Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород энергия связи

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]


    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]

    Свойства полисилоксанов в значительной степени определяются свойствами силоксановой группировки. Связь кремния с кислородом отличается большей термической стабильностью, чем органических полимеров, что определяется большей энергией образования связи. Так, энергия связи 81—О равна 89 ккал моль, а энергия [c.150]

    Известно много кислородсодержащих кислот фосфора. Их можно разделить на две группы не имеющие связи Р—Н и с такой связью. Кислоты второй группы менее устойчивы (энергия связи Р—О больше энергии связи Р—Н), поэтому они легко окисляются кислородом. [c.416]

    Еще более широкие возможности открывает варьирование состава минералов в силу их исключительного многообразия. Кварц и силикаты, слагающие подавляющее большинство-пород, содержат в основном связи Si—О и связи катион — кислород атомы алюминия могут быть катионами или заменять Si. Эти связи играют различную роль при разрушении силикатных минералов разных структурных типов [275]. В кварце и каркасных силикатах (полевых шпатах) обязательно рвутся силоксановые связи в цепочечных и ленточных си-ликатах возможно скольжение и разрыв по определенным плоскостям, образованным только связями Ме—О в островных силикатах связи Si—О—Si отсутствуют. Перечисленные связи различаются по геометрическим параметрам (длина, валентные углы), распределению электронной плотности и энергии связи колебания этих величин для отдельных классов силикатов имеют более узкие пределы, [276]. Важно, что во всем диапазоне изменений полярности связей Si—О они остаются существенно ковалентными, несмотря на большую разницу [c.93]


    Однако экспериментально наблюдаемые длина связи и энергия связи для молекулы О2, как было показано выше, полностью согласуются с простейшей двоесвязной структурой 0=0=. В гл. 12 мы убедимся, что удовлетворительное объяснение парамагнетизма и характера связи в молекуле кислорода достижимо в рамках теории молекулярных орбиталей. [c.470]

    В структуре I электронная плотность оттягивается от серы, в структуре II — от кислорода. Энергия связи Slp в свободном ли-ганде равна 162,2 эВ, а в координированном — 163,9 эВ. Следовательно, атом серы является донором и образуется структура 1. [c.262]

    Для брома (как и в случае кислорода) энергия связи двухатомной молекулы велика, но дополнительный выигрыш энергии при возникновении связей между этими молекулами (образование твердого или жидкого брома) мал. Поэтому и вероятность возникновения ассоциатов промежуточного размера невелика. Если они вообще и образуются, то только при относительно низкой температуре. [c.222]

    Использование современных методов исследования катализаторов (ЭПР, РФЭС, Оже-спектроскопии, дифракции медленных электронов, термодесорбции и др.) позволило выявить природу промотирующего действия различных элементов. Как следует из результатов большой группы работ, введение щелочных и щелочноземельных добавок в состав серебряного катализатора изменяет степень заполнения поверхности катализатора кислородом, энергию связи и соотношение различных форм кислорода - участников парциального и полного окисления этилена. Щелочные ионы в составе серебряных катализаторов способствуют адсорбции кислорода в молекулярной форме и увеличивают скорость рекомбинации атомов кислорода в 02 [42]. [c.35]

    Г.К. Боресковым установлено исключительно важное для теории и практики гетерогенного катализа явление изменения энергии активации реакции, а также энергии связи кислорода окисла в зависимости от степени окисления катализатора. Было обнаружено, что по мере удаления кислорода из окислов металлов энергия активации реакций их восстановления непрерывно возрастает. Это указывает на то, чт) поверхность катализатора неоднородна в отношении хемосорбции окислителя, [c.160]

    Низкие по сравнению с энергией связи Si—О значения Е объясняются, очевидно, образованием циклических переходных комплексов с участием р-электронов кислорода и З -орбиталей кремния, облегчающим перенос электронов, например, при следующих внутрицепных реакциях, протекающих параллельно с разными скоростями [58—61] (на схеме радикалы у кремния опущены)  [c.486]

    Измерения энергии связи кислорода с поверхностью окислов (qs) сопряжены с определенными трудностями. Опыт показывает, что величина q5 во многих случаях существенно зависит от степени заполнения поверхности кислородом — О (или от доли удаленного с поверхности кислорода Оо = 1 О, т. е. от степени восстановленности поверхности). Величина ф в свою очередь значительно изменяется в зависимости от условий обработки окислов, предшествующей измерениям ц,. [c.8]

Рис. 23-1. Уменьшение массы и энергия связи в расчете на 1 нуклон при образовании ядер из электронов, протонов и нейтронов. Для всех элементов после кислорода полная энергия Рис. 23-1. Уменьшение массы и <a href="/info/5059">энергия связи</a> в расчете на 1 нуклон при образовании ядер из электронов, протонов и нейтронов. Для всех <a href="/info/1683950">элементов после</a> <a href="/info/1845988">кислорода полная</a> энергия
    Рассмотренный механизм термокаталитической конверсии углеводородов в присутствии водяного пара включает в себя образование и разрушение промежуточных соединений катализаторов с кислородом. В соответствии с этим в цитируемых работах надежно установлено, что относительная активность веществ в отношении различных реакций с участием кислорода определяется главным образом энергией связи кислорода с катализатором q5. Общая закономерность, установленная в подавляющем большинстве указан- [c.12]

    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]


    О такой молекуле, как N2. с тройной связью между двумя атомами говорят, что она имеет порядок связи, равный трем. (Порядок связи-это число обобществляемых электронных пар.) Порядок связи в молекуле кислорода равен двум, а в молекуле Р,-единице. Чем выще порядок связи, тем прочнее связаны между собой атомы, тем больше энергия связи и короче сама связь. [c.468]

    Энергия связи О—Н равна 463 кДж моль Для того чтобы получить это значение, вам придется воспользоваться теплотой атомизации кислорода и теплотой образования паров воды, а не жидкой воды. [c.29]

    Ясно, что никелевый катализатор позволяет удалить кислород, серу, азот, сохраняя углеводородные цепи. Поэтому расчет по Баландину энергий связи в переходном комплексе позволяет на основе термодинамических расчетов предвидеть каталитическую активность. [c.311]

    Марголис [12] указала на существенную связь избирательности окисных катализаторов с такими факторами, как наличие недостроенной -оболочки у иона металла, работа выхода электрона окисла, геометрия кристаллической решетки. Гельбштейн с сотрудниками [14] предлагает в качестве определяющих критериев при подборе катализаторов окисления олефинов энергию связи кислород— [c.154]

    Так как эффективность процесса определяется прежде всего состоянием катализатора, то можно легко представить ситуацию при которой это состояние в нестационарном режиме обеспечивает большую активность и, что особенно важно, селективность катализатора. Очевидно, в искусственно создаваемом нестационарном режиме можно добиться состава катализатора, в принципе невозможного при неизменных условиях в газовой фазе. Это хорошо видно на примере раздельного механизма окислительновосстановительных реакпий, когда при повышенных температурах протекают полное окисление водорода, окиси углерода, углеводородов и многих других органических веш,еств, а также парциальное окисление олефинов, спиртов, ароматических соединений. Осуществляя раздельно взаимодействие кислорода с восстановленным катализатором, выведенным каким-либо образом из-зоны реакции, и затем взаимодействие реагирующего компонента с вводимым в зону реакции окисленным катализатором, можно значительно увеличить активность и избирательность процесса за счет того, что в таком нестационарном режиме катализатор может поддерживаться в состоянии, оптимальном по энергии связи кислорода с поверхностью. [c.17]

    Галогены непосредственно не взаимодействуют с кислородом. Это обусловлено небольшой энергией связи Г—О и невозможностью использовать высокие температуры для осуществления реакций [c.476]

    Надо учитывать, что энергия связи между атомами в молекуле отличается от энергии связи между теми же атомами при последовательном отделении их. Так, энергии связи между каждым из атомов водорода и атомом кислорода в молекуле воды одинаковы, но несколько меньше, чем энергия связи Н—О в гидроксиле.  [c.86]

    Согласно этой теории и учета баланса энергий связи, кислород из газовой фазы не мол<ет превращать Ag-Оадс в Ag-Oz, аде Из данного механизма следует, что максимально возможная селективность составляет 6/7, или 85,7%. В других аналогичных теориях она не превышает 80%, в экспериментах была достигнута более высокая селективность, и эти теории не подтверждаются практикой [36]. Воге и Адамс [37] констатировали, что существует обескураживающее количество данных о кинетике окисления этилена на серебре , и опубликовали хороший обзор результатов, полученных вплоть до 1967 г. [c.231]

    В основу вывода уравнений, регенерации авторами положены следующие представления о механизме протекания процесса. На поверхности катализатора имеются активные центры, представляющие собой определенное сочетание атомов (ионов) металла и кислорода. Во время регенерации они могут находиться в нескольких состояниях окисленном (состояние характеризуется максимальным содержанием кислорода в активном центре), восстановленном (пониженное содержание кислорода в активном центре) и частично или полностью закоксованным. Активные центры выполняют роль переносчиков кислорода из газовой среды к коксу. Активность их в отношении процесса регенерации зависит от энергии связи кислорода в активном центре. [c.37]

    Наблюдаемую особенность изменения каталитической активности в процессе регенерации в зависимости от природы оксида авторы объясняют влиянием энергии связи кислорода катализатора на скорость выгорания углеродистых отложений [104]. Энергия связи кислорода в оксиде железа(П1) значительно выше энергии связи для оксидов кобальта и никеля, значения которых близки. Установлено [104, 105], что при низких температурах регенерации процесс лимитируется отрывом кислорода от решетки оксида, и в уравнении, связывающем энергию активации процесса с энергией связи кислорода катализатора, Е = Ео щ, будет знак плюс. В этом случае снижение энергии связи кислорода должно уменьшать энергию активации процесса в целом и увеличивать скорость выгорания углерода. Следовательно, при 450 С наиболее медленно выгорание углерода протекает на оксиде железа(П1), так как кислород в данном случае связан наиболее прочно. [c.41]

    Молекула F2O2 полярна (ц = 1,44) и по строению подобна молекуле перекиси водорода (рис. IV-27). Она характеризуется параметрами d(FO)=l,58A, d(00) = = 1,22А, Z OOF = 110° при угле около 88° между связями F—О. Так как d(00) Б молекуле Оа равно 1,21 А, можно думать, чго присоединение к ней двух атомов фтора существенно не искажает ее внутреннюю структуру (т. е. что дифтордиоксиду отвечает формула F—ОвО—F с четырехвалентными атомами кислорода). Энергии связей 00 и 0F оцениваются соответственно в 135 и 18 ккал1моль. [c.243]

    Водородные связи в белках обладают рядом особенностей. Прежде всего, атом водорода расположен ближе к азоту, чем к кислороду. Энергия связи невелика и равна 1,4 ккал1моль, а ее длина — порядка 2,8 А. Благодаря ее полярности все атомы этой связи должны лежать на одной прямой (т. е. быть коллинеарны-ми), хотя и допустимо некоторое отклонение. Оценивая убыль энергии водородной связи, когда группы СО и ЫН находятся под углом друг к другу, Полинг заключил, что отклонение от коллинеарности не может превышать 20°. [c.91]

    Термическая деструкция (термолиз) химических волокон является радикально-цепной реакцией, так как в результате тепловых колебаний атомов й разрыва связей С—С, С—О, С—С1 и других образуются свободные радикалы, способствующие развитию и разветвлению цепей, образованию химических сшивок и т. п. В отсутствие кислорода энергия связей С—С для алифатических углеро-дов колеблется в пределах от 60 до 90 ккал/моль (в зависимости от размера и характера замещающих групп), а в пяти- и шестичленных "циклах или конденсированных ядрах она возрастает до ПО—120 ккал/моль. Наличие гетеросвязей типа С—С1, sN, С—ОН снижает температуру термодеструкции. Например, в поливинилхлоридных волокнах НС1 отщепляется при 100° С, в п0ли-акрилонитрильных волокнах азиновые кольца и сшивки образуются при 160—170° С, в целлюлозных волокнах отщепление воды (в вакууме) происходит при 260° С, а в полиэфирных волокнах выделение СОз начинается с 290° С. [c.337]

    Окисление коксовых отложений на поверхности оксидов железа протекает по стадийному механизму. При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору [3.33]. Повышение энергии связи кислорода в этом случае должно способствовать снижению энергии активации окисления углерода и ускорению процесса регенерации. Кинетические кривые выгорания углеродистых отложений при различных температурах для за-углероженного оксида железа (П1) существенно различаются, соответственно будет различаться и фазовый состав образцов в процессе выгорания отложений. [c.69]

    Связь между углеродом и фтором хотя и полярна, но мало поляризуема. Более того, по мере накопления атомов фтора в молекуле ее полярность уменьшается. Одновременно уменьшается длина связи С—F и увеличивается ее энергия [3—5]. Энергия связи С—F весьма велика (498 кДж/моль), и эта связь не рвется по гомолитическому механизму, не расщепляется кислородом при высокой температуре [6]. Единственным источником радикалов, инициирующих цепной деструктивный распад перфторнрованных углеводородов, является термический разрыв углерод-углеродной связи. [c.502]

    Согласно носледней схеме (в которой Ц1<фрамн занумерованы связи азот — кислород), связи I и 2 в молекуле НЫОз неоднна1совы связь I—двойная, а связь 2 — простая. В действительности же эти свя 1И во всех отношениях (энергия связи межъядерные расстояния N—О и т. д.) равноценны. Это означает, что ст >ук-ту )у молекулы НЫОз можно с равным основанием описать аналогичной ва-ле1П нон схемой  [c.140]

    Для описания межмолекулярного взаимодействля в расчетах методом Монте-Карло использовали потенциал Роулинсона [343]. В модели Роулинсона (Р УЬ) на атомах водорода воды располагаются положительные заряды, отрицательные заряды помещаются на линии, проходящей через атом кислорода перпендикулярно плоскости молекулы. Дипольный момент молекулы в этой модели равен 1,85 Д. Энергия связи димера воды 22,6 кДж/моль при равновесном расстоянии 0,269 нм. [c.122]

    ВИЯ. Однако в кремнии более высокий заряд ядра понижает энергию пустых З -орбиталей, и они оказываются ближе по энергии к 2р-орби-талям кислорода. Вследствие этого кислород может частично обобществлять свои неподеленные электронные пары с кремнием (рис. 21-8) в результате дативного взаимодействия, подобного Ь -> М-я- и М -> Ь-я-взаи.модействию в координационных комплексах, которое обсуждалось в разд. 20-3. Поскольку .у-орбиталь 51 простирается гораздо дальше в сторону атома О по сравнению с р-орбиталью при я-связи, атомы 51 и О не должны сближаться так сильно, как это требуется условиями образования двойной ря—ря-связи. Результатом этого обобществления неподеленных пар кислорода является то, что хотя энергия связи 51—81 на 171 кДж-мольменьше энергии связи С—С, связь 81—О прочнее, чем связь С—О, на 18 кДж-моль. [c.281]

    Метод перцептрона был реализован для прогнозирования селективности ряда реакций одного класса на фиксированном катализаторе на примере окисления углеводородов молекулярным кислородом на одном катализаторе УзОд 50]. Избирательность реакцш для 50 пар реагентов и продуктов была оценена дихотомией по принадлежности к одному из трех классов (границы но выходам О—10, 10—50 и более 50%). В качестве априорных признаков были выбраны 46 свойств молекул реагента и продукта. Признаки характеризовали энергетику молекул (энергию связей), стереоизомерические свойства, квантовохимические и другие свойства молекул. Правильность отнесения составила для первого класса 100%, для второго — 70, для третьего — 95%. [c.87]

    Два пика наблюдаются для каждой полностью занятой орбиталн, включая ls-орбиталь электронов оболочки кислорода [27]. Пики А, В. С и пики в области больших энергий связи, чем энергия пика Oi , являются пика-ми-сателл1гтами (см. ниже). [c.344]

    Пример такой структуры с пиками-сателлитами в спектре РФС изображен на рис. 16.12, где наблюдаются широкие пики, лежащие при более высоких энергиях связи, чем два пика для молекулы кислорода. Пики, помеченные буквами А, В и С, представляют собой полосы, характеризующие процесс встряхивания они возникают как сателлиты у пиков, обусловленных фотоионизацией валентных электронов. Аналогично рис. 16.17 демонстрирует структуру встряхивания для пика N5 молекулы азота. Пики, помеченные символами а, з, 4, 5 и а , обусловлены немонохроматичностью рентгеновского излучения Ка Мд. [c.353]

    Кокс предложил систему термов энергии связей для различных органических соединений, содержащих галогены, кислород, азот или серу, в известной степени связанную с системой Мейкла и ОТейра значением термов энергии связей С—С, С = С и С—Н. Термы определялись по теплотам образования отдельных соединений. Например, для связи атома фтора с атомом углерода бензольного кольца — по А//(1 расчете теплот атомизации соединений были приняты следующие значения теплот атомизации простых веществ графит—170,9 На —52,9 р2 - 18,5 СЬ - 28,94 Вг2(ж) - 26,71 Ь (кр) - 25,48 Оо —59,54 N2— 112,9 и 5 (ромб) —57 ккал/г-атом. [c.260]

    При высоких температурах выгорание углерода лимитируется присоединением кислорода к катализатору, и в уравнении Е = E + aq реализуется знак минус [105]. Повьппение энергии связи кислорода в этом случае должно способствовать уменьшению энергии активации окисления углерода и ускорению процесса регенерации. Выгоршше углерода интенсивней всего должно протекать в случае оксида железа (что и видно из рис. 2.21, а). [c.41]


Библиография для Кислород энергия связи: [c.352]   
Смотреть страницы где упоминается термин Кислород энергия связи: [c.408]    [c.75]    [c.83]    [c.168]    [c.95]    [c.315]    [c.160]    [c.341]    [c.342]    [c.352]    [c.260]   
Современная неорганическая химия Часть 3 (1969) -- [ c.2 , c.204 ]




ПОИСК





Смотрите так же термины и статьи:

Связь кислород кислород

Связь связь с энергией

Связь энергия Энергия связи

Энергии с кислородом

Энергия связи



© 2025 chem21.info Реклама на сайте