Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, активация

    При использовании восстановленного железа активацию не проводят. [c.196]

    Алюмосиликатный катализатор крекинга, полученный активацией сернокислым алюминием, содержит значительное количество железа, внесенного на стадиях мокрой обработки. Оно отлагается на поверхности катализатора в каталитически активной форме, в результате чего показатели крекинга ухудшаются. Шарики после прокаливания нередко имеют различную окраску — от светло-розовой при содержании железа 0,07% до ярко-оранжевой (0,1% железа). Такой катализатор обладает повышенной коксообразующей и дегидрирующей способностью выход бензина снижается почти на 10%, выход кокса увеличивается примерно до 15% и содержание водорода в газе увеличивается почти в 3 раза. [c.21]


    Ранее показано, что подвижность диффундирующих частиц определяется вероятностью образования вакансии в матрице и энергией активации. Экспериментально найдено, что коэффициенты диффузии водорода в металлах на несколько порядков выше, чем других двухатомных газов. Например, при 20 °С в железе Dh=1,5-10- mV и Dn = 8,8-10 2 mV . Аналогичны пропорции для палладия, никеля и других металлов. [c.116]

    Энергия активации диффузии в сплошных средах возрастает с увеличением размера мигрирующей частицы [см. уравнение (3.85)], для водорода в различных металлах эта величина колеблется в пределах 23—46 кКж/моль, для азота от 80 до 200 кДж/моль [8], поэтому с ростом температуры различие в значениях коэффициентов диффузии водорода и других веществ заметно уменьшается, в частности, при = 900°С для железа имеем Dh = 6,3-10 mV и Dn = 2,3-10 ° м / . [c.117]

    В качестве промотора молено использовать оксиды никеля, наносимые на шамот (в виде нитратов) последующее прокаливание при 400 °С позволяет полностью удалить кислотные оксиды. Оксиды никеля резко усиливают скорость реакций, происходящих при сгорании топлива. Активация шамота может быть достигнута дешевыми и легкодоступными оксидами железа, которые осаждают на поверхность шамота (10% РегОз с добавками 0,1% К2О и 0,2% АЬОз). [c.285]

    Если полностью запассивированный металл перестать поляризовать, выключая ток, то изменение потенциала металла во времени имеет характер, аналогичный представленному на рис. 217. Спад потенциала после выключения поляризационного тока соответствует разряду двойного электрического слоя, затем на кривой появляется горизонтальный участок, соответствующий растворению пассивной пленки (активации), а затем потенциал падает до значения стационарного потенциала коррозии активного железа. [c.316]

    Вычисленные из данных рис. 279 значения эффективной энергии активации процесса коррозии железа в различных водонасыщенных грунтах и почвах (6 ккал/моль для кислой почвы — гу- [c.388]

    Если теперь вернуться к рассмотрению механизма влияния алкильных групп в бензоле, то следует в первую очередь отметить, что их накопление приводит к уменьшению потенциала ионизации и увеличению электронодонорности кольца, а это облегчает образование Л-комплексов. Следовательно, стабильность я-комплексов возрастает от бензола к мезитилену. Между тем считают , что гидрирование протекает тем легче, чем устойчивее комплекс катализатора с гидрируемым веществом. Данные, полученные при гидрировании на каталитических системах триэтилалюминий — ацетилацетонаты железа и никеля, подтверждают это предположение. Однако в случае каталитических систем триэтилалюминий — ацетилацетонаты хрома и молибдена увеличение числа алкильных групп л бензольном кольце приводит к увеличению кажущейся энергии активации, хотя устойчивость я-комплексов при этом должна расти в том же ряду (рис. 8). [c.147]


    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]

    Карбамид можно применять в кристаллическом состоянии, в виде растворов в воде,спиртах, кетонах и эфирах, а также в виде пульпы. Для активации процесса комплексообразования применяют активаторы — спирты, кетоны, воду и др. Примеси, находящиеся в депарафинируемом продукте в растворенном состоянии (смолы, мыла, серосодержащие соединения), а также во взвешенном (твердые углеводороды, пыль, окись железа и др.), тормозят процесс комплексообразования и увеличивают его индукционный период. Поэтому депарафинируемый продукт должен быть предварительно очищен. [c.213]

    Энергия активации хлорметилирования —11,1 кДж/моль для хлорида железа(III) и 27,2 кДж/моль —для хлорида цинка показывают, что реакции относятся к чрезвычайно быстрым с низким энергетическим барьером. Хлорметилированные продукты (ХМП) можно использовать самостоятельно или в качестве промежуточных для дальнейших синтезов. Например, фосфорилированием можно получать производные, содержащие фосфорнокислые группы [307, 308]. Реакция может быть осуществлена в оптимальных условиях при отношении ХМП к хлориду металла 1 2, и десятикратном избытке хлорида фосфора(III). На первой стадии реакции вр течение 15 мин степень фосфорилирования составляет 70—85 %. По активности в этой реакции катализаторы Фриделя — Крафтса располагаются в следующий ряд  [c.291]

    Для реакции крекинга бензола, по Краснокутскому и Немцову (72), величина энергии активации равна 72 ООО кал/моль (на железо). Для дифенила величина энергии активации не могла быть вычислена за недостатком данных. По аналогии с нафталином, впредь до получения новых экспериментальных данных, мы условно принимаем ее равной 90 ООО кал/моль. Антрацен, как это видно будет в дальнейшем, стоит особняком среди изученных углеводородов. Поэтому в настоящее время трудно даже ориентировочно предсказать величину энергии активации реакции крекинга указанного углеводорода, не рискуя впасть в большую ошибку. Можно только полагать, что величина энергии активации реакции крекинга антрацена значительно ниже, чем для остальных ароматических углеводородов. [c.185]

    Хром (Е° = —0,74 В) более отрицателен в ряду напряжений, чем железо (Е° = —0,44 В). Однако благодаря склонности к пассивации (Ер = 0,2 В) потенциал хрома в водных средах обычно положителен по отношению к потенциалу стали. При контакте со сталью, особенно в кислых средах, хром активируется. Следо вательно, коррозионный потенциал стали с хромовым покрьггием которое в некоторой степени всегда пористо, более отрицателен, чем потенциал пассивации хрома [191. В указанных условиях хром, подобно олову, выполняет функцию протекторного покрытия однако это связано с его активацией, а не с образованием комплекс ных соединений металлов. Благодаря стойкости слоя металличе ского хрома предупреждается подтравливание наружного полимер ного покрытия. [c.241]

    Первый п) кт реализуется за счет активации природного микробного сообщества путем добавки в загрязненную среду биогенов, что достигается неоднократным внесением минеральной подкормки, содержащей катионы натрия, кальция, магния, двухвалентного железа, аммония и анионы - фосфат, сульфат [250]. [c.154]

Рис. 2.8. Зависимости привеса образцов железа с активированной КН С поверхностью и без активации под ПВХ и ПЭ пленкой от времени выдержки в атмосфере 98-процентной влажности. Материал, толщина (6-10-4 см), активация Рис. 2.8. Зависимости привеса образцов железа с активированной КН С поверхностью и без активации под ПВХ и ПЭ пленкой от времени выдержки в атмосфере 98-<a href="/info/16461">процентной</a> влажности. Материал, толщина (6-10-4 см), активация
    Таким образом, из исследований, проведенных с активацией поверхности железа посредством напыления хлористого аммония и при испытании в атмосфере соляной кислоты, следует, что в условиях активного течения анодной реакции на металле скорость кор- [c.34]

    Исследования также показали, что при наличии на поверхности металла активатора первичная активация железа при отсутствии защитной пленки протекает значительно быстрее (вследствие гигроскопичности соли), и первоначально измеренный потенциал лежит в области максимально возможной активации. Поэтому с уменьшением [c.38]


    Имеется, однако, много примеров, когда потенциал иассивации нельзя связать с образованием ни одного из известных для данного металла оксидов. Так, иапример, для железа потенциал пассивации < п=+0,58 В, в то время как наиболее положительный из всех возможных потенциалов железооксидных электродов, отвечающий системе Fe, FeO, FeaOa, равен всего лишь 0,22 В. Казалось бы, что, поскольку железный электрод здесь является анодом, такая разница обусловлена значительной анодной поляризацией. Но такое объяснение отпадает, потому, что потенциал активации железа также равен +0,58 В, хотя железный электрод поляризуется в данном случае катодно. В связи с этим предположили, что, несмотря на преимущественное растворение железа в виде двухвалентных ионов, оксидная пленка может образоваться при участии иоиов железа с валентностью более трех. Это возможно при условии постепенного окисления железа избытком кислорода в поверхностном слое. В подобном оксидном слое могут поэтому находиться наряду с оксидами F O и РегОз также высшие оксиды, наиример КеОг, которым отвечают более положительные потенциалы. Аналогично объясняется и пассивация никеля. [c.482]

    Окисление коксовых отложений на поверхности оксидов железа протекает по стадийному механизму. При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору [3.33]. Повышение энергии связи кислорода в этом случае должно способствовать снижению энергии активации окисления углерода и ускорению процесса регенерации. Кинетические кривые выгорания углеродистых отложений при различных температурах для за-углероженного оксида железа (П1) существенно различаются, соответственно будет различаться и фазовый состав образцов в процессе выгорания отложений. [c.69]

    Боксит. Этот адсорбент состоит в основном из окиси алюминия с примесью окисей железа. Он приготовляется путем термической активации природного боксита, измельченного и просеянного до частиц определенного размера. В основном он применяется для очистки смазочных масел, нетролатумов, парафина, трансформаторных масел, медицинских масел, керосина и для удаления сернистых соединений из бензина (Перко-процесс). Боксит регенерируется путем выжига окрашенных адсорбированных веществ нри 538—649° С, и его адсорбционные свойства несколько утрачивают свою силу после ряда первых регенераций. Затем он может регенерироваться почти неограниченно. Потери составляют около 1,5% за регенерацию. Его можно применять только для перколяции [28].1 По расчету на объем боксита требуется 3 — 4 объема фуллеровой земли для удаления окрашенных веществ из парафина, петролатумов и ярко окрашенных масел. Площадь поверхности, определенная по азоту, составляет около 180— 350 м г. [c.264]

    Оба метода активирования испытаны в том виде, в каком они применялись с целью получения активных контактов для обесцвечивания смазочных масел. Так как активная поверхность алюмосиликатных катализаторов, но-видимому, мало зависела от наблюдающегося в природе соотношения между основными компонентами глины — оксидами кремния, алюминия и железа, а также учитывая установленное С. В. Лебедевым влияние на каталитическую активность алюмосиликатов теплового активирования, следовало ожидать, что значительную роль в формировании активной новерхности катализатора будут играть режимы процессов активации и последующего процесса сушки активированной глины. Однако подобрать оптимальный режим активации для каждого образца глины отдельно практически не представлялось возможным, поэтому все исследованные образцы глин активировались серной кислотой, а часть глип — также и соляной кислотой. Влияние всех факторов процесса активации еш формирование каталитической активности глиегы детально изучено на образцах наиболее активных Г.ЕИЕЕ. [c.84]

    Глины состоят из гидросиликата алюминия (монтмориллонита) с заметным содержанием окиси железа, небольшим содержанием окисей щелочноземельных металлов и с еще меньшим содержанием щелочей. Вода содержится в них как в химически связанном виде, так и в гигроскопическом состоянии освобождение от последней улучшает активность глин. Это объясняется тем, что при удалении гигроскопической воды, расположенной между пластинками монтмориллонита и вокруг его кристаллов, освобождается большая адсорбционная поверхность, которая может быть усилена при активации. Удаление химически связанной воды приводит к понижению обесцвечивающей способности глин. Химический состав отбеливающих глин и земель не является показателем их адсорбирующей способности последняя зависит прежде всего от физического состояния вещества — оно должно быть коллоидно-алюрфным. Особенностью для коллоидных систем является их сильная склонность образовывать тела со значительно развитой поверхностью, способной адсорбировать различные вещества. В целях увеличения обесцвечивающей и каталитической способности бентонитовые глины должны пройти [c.71]

    Вторую стадию активации проводят раствором смеси нитратов редкоземельных металлов с целью введения в катализатор катионов лантаноидов и дополнительного удаления натрия (до 0,2%). Смесь нитратов лантаноидов растворяют в паровом конденсате и концентрированный раствор откачивают в рабочую емкость. Одновременно готовят аммиачную воду и откачивают в ту же емкость. В нее направляют и промывную воду после первого чана. В готовом растворе солей лантаноидов контролируют содержание железа (не более0,01 %), натрия (не более 0,1%) я свободной серной кислоты (не выше 20 л). Активирующий раствор из емкости прокачивают через теплообменник 27 и направляют в промывочные чаны на вторую стадию активации. Раствор проходит последовательно четыре чана 15, 16, 17 и 18) и возвращается в промежуточную емкость с паровым обогревом для использования его при приготовлении первого активирующего раствора. Продолжительность второй стадии активации 16 ч. [c.108]

    Эффективная энергия активации растворения металлов (железа, никеля, алюминия) в электролитах по химическому механизму, согласно данным Г. Г. Пенова, Т. К. Атанасян, С. П. Кузнецовой и др., в 1,5—2,0 раза больше, чем при растворении их с преобладанием электрохимического механизма, что находится в хорошем соответствии с теорией электрохимической коррозии металлов и подтверждает наличие химического механизма коррозии металлов в электролитах. [c.357]

    Начальные участки поляризационных кривых (рис. 293) указывают на преобладание катодного контроля при коррозии железа в расплаве Na l, а значение энергии активации катодного процесса в этой области (18 ккал/моль — рис. 294) близко к значению энергии активации вязкости Na l (13 ккал/моль), что указывает на контроль катодного процесса диффузией основного деполяризатора (кислорода) к катоду, скорость которой в значительной мере зависит от вязкости расплава. [c.409]

Рис. 294. Зависимость энергии активации катодного -процесса от потенциала при катодной поляризации железа в расплаве Na l (I d =0) Рис. 294. <a href="/info/362272">Зависимость энергии</a> активации катодного -<a href="/info/3407">процесса</a> от <a href="/info/3387">потенциала</a> при <a href="/info/15283">катодной поляризации</a> железа в расплаве Na l (I d =0)
    Для повышения каталитической активности монтмориллонит обрабатывают сильными минеральными кислотами. Результат химической активации зависит от природы глины, крепости кислоты, температуры и длительности обработки. Активация состоит в замене обменоспособных катинов водородом и удалении магния и железа, а также некоторой части алюминия. Кислотная обработка [c.11]

    При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору, и в уравнении Е = E + aq реализуется знак минус [105]. Повьппение энергии связи кислорода в этом случае должно способствовать уменьшению энергии активации окисления углерода и ускорению процесса регенерации. Выгоршше углерода интенсивней всего должно протекать в случае оксида железа (что и видно из рис. 2.21, а). [c.41]

    Значения кинетических характеристик, полученных для процесса образования углеродных отложений на поверхности катализаторов подгруппы железа в области температур 600-800°С, совпадают с литературными данными для процесса замедленного коксования и механизм образования углеродных отложений на поверхности гетерогенных катализаторов при темпчзатурах 600-800° С будет аналогичен механизму термического образования сажи. Это предположение согласуется с литературными данными по структуре этих веществ, порядку реакции, скорости реакции и энергии активации. [c.109]

    Открыты сотни веществ, ускоряющих реакцию окислення ЗОг, но были применены в производстве лишь три катализатора 1) металлическая платина 2) оксид железа 3) пятиоксид ванадия. На примерах действия этих катализаторов можно показать влияние понижения энергии активации и уменьшения порядка реакции на скорость процесса. Согласно уравнению 2502 + 02—>-250з скорость прямой реакции гомогенного некаталитического окисления 502 должна выражаться уравнением третьего порядка (порядок реакции п = 2+ 1 = 3)  [c.128]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Для гидрогеиолиза использован промотированный никелевый катал1изатор на носителе в суспендированном виде, в частности содержащий 20% никеля, 3% меди и 1% железа на диатомите. Температура активации катализатора 500 °С. [c.102]

    Другим направлением окислительного дегидрирования углеводорода является проведение процесса на промышленных цинк-железо-хромовых или каль-ций-никель-фосфатных катализаторах в присутствии кислорода. При добавлении небольших количеств О2 механизм процесса в сущности не меняется, т. е. включает стадию образования молекулярного водорода. Однако скорость брутто-реакции возрастает за счет частичного сгорания последнего, а также в результате уменьшения перепада температур в зоне реакции и частичной регенерации и активации катализатора. В то же время селективность процесса несколько снижается из-за глуф сого окисления (сгорания) некоторого количества целевых углеводородов, В цМЗм эффект от применения указанного приема, по-видимому, [c.358]

    Окись кальция и другие основные промоторы (исключая MgO, которая растворяется в магнетите) реагируют в первую очередь с двуокисью алюминия и двуокисью кремния, образуя стекловидное алюмосиликатное соединение и некоторое количество феррита кальция. После этого остается еще достаточное количество К2О, необходимого для активации железа. Возможно, в результате образования этих соединений СаО усиливает стабилизирующее действие AI2O3, предотвращающее спекание поверхности железа. Это также делает катализатор более устойчивым к отравлению серой и хлором. Некоторый избыток СаО растворяется в магнетите, и эта [c.160]

    На рис. 2.9 приведена зависимость привеса изолированных полимерными пленками образцов железа от времени выдержки в атмосфере НС1 при парциальном давлении паров воды 0,25 и НС1 10,6 мм рт. ст. Активация анодного процесса в данном случае происходит за счет диффузии через защитную пленку молекул НС1 с последующей их диссоциацией в адсорбционной пление влаги на поверхности железа. Скорость коррозии железа, однако, ив этом случае определяется не скоростью диффузии НС1, а количеством влаги, переносимой через пленку. Так, под толстой влагопроницаемой поливинилхлоридной пленкой скорость коррозии железа в 6—8 раз выше, чем под более тонкой, но менее влагопроница(шой полиэтиленовой пленкой. [c.34]

    Сильное влияние на параметры диффузии оказывают разного рода примеси на поверхности и в объеме твердых тел. Характер влияния некоторых легирующих элементов на параметры. диффузии углерода в у -железе, энергию активации Е и предэкспоненциальиый множитель Оо согласно работе [59] обобщены в табл. 2.9. [c.112]

    Для получения углегуминовых сорбентов авторами использован окисленный бурый уголь Загустайского месторождения. Содержание гуминовых кислот в угле составляет - 70% на органическую массу угля. Количество гидроксида натрия, для извлечения гуминовых кислот рассчитывали исходя из суммарного содержания кислых функциональных фупп, содержание которых составляет 6.1 мг экв/г. Во всех опытах количество гидроксида натрия было эквивалентно суммарному содержанию гидроксильных групп. Механообработку углей проводили в активаторе-измельчигеле АИ 2/150 (мельница планетарного типа, два сосуда по 150 мл, мелющие металлические шары d=8 мм). Продолжительность активации составила 5 мин. Изучение возможности использования полученных сорбентов для очистки воды от ионов железа проведено в статических условиях. Изменение концентрации ионов железа в растворе определяли колориметрически. Эксперимент показал удовлетворительную адсорбционную емкость сорбента по железу. Эффективность очистки составляет 70-80 %. [c.116]


Смотреть страницы где упоминается термин Железо, активация: [c.219]    [c.41]    [c.160]    [c.59]    [c.84]    [c.317]    [c.628]    [c.199]    [c.272]    [c.33]    [c.38]    [c.43]   
Лабораторные работы в органическом практикуме (1974) -- [ c.196 ]




ПОИСК







© 2025 chem21.info Реклама на сайте