Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации эффективность

    Эффективная энергия активации при концентрационной поляризации, т. е. при диффузионном контроле процесса, представляет собой энергию активации вязкого течения раствора, которая для разбавленных водных растворов близка к энергии активации вязкости воды (табл. 50). [c.353]

    Малая скорость взаимодействия водорода с кислородом при низких температурах обусловлена высокой энергией активации этой реакции. Молекулы водорода и кислорода очень прочны любое столкновение между ними при комнатной температуре оказывается неэффективным. Лишь при повышенных температурах, когда кинетическая энергия сталкивающихся молекул делается большой, некоторые соударения молекул становятся эффективными и приводят к образованию активных центров. [c.346]


    В жидкой фазе стадия передачи энергии внутренним степеням свободы молекулы практически не зависит от температуры, поскольку частоты меж- и внутримолекулярных колебаний в жидкости остаются постоянными при изменении температуры. Температура влияет на образование ассоциатов и на перемещение ассоциатов, содержащих возбужденные молекулы. Зарождение цепей происходит вследствие реакций между предварительно возбужденными молекулами. По этой причине эффективная энергия активации реакций зарождения цепей по гомогенному механизму в жидкой фазе оказывается меньше, чем в газовой, на величину энергии возбуждения молекулы. [c.30]

    Прививка акрилонитрила идет в основном на цепи средней молекулярной массы. Полибутадиен и привитой сополимер бутадиена с акрилонитрилом, содержащие концевые карбоксильные группы, представляют собой ньютоновские жидкости, эффективная вязкость которых не зависит от приложенного напряжения сдвига. Зависимость логарифма вязкости от обратного значения абсолютной температуры представляют линии, весьма близкие к прямым. По тангенсу угла их наклона определено среднее значение мольной энергии активации вязкого течения Яв.т- Для полибутадиена с концевыми карбоксильными группами Ев.т равна 36 кДж/моль, а для привитого сополимера с акрилонитрилом — 58 кДж/моль. [c.430]

    Азф — энергия активации эффективная, Дж-моль  [c.3]

    Бимолекулярные реакции. Механизм бимолекулярных реакций. Связь между скоростью реакции, числом столкновений и энергией активации. Эффективные столкновения и роль пространственных факторов. Реакции с малой энергией активации. Свободные атомы и радикалы. Тримолекулярные реакции. Рекомбинация атомов. [c.217]

    В работе [Д.6.13] предложена модель кинетики блокировки поверхности, в частности, в результате ее закоксовывания, согласно которой молекула углеводорода в ходе превращений последовательно адсорбируется на небольших группах поверхностных активных центров. Каждая такая промежуточная частица является предшественником кокса. Это позволяет рассматривать реакцию образования кокса как ряд параллельных превращений, каждое из которых, согласно предположению автора, отличается значением энергии активации. Эффективность такого подхода к описанию коксоотложений в работе проиллюстрирована хорошим согласием между расчетной и экспериментальной зависимостью температуры процесса от времени. [c.257]


    В зависимости от летучести и устойчивости продуктов распада наблюдаются две-три стадии потери массы. Для первых двух стадий определены кинетические характеристики п - порядок реакции Е - энергия активации - эффективная константа скорости г - предэкспоненциальный [c.43]

    Эффективная энергия активации окисления капель топлива воздухом не превышает 12,6—16,7 кДж/моль. Образующиеся при этом продукты окисления — гидропероксиды, альдегиды, ответственные за реакции разветвления цепей, после испарения топлива инициируют реакции, приводящие к самовоспламенению. [c.136]

    Изучена [101] каталитическая активность в реакциях гидрирования бензола и этилена граней монокристаллов никеля и кристаллографически хорошо определенных частиц нанесенного Ni-катализатора диаметром 5,0 нм. Химически полированные кристаллы никеля, ориентированные по граням (110), (111), (100) очищали последовательным окислением и восстановлением прн 495 и 439°С. Показано, что каталитическая активность грани (111) несколько выше, чем для других граней. Активность ориентированного по грани (111) нанесенного катализатора несколько меньше, чем для случайно ориентированного. Эффективная энергия активации равна 46 кДж/моль. На основании этих данных был сделан вывод [101], что реакция гидрирования этилена более [c.55]

    Влияния карбоновых кислот на окисление топлив не обнаружено, что, по-видимому, объясняется близкими значениями эффективной энергии активации окисления кислот (130 кДж/моль) и углеводородов топлива. [c.50]

    Подставляя в эти уравнения значения (3.45) и (3.46), можно получить зависимость, связывающую Тв, То и эффективную энергию активации процесса самовоспламенения (Б)  [c.130]

    Согласно теории столкновений, скорость реакции равна произведению числа столкновений на выражение, учитывающее, что эффективными являются только столкновения молекул, обладающих надлежащим уровнем энергии. Число столкновений определяется на основе кинетической теории газов. Из закона же распределения энергии Максвелла следует, что доля общего числа молекул, соответствующая молекулам с энергией, превышающей средний уровень значений энергии активации, составляет Отсюда получается  [c.219]

    Хотя схема Норриша в настоящее время удовлетворительна с точки зрения кинетики, она вызывает возражения в другом отношении. Так как реакция [VI] характеризуется очень низкой энергией активации или полным отсутствием последней и, кроме того, концентрация формальдегида в смеси не превышает нескольких десятых процента, то эта реакция кажется наиболее предпочтительной, поскольку формальдегид в данном случае имеет большую вероятность столкновения, чем любая другая молекула. В частности, вероятность столкновения для молекулы формальдегида выше, чем для молекулы Н2О, которая обладает в 40 раз большей эффективностью, чем О2, в качестве третьей частицы в реакции (VI) [54]. В противном случае накопление Н2О при развитии реакции стало бы тормозить окисление метана, что в действительности не наблюдается. [c.247]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]

    При полимеризации в органических растворителях мольная энергия активации распада перекиси составляет 105 кДж/моль. Скорость распада и эффективность инициирования возрастают при перемешивании реакционной смеси. Увеличение концентрации метанола уменьшает эффективность инициирования за счет клеточного эффекта [33]. [c.423]


    Как же работает катализатор Реакция между двумя или более веществами может происходить, только если их молекулы при столкновении имеют достаточную для взаимодействия энергию и правильно расположены друг относительно друга. Минимальная энергия, необходимая для эффективного столкновения, называется энергией активации. Вы можете представить себе ее как барьер между реагентами и продуктами. Реагенты должны обладать достаточной энергией, чтобы преодолеть этот барьер и чтобы произошла реакция. Чем выше барьер, тем меньше молекул могут его преодолеть, тем медленнее происходит реакция. [c.422]

    Клк поставить опыт, чтобы определить эффективную энергию активации процесса растворения  [c.440]

    Из опытов при разных температурах вычисляют эффективную энергию активации Еа. [c.59]

    Определение зависимости коэффициента Л от обратной температуры позволяет ио уравнению Аррениуса оценить значение эффективной энергии активации укрупнения твердых частиц при окислении топлив растворенным кислородом. [c.258]

    Неравновесные реакции (слабая неравновесность). Макроскопическая скорость реакции много меньше макроскопической скорости всех релаксационных процессов. Однако макроскопический коэффициент скорости (см. (2.57)) есть среднее из всех микроскопических коэффициентов скорости молекул, находящихся на разных уровнях, и может случиться так, что микроскопические скорости реакций для некоторых квантовых состояний окажутся больше микроскопических скоростей релаксации. В этом случае Макроскопическое уравнение для скорости реакции, содержащее концентрации, построить все же можно, однако оно не будет иметь обычной Аррениусовой формы (1.77). Объясняется это тем, что макроскопическая скорость определяется лишь скоростью активации, а поскольку вблизи порога активации имеет место обеднение высокоэнергетической части распределения, то средняя энергия активных молекул (т. е. молекул, имеющих запас энергии выше энергии активации Е > Ед и в принципе способных к реакции) меньше средней энергии активных молекул для случая равновесного распределения Е < Е . Это вызывает повышение эффективной энергии активации, причем величина повышения определяется механизмом активации (сильные столкновения либо многоступенчатая активация — дезактивация). [c.97]

    Соотношения размеров поры и молекул, участвующих в каталитическом процессе (исходных веществ и в том числе нейтральных примесей и каталитических ядов, промежуточных комплексов и продуктов реакций), определяют структурную возможность осуществления данного набора каталитических реакций в порах данного размера. Перекрывание электрических полей противоположных стенок норы или изменение строения электрического поля катализатора вследствие искривления его поверхности в микропорах может существенно повлиять на величину адсорбции и энергию активации каталитических реакций. Изменение расположения и взаимного влияния активных центров на сильно искривленной поверхности катализатора изменяет его активность, селективность и стойкость к отравлению, вызывает новые побочные реакции. При этом тонкие поры, сопоставимые с размерами молекул реагирующих веществ, инертных примесей или продуктов реакций, могут уже в самом начале процесса оказаться полностью исключенными из участия в нем в результате геометрического несоответствия размеров молекул и пор. Это происходит в результате чрезвычайно сильной адсорбции веществ, которые, прочно фиксируясь в порах катализатора, будут экранировать их, играя роль порового яда . В таких случаях целесообразно говорить об эффективной микропористости катализатора. Для пор надмолекулярных размеров возможно также интенсивное взаимодействие электронных полей молекул и стенок пор, изменяющее скорости диффузии веществ в порах [53]. [c.140]

    Е — эффективная энергия активации, кДж/кмоль  [c.139]

    Описанное выше соотношение между скоростью химической коррозии металлов и температурой может быть осложнено или нарушено, если с изменением температуры изменяется структура или другие свойства металла или образующейся на нем пленки продуктов коррозии. Довольно часто прямая lg к (или lg г/) = = / (1/Т) имеет изломы (рис. 84 и 85) и ее отдельным участкам соответствуют разные значения эффективной энергии активации Q, характеризующие зависимость скорости процесса от температуры и обусловленные качественными изменениями в металле, в образующейся пленке продуктов коррозии и в механизме протекания процесса. [c.124]

    Эти отношения не очень чувствительны к изменению температуры. Таким образом, R (Н2/СН4) будет иметь примерно одну и ту же величину при 850° К. Ингибирование С2Н4 только несколько более эффективно при более низких температурах, так как разность энергий активации реакций (6) и (7) равна примерно 4 ккал. [c.311]

    Для реакции Вгг [см. уравнения (XVII.2.1) и (XVII.2.2)] это отношение увеличивается за счет того, что стерический множитель реакции 1 приблизительно равен 10 , тогда как для реакции 1 он равен 10 . Таким образом, реакция на поверхности не имеет существенного значения до тех пор, нока отношение поверхность/объем по порядку величины меньше 10 (обычно это отношение близко к 1 для большинства реакционных сосудов) или энергия активации на поверхности на 15 ккал и более (при 300° К) не достигает энергии активации гомогенной реакции при уменьшении давления роль реакции на поверхности возрастает. Такие чисто практические вычисления, как будет показано, вообще пригодны для сравнения скоростей гомогенных и гетерогенных реакций. Заметим в связи с этим, что эффективные поверхности большинства тонко измельченных промышленных катализаторов составляют 10—200 м г, или около 10 см 1г. Такая относительно большая поверхность катализатора увеличивает соотношение частот соударений. [c.535]

    На рис. 3.16 приведены типичные результаты исследований самовоспламенения распыленных жидких топлив методом бомбы. Излом в зависимости Igx —IIT свидетельствует об изменении механизма самовоспламенения топлива в низко- и высокотемпературной областях. Это различие подтверждается результатами определений эффективной энергии активации процесса, которая для низкотемпературной ветви равна 146 кДж/моль (цетен) и 209 кДж/моль (бензол), а для высокотемпературной ветви равна 26,8 кДж/моль (бензол, цетен). [c.136]

    Полученные результаты допускают различную интерпретацию. Часто существование излома и низкое значение эффективной энергии активации процесса в области высоких температур рассматривают как доказательство лимитирующего влияния испарения топлива. Однако при этом не учитывается, что в случае лимитирующего влияния испарения эффективная энергия активации процесса в высокотемпературной области для бензола и цетена должна быть различной, равной их теплотам испарения (30,75 и 51,10 кДж/моль соответственно), чего не наблюдается в опыте. Кроме того, значения IgXi при постоянной температуре для легко испаряющегося бензола (т. кип. 80,1 °С) должны располагаться ниже, чем для трудно испаряющегося цетена (т. кип. 274 °С), чего также не наблюдается в опыте. Нельзя объяснить существование излома и тем, что в области низких температур преобладает гетерогенный (пристеночный) механизм самовоспламенения [155]. В этом случае температура, при которой наблюдается излом, для трудно испаряющегося цетена должна быть выше, чем для бензола. Опыт свидетельствует об обратном. Причину излома зависимости IgXj—1/Т можно объяснить различием механизма газо- и жидкофазного окисления топлив, аномально высокой скоростью окисления капель топлива. [c.136]

    При т- сопз1 Гв является функцией эффективной энергии активации и определяется главным образом реакционной способностью смеси. Например, Гв н-гептана и изооктана в двигателе при скорости 2000 об/мин оказались равными соответственно 775 и 1020°С. [c.139]

    Анализ полученных продуктов показывает, что вопреки мерам предосторожности побочные реакции все же имеют место, однако принимается, что их влияние на измеряемую энергию активации незначительно. К недостаткам этого метода следует отнести и то обстоятельство, что из-за большой скорости потока определяемое значение температуры газа не вполне достоверно. Наконец, давление реагирующих веществ может меняться лишь в ограниченном интервале, что затрудняет проверку, действительно ли реакция соответствует простой мономолекулярной реакции. Однако, несмотря на все недостатки, метод является весьма эффективным, и Э1]ергии диссоциации связи в лучших случаях могут быть измерены с точностью до 2—3 ккал. В других случаях предполагаемые механизмы реакций недостаточно- хорошо доказаны и результаты вызывают сомнение. Хорошей проверкой результатов определения энергии диссоциации спязи, полученных кинотпческнм нутом, яв гяются данные по взаимодействию электронов. Этот метод [18, 46, 47] состоит в наблюдении потенциалов появления (.4 ) в масс-стгоктрометре для следующих типов реакций  [c.15]

    Энергией активации реакции называется минимальная энергия (в расчете на 1 г-моль), которой должны обладать реагирующие частицы, чтобы столкновение между ними привело к реакции. Частицы, энергия которых больиге или равна , называются активными. Эта энергия необходима для преодоления энергетического барьера реакции, т. е. по современным представлениям, для преодоления энергии отталкивания электронных облаков сталкивающихся молекул. Столкновение будет эффективным, если суммарная величина энергии сталкивающихся частиц равна или больше энергии активации Е, характерной для данной реакции. Если реакция сложная (протекает в несколько стадий), то параметр Е в уравнении Аррениуса не имеет простого физического смысла и представляет некоторую функцию энергий активации отдельных стадий или вообще эмпирическую величину. Одиако и нри этом [c.339]


Смотреть страницы где упоминается термин Энергия активации эффективность: [c.291]    [c.275]    [c.343]    [c.4]    [c.41]    [c.225]    [c.128]    [c.136]    [c.137]    [c.142]    [c.219]    [c.321]    [c.127]    [c.340]    [c.342]    [c.403]    [c.410]    [c.123]    [c.322]    [c.353]   
Успехи стереохимии (1961) -- [ c.614 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия активации

Энергия эффективная



© 2025 chem21.info Реклама на сайте