сложна. Ранние работы Бергмаина (1937) на простейших модельных пептидах показали, что ферменты избирательно расщепляют определенно пептидные связи. Пепсин, трипсин и химотрипсин известны как эндопептидазы, так как они расщепляют пептидные связи, расположенные внутри молекулы. Пепсин расщепляет амидные связи, образованные аминогруппами фенилаланина или тирозина химотрипсин расщепляет связи, образованные карбоксильными группами этих ароматических аминокислот. Трипсин расщепляет амидные связи, образованные карбоксильными группами основных аминокислот (лиз, арг). Эти протеолитические ферменты расщепляют также эфиры аналогичной структуры. Во всех случаях затрагиваются только пептиды, образованные -аминокислотами. Предположение Михаэлиса (1913), что реакции, катализируемые ферментами, проходят через стадию образования промежуточного фермент-субстратного комплекса, были подтверждены всеми последующими работами. С большой очевидностью показано, что каталитическая активность определяется небольшим участком фермента, так называемым его активным центром. [c.697]

    По сравнению с неорганическими катализаторами ферменты обладают значительно большей специфичностью действия. Некоторые ферменты катализируют превращение практически только одного какого-либо вещества. Например, фермент глюкозооксида-за, получаемый из плесневых грибов различных видов, специфически окисляет -D-глюкозу до глюконовой кислоты и почти не действует на другие моносахариды. Многие ферменты действуют только на определенный вид химической связи. Например, фермент пепсин гидролизует пептидные связи в молекулах белка, образованные только ароматическими аминокислотами. Наименьшую специфичность обнаруживают ферменты, которые катализируют опреде- ленные группы реакций. Так, например, ферменты, [c.111]

    Наиболее специфичным из ферментов является трипсин. Он расщепляет только пептидные связи, образованные карбоксилом аргинина и лизина. Его действие можно еще более ограничить, если динитрофени-лировать в-аминную группу лизина. Химотрипсин расщепляет связи, образованные ароматическими аминокислотами. Недавно было обнаружено, что он гидролизует и лейциновые пептиды. Менее специфичны папаин, пепсин и субтилизин. Последний позволяет, однако, получать смесь низкомолекулярных пептидов, что часто оказывается удобным прн исследованиях. [c.516]

    Ямашита с соавторами [133] предложили применять ферментативный гидролиз и приготовление пластеинов для производства азотсодержащих продуктов питания, предназначаемых лицам, которые страдают фенилкетонурией. Гидролиз исходных белков сои или других культур с помощью ферментов, таких, как пепсин и проназа, приводит к высвобождению ароматических аминокислот. Вслед за ультрафильтрацией, которая удаляет эти аминокислоты, проводится реакция образования пластеина на гидролизате в присутствии этиловых эфиров тирозина и триптофана. Образующийся таким путем пластеин содержит лишь очень малую долю фенилаланина. Патенты на производство таких диетических продуктов выданы группе Фуйимаки [46] и фирме Fuji Oil o. Ltd. [15]. [c.618]

    Соляная кислота создает оптимальные условия среды для действия пепсина (pH 1,0—2,5) и вызывает набухание белка. Под действием пепсина белки расщепляются на высокомолекулярные о бломки, называемые пептонами. Пепсин гидролизует белки, особенно по связям, прилегающим к остаткам ароматических аминокислот, со стороны их аминогруппы и по связям, прилегающим к остаткам дикарбоновых аминокислот, со стороны их карбоксильной группы. [c.182]

    Остаток ароматической аминокислоты может быть доступен для растворителя и подвергаться воздействию среды, или он может быть маскирован в глубине глобулы, т. е. окружен боковыми цепями других аминокислот. В зависимости от состава среды или природы соседних аминокислот в УФ-спектре могут наблюдаться те или иные изменения, которые измеряют с помощью дифференциальной спектрофотометрии между нативным и денатурированным или гидролизованным белком или же снятием спектров в различных средах. Например, по данным Инада [10], в дифференциальном спектре остатков триптофана в пепсине максимум лежит в области 298 нм, а Ае = 365 см" , по данным Донована [257], Ае = 240М см . Если построить график поглощения растворов пепсина при 298 нм в зависимости от pH, то на кривой будут видны две стадии изменения состояния 6 остатков триптофана [10, 260, 261] = 2 с рК 4,0 и = 4 с рК 7,2 (продукт необратимой денатурации). Две стадии наблюдаются в изменении поглощения для 2 из 6 остатков триптофана в лизоциме п = 1 с рК 3,15 (Ае = 375 М см" ) и = 1 с рК 6,2 (Ае == = 438 М- см- ). [c.375]

    Пепсин действует преимущественно на внутренние пептидные связи, довольно далеко расположенные от концов полипептидной цепи, так как среди продуктов пептического гидролиза белка находят значительное количество полипептидов. Л. Т. Соловьев показал, что нри гид].юлизе белка пепсином пе наблюдается больщой разнородности в продуктах гидролиза, т. е. дробление белковой молекулы пепсином происходит так, что при этом образуются довольно близкие по величине частицы. Однако под влиянием пепсина разрываются также и некоторые пептидные связи, находящиеся на конце полипептидной цепи. Структура боковых цепей или радикалов аминокислот, находящихся по соседству от пептидной связи, определяет ее устойчивость или, наоборот, легкую расщепляемоеть по отношению к пепсину. Представление о том, что гидролитический распад белка под влиянием пепсина не сопровождается появлением свободных аминокислот, в настоящее время должно быть отвергнуто. Так, при помощи нингидринового метода, позволяющего определять наличие свободных аминокислот, было показано, что гидролиз фибрина кристаллическим пепсином сопровождается выделением заметного количества свободных аминокислот. Доказано, что пепсин наиболее быстро расщепляет пептидные связи, образоваиггые аминогруппами ароматических аминокислот, а также связи ала-ала и ала-сер и ряд других. [c.313]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Важнейшие представители используемых животных протеиназ— пепсин, трипсин, а-химотрипсии и сычужный фермент, иногда называемый реннином или химозином. Пепсин образуется из пепсиногена слизистой оболочки желудка, рН-оптимум его действия на белки — 1,7—2,2 он расщепляет их, как и пептиды, по связям, которые образованы с участием аминной группы тирозина или фенил-аланина. Трипсин образуется из трипсиногена поджелудочной железы, его действие наиболее интенсивно при pH 7,6—9,0 специфичность четко выражена он гидролизует связи, сформированные с участием СООН-группы положительно заряженных аминокислот, аргинина и лизина. Химотрипсин близок по ряду свойств трипсину, а специфичность его подобна пепсину с тем отличием, что он разрывает связи, в которые ароматические аминокислоты входят не аминными, а карбоксильными группами. Реннин образуется из прореннина в сычуге молодых жвачных животных. Это — протеолитический фермент, специально настроенный на створаживание молока. Оптимум его действия при pH 6,0—6,5. [c.239]

    Важная особенность пептидил-пептидгидролаз состоит в выборочном (селективном) характере их действия на пептидные связи в белковой молекуле. Например, пепсин избирательно ускоряет гидролиз пептидных связей, образованных ароматическими или дикарбоновыми аминокислотами, трипсин — связей, образованных аргинином и лизином, химотрипсин — ароматическими аминокислотами. Индивидуальный белок под действием определенного фермента расщепляется на строго определенное количество пептидов. Избирательное действие этих ферментов объясняется тем, что радикал аминокислоты, по соседству с которой гидролизуется пептидная связь, служит для образования фермент-субстратного комплекса. [c.121]

    Протеазы распространены в животном и растительном мире существуют клеточные протеазы, осуществляющие соответствующие реакции внутри клеток. Особенно известен папаин, который выделяют нз плодов папайи. Но наиболее важны и наиболее изучены протеазы пищеварительного тракта животных и человека. Стенки желудка выделяют неактивный белок профермент) —пепсиноген. Под влиянием кислого желудочного сока и готового находящегося в желудочном соке пепсина от пепсиногена отщепляется полипептидная цепь, и он превращается в активный фермент пепсин, имеющий молекулярный вес 35 000 и давно уже полученный в кристаллическом виде. Пепсин при оптимальном pH 1,5—2,5 разрывает белки преимущественно по месту нахождения обеих ароматических аминокислот (тирозин и фенилаланин) у их аминного конца. При этом необходимо, чтобы аминокислота, соседняя с ароматической, имела такие зацепки для пепсина, как остатки СООН или 5Н, и не имела свободной КНг-группы. Этих условий оказывается, однако, достаточно для того, чтобы в желудке произошел гидролиз макромолекул белков на сравиительно небольшие пептидные цепи. Дальнейшее переваривание пищи в двенадцатиперстной кишке и далее в тонких кишках происходит в условиях уже щелочной среды. Двенадцатиперстную кишку снабжает ферментами поджелудочная железа, которая выделяет проферменты — трипсиноген, химотрипсииоген и профермент, соответствующий карбоксипептидазе. Эти проферменты (как и пепсиноген, см. выше) превращаются в двенадцатиперстной кишке в ферменты—трипсин, химотрипсин и карбоксипептидазу. [c.701]

    Ферментативное расщепление. Хорошие результаты дают протеолитические ферменты, в первую очередь трипсин и химотрипсин а также пепсин Известно, что трипсин разрушает белок преимущественно но пептидным связям, образованным карбоксильными группами аргинина и лизина химотрипсин гидролизует нентидные связи, в образовании которых участвуют карбоксильные группы ароматических аминокислот (фенилаланина, тирозина и триптофана). Снецифичностт. пепсина менее ясно выражена, хотя в принципе близка к химотрипсину (атака вблизи ароматических аминокислот). Другие ферменты, такие, как термолизин плесневая нротеаза папаин тоже находят применение при гидролизе белков. Ферментативный гидролиз проводят при 37—40° С в течение нескольких часов при оптимальном для данного фермента значении pH. Ниже показано действие протеолитических ферментов на полипептидную цепь восстановленного лизоцима белка яиц (Т — трипсин, X — химотрипсин, П — пепсин, СМС — карбоксиметилцистеин)  [c.79]

    Пепсин гчлролизует связи, образованные аминогруппой ароматических аминокислот (см. табл. 9.1)  [c.230]

    Очень важной особенностью протеиназ является выборочный (селективный) характер их действия на пептидные связи в белковой молекуле. Так, пепсин избирательно ускоряет гидролиз пептидных связей, образованных фен и лей трипсин—арг и лиз-, химотрипсин—ароматическими аминокислотами папаин—арг, лиз и фен и т. д. В результате индивидуальный белок под действием определенной пептидил-пептидогидролазы расщепляется всегда на строго ограниченное число пептидов. Это находит практическое использование при определении первичной структуры белков и имеет огромное значение для регуляции обмена веществ, так как многие продукты селективного гидролиза белков обладают высочайшей биологической активностью именно этим путем из проферментов возникают ферменты, из предшественников гормонов—гормоны и рилизинг-факторы и т. п. Причина избирательного действия пептидпептидогидролаз заключается в том, что радикал аминокислоты, по соседству с которой гидролизуется пептидная связь, служит для образования фермент-субстратного комплекса. [c.131]

    Пепсин следует считать ферментом, разрывающим связи избирательно, поскольку не все их типы одинаково доступны его действ ию. Атакуемость субстрата пепсином определяется следующими условиями 1) субстрат должен содержать пептидные связи 2) обе аминокислоты, участвующие в образовании пептидной связи, должны иметь L-конфигурацию 3) наиболее доступны аминокислотные остатки, содержащие ароматические боковые цепи (хотя [c.424]

    Работы Бергмана и его сотрудников показали, что для ферментативного гидролиза пептидов необходимо наличие боковых цепей определенной структуры. Так, например, для протеолитического действия трипсина необходимо наличие в пептидах щелочных боковых цепей, пепсин же проявляет свое действие при наличии боковых цепей, содержащих ароматические или кислые аминокислоты. Ниже на примере тетрапептида тирозил-лизилглутамилтирозииа показаны отдельные группы, необходимые для действия различных ферментов [13]. [c.364]

    Химотрипсин в щелочной среде (pH 8) гидролизует в пептидах преимущественно связи тех же ароматических кислот, что и пепсин, но с другой стороны — со стороны карбоксила. Трипсин рвет пептидные связи со стороны карбоксила у остатков лизина и аргинина. Кирбокси-пептидазы осуществляют гидролиз концевой аминокислоты, имеющей свободный карбоксил. С аминного конца белка или пептида подобный гидролиз осуществляют аминопептидазы. Они входят в состав ферментного выделения стенок тонких кишок. Здесь пищеварение заканчивается полным гидролизом до аминокислот в результате действия на дипептиды фермента дипептидазы. Аминокислоты всасываются через стенки кишеч-иика и поступают в кровь. [c.701]


Смотреть страницы где упоминается термин Ароматические аминокислоты в пепсине: [c.338]    [c.713]    [c.61]    [c.363]    [c.331]    [c.427]    [c.60]    [c.27]    [c.286]    [c.245]    [c.59]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты ароматические

Ароматически аминокислоты

Пепсин



© 2025 chem21.info Реклама на сайте