Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронный парамагнитный резонанс. Магнитный резонанс электронный парамагнитный

    Для экспериментального исследования строения молекулы помимо химических методов используют физические, при проведении которых не теряется химическая индивидуальность вещества. К физическим инструментальным методам относят эмиссионную спектроскопию, рентгенографию, электронографию, нейтронографию, магнитную спектроскопию [электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР)], мольную рефракцию, парахор и магнитную восприимчивость. Последние три экспериментально более простых метода основаны на установлении физических свойств — характеристик вещества, обладающих аддитивностью, т. е. подчиняющихся правилу сложения. Мольная рефракция и парахор равны сумме аналогичных величин для атомов или ионов, из которых составлена молекула (аддитивное свойство), и поправок (инкрементов) на кратные связи, циклы н места положения отдельных атомов и групп, характеризующих структурные особенности молекулы (конститутивное свойство). Многие физические методы исследования строения молекулы используют и как методы физико-химического анализа. [c.4]


    Молекулярный и функциональный К. а. проводят с помощью инфракрасной спектроскопии, комбинационного рассеяния спектроскопии, ядерного магнитного резонанса, электронного парамагнитного резонанса. Особое место в совр, К. а. занимает масс-спектрометрия и хромато-масс-спектрометрия (ниж. предел обнаружения-10 % по массе). [c.360]

    Состояния мол. систем, переходы между к-рыми проявляются в виде тех или иных М. с., имеют разную природу и сильно различаются по энергии. Уровни энергии иек-рых видов расположены далеко друг от друга, так что при переходах молекула поглощает или испускает высокочастотное излучение. Расстояние между уровнями др. природы бывает мало, а в нек-рых случаях в отсутствие внеш. поля уровни сливаются (вырождаются). При малых разностях энергий переходы наблюдаются в низкочастотной области. Напр., ядра атомов нек-рых элементов обладают собств. магн. моментом и электрич. квадрупольным моментом, связанным со спином. Электроны также имеют магн. момент, связанный с их спином. В отсутствие внеш. поля ориентации магн. моментов произвольны, т.е. они не квантуются и соответствующие энергетич. состояния вырождены. При наложении внеш. постоянного магн. поля происходит снятие вырождения и возможны переходы между уровнями энергии, наблюдаемые в радиочастотной области спектра. Так возникают спектры ЯМР и ЭПР (см. Ядерный магнитный резонанс. Электронный парамагнитный резонанс). [c.119]

    В настоящее время для изучения полимеров ис пользуются рентгенография, двойное лучепреломление в потоке, ядерно-магнитный резонанс, электронно-парамагнитный резонанс, электронная микроскопия [27]. [c.88]

    Нарушенное полное внутреннее отражение Фурье-спектроскопия/Преобразование Фурье Лазерная Раман-спектроскопия (спектроскопия комбинационного рассеяния) Ядерный магнитный резонанс Электронный парамагнитный резонанс Автоионная микроскопия (микроскопия испускаемых ионов  [c.157]

    Многие методы наблюдения быстрых реакций комбинировали с использованием низких температур. Например, была разра-ботана аппаратура, действующая по принципу остановленной струи (см. стр. 55), которая работает при температурах до —120° . Это устройство позволяет наблюдать реакции с временем полупревращения порядка нескольких миллисекунд. Таким образом, интервал скоростей, доступный исследованию, возрастает на четыре порядка и данную реакцию можно исследовать в очень большом интервале температур (стр. 62). Метод остановки реакции (см. стр. 33) был разработан для использования вплоть до —100° . Флеш-метод, методы флуоресцентный, ядерного магнитного резонанса, электронного парамагнитного резонанса и ультразвуковой релаксации также пригодны для работы при низких температурах эти методы имеют то преимущество, что реакцию не нужно начинать смешиванием. [c.31]


    Магнитные Р. я, обусловлены установлением статистич. равновесия в системе магнитных моментов, связанных с полимерным веществом. Носители магнитных моментов могут иметь различную природу (электроны, обладающие собственными и орбитальными магнитными моментами ядра атомов, обладающие собственными магнитными моментами) и взаимодействовать друг с другом, поэтому магнитные Р. я. болео сложны и разнообразны но сравнению с электрич. Р. я. (см. Ядерный магнитный резонанс, Электронный парамагнитный резонанс, Ядерный квадрупольный резонанс). [c.165]

    Большое количество информации, получаемой экспериментальным путем с помощью новых методов исследования строения вещества (молекулярные спектры, ядерный магнитный резонанс, электронный парамагнитный резонанс, дифракция электронов и т. д.), позволяет уточнять существующие теории и расчеты. Даже в простых молекулах, построенных за счет ковалентной неполярной связи, иногда получается несовпадение теории с экспериментом. [c.90]

    II. В высокочастотной области, соответствующей колебательным движениям малых и даже очень малых групп (атомы водорода, отдельные электроны), зондирование структуры основано на несколько ином принципе. Возникновение организованных, в первую очередь кристаллических, структур сразу же резко ограничивает подвижность наблюдаемых при соответствующей частоте групп. По аналогии с температурными искажениями релаксационного спектра это должно приводить к смещению или размазыванию резонансных линий. В радиочастотном диапазоне это может быть расширение линий протонного магнитного резонанса при введении в полимер. электронного парамагнитного зонда — какого-либо устойчивого свободного радикала— характер его ЭПР-сигнала меняется в зависимости от плотности окружения, т. е. от того, находится ли он в кристаллической, жидкокристаллической или изотропной (аморфной) области. В оптическом диапазоне по тем же причинам могут изменяться форма, положение и интенсивность полос колебательных спектров (часто приходится, например, встречаться с термином кристаллическая полоса ). Можно вводить в-полимер электронный зонд— люминофор (например, антрацен) и по изменениям спектральных характеристик поляризованной люминесценции снова судить о подвижности или плотности тех участков, в которых расположен люминофор. [c.54]

    Строение непредельных нитросоединений исследовалось различными физическими и физико-химическими методами рентгеноструктурного анализа, дипольных моментов, ядерного магнитного резонанса, электронного парамагнитного резонанса, рефрактометрии, инфракрасной и ультрафиолетовой спектроскопии, спектров комбинационного рассеяния света, полярографии. [c.187]

    Ядерный магнитный резонанс. Явление ядерного магнитного резонанса заключается в избирательном поглощении радиоволн магнитными ядрами, помещенными в магнитное поле. Эф кт ЯМР открыт Блохом и Перселлом (1946). Теория и экспериментальное наблюдение ЯМР имеют много общего с электронным парамагнитным резонансом. Различие этих двух явлений состоит лишь в природе магнетизма. [c.64]

    Применение спектроскопии магнитного резонанса привело к развитию новых, весьма совершенных и тонких методов исследования ионов и ионных пар. Магнитный резонанс позволяет не только непосредственно и однозначно установить образование ионных пар, но и дает сведения о структуре, степени участия растворителя в процессе образования пары, локализации одного иона в паре относительно другого, характере движения ионов в паре, частоте этого движения и т. п. В пятой главе Исследование ионных пар методом электронного парамагнитного резонанса Говард Шарп и Мартин Саймонс дают весьма полный и критический обзор богатого и разнообразного экспериментального материала. Большое число данных четко и систематически представлено в таблицах и графиках. Смысл этих данных разъясняется просто и ясно, причем авторы уделяют достаточно внимания тем основополагающим физическим принципам, на которых основаны конечные выводы. Таким образом,, читателю становится понятно, что вообще можно узнать из экспериментов по электронному парамагнитному резонансу и как этот метод использовать при решении своих конкретных задач. [c.11]

    Методы ДОВ и КД наравне с рентгеноструктурным анализом, методами ядерного магнитного и электронного парамагнитного резонансов, УФ- и ИК-спектрофотометрией стали могущественными орудиями исследования конформационных состояний оптически активных веществ. Признание методов ДОВ и КД объясняется их огромной чувствительностью (для снятия спектра достаточно 10- — 10 г вещества), простотой работы на этих приборах. Опыт показывает, что в настоящее время именно ДОВ и КД являются наилучшими конформационными характеристиками вещества в растворе. [c.32]

    Абсорбционная спектроскопия парамагнитного резонанса является методом, который может быть применен к молекулам, содержащим атомы или ионы с неспаренными электронами. Магнитные моменты здесь примерно в 2000 раз больше ядерных магнитных моментов и поэтому вызывают поглощение энергии в микроволновой области (обычно в области длин волн от 4 до 1 см). Это приводит к изменению ориентации магнитного момента при переходе из одного разрешенного положения в другое. Истинная поглощенная частота зависит от магнитного поля, и, следовательно, путем изменения поля поглощение может быть определено по некоторой микроволновой частоте. [c.197]


    Если к воде добавить парамагнитные катионы, линия резонанса уширяется, так же как линия протона [68, 69, 72]. Это можно объяснить, по крайней мере частично, тем, что молекулы ОНз входят в первую координационную оболочку парамагнитного катиона. Сильное магнитное поле, обусловленное неспаренным электроном, магнитный момент которого превышает магнитный момент ядра примерно в 10 раз, облегчает изменение спинов ядер, расположенных вблизи. Уширение зависит от времени жизни т ядра 0 между изменениями спина и, следовательно, связано с константой скорости (т ) обмена молекул воды между массой растворителя и первой координационной оболочкой катиона (в действительности наблюдаемое уширение дает только нижний предел скорости обмена). Была предложена общая теория [70, 72]. Предположение о том, что большая часть уширения обусловлена обменом молекул растворителя, подтверждается тем фактом, что оно минимально для иона Сг(Н20) +, несмотря на его большой парамагнитный момент этот ион, как известно из опытов по изотопному разбавлению, только медленно обменивает воду в водных растворах (см. [42], гл. 2). [c.255]

    Ядерный магнитный и электронный парамагнитный резонанс имеют много общего. Последний подробно рассмотрен в гл. V. Поэтому ниже лишь кратко описана суть ЯМР. При этом основное внимание уделено явлениям, специфичным для ядерного магнитного резонанса. Подробное изложение принципов ЯМР можно найти в специальной литературе, приведенной в конце текста. [c.115]

    В случае магнитного резонанса электронного спина, электронного парамагнитного резонанса (ЭПР), связь спина электрона с магнитным моментом атомного ядра приводит к весьма сложному расщеплению, которое называется сверхтонкой структурой спектра ЭПР. В ЯМР соответствующее расщепление резонансных линий, как правило, не возникает, так как вследствие быстрой спин-решеточной релаксации электронных спинов скорость переходов между спиновыми состояниями, соответствующими ориентациям спина по полю и против поля (т.е. между состояниями, характеризуемыми магнитными квантовыми числами /Иi = 1/2 и -1/2), так велика, что ядерный спин "видит" некое усредненное состояние. Однако поскольку всегда несколько больше магнитных моментов электронов ориентировано по полю, чем против поля, аналогично тому, как это ранее было показано для магнитных моментов ядер/г/, то возникающий при этом результирующий электронный магнитный момент является причиной наблюдаемых парамагнитных свойств веществ, содержащих свободные радикалы и парамагнитные ионы взаимодействие ядерного спина с электронным приводит к парамагнитному сдвигу сигналов ЯМР, и, кроме того, включается дополнительный механизм релаксации, к рассмотрению которого вернемся в разделе 1.3.7. [c.33]

    Одной из главнейших задач современной науки является изучение строения и свойств многоатомных молекул. В последние два десятилетия наряду с традиционными химическими методами все большее, а иногда и решающее значение приобретают различные физические методы исследования, в частности, методы, основанные на изучении энергетических уровней многоатомных молекул. К этим методам относятся методы электронной, колебательной и вращательной спектроскопии, электронного парамагнитного резонанса (ЭПР), ядерного магнитного резонанса (ЯМР) и др. Одно из основных преимуществ этих методов заключается в возможности изучения молекул и молекулярных ассоциатов в любом агрегатном состоянии, при разных температурах и давлениях и без разрушения молекул, как это обычно имеет место при применении химических методов. [c.168]

    Обычные молекулы, в которых все электроны спарены, не дают спектров электронного парамагнитного резонанса, поскольку у двух электронов, занимающих одну молекулярную орбиту, спины должны быть антипараллельны, так что их взаимодействия с магнитным полем компенсируют друг друга. Иначе обстоит дело в случае радикалов, в которых, по определению, по крайней мере один электрон должен быть неспаренным. Поэтому неспаренные электроны в радикалах можно исследовать с помощью спектров электронного парамагнитного резонанса. [c.100]

    В последние годы получили большое развитие и распространение спектральный, хроматографический, масс-спектрометрический методы, методы ядерного магнитного и электронного парамагнитного резонанса и другие. [c.4]

    ПРИМЕНЕНИЕ СПЕКТРОСКОПИИ ЯДЕРНОГО МАГНИТНОГО И ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСОВ В ИССЛЕДОВАНИИ НЕФТЕЙ [c.345]

    Сведения о состоянии элементов и их соединений в растворах и других анализируемых объектах очень важны для аналитической химии. Поэтому исследованию не только комплексообразования, но и гидролиза, полимеризации придается большое значение. Для этого используют различные методы электронную и инфракрасную спектроскопию, методы электронного парамагнитного резонанса, ядерного магнитного резонанса, электрофорез. Особенно широко распространены химические методы, основанные на законе действия масс. Большой вклад в эту область внесли школы И. П, Алимарина и А, К- Бабко. [c.41]

    Большое количество информации, получаемой экспериментальным путем с помошью новых методов исследования строения ве-шестяа (молекулярные спектры, ядерный магнитный резонанс, электронный парамагнитный резонанс, дифракция электронов и т. д.) позволяет уточнять существующие теории и расчеты. Даже в простых молекулах, построенных за счет ковалентной неполярной связи, иногда получается несовпадение теории с экспериментом. Примером может служить молекула О2 (см. табл. 3.2), для объяснения парамагнетизма которой приходится допустить или наличие трехэлектронной связи за счет взаимодействия электронов неподеленных электронных пар, или миграцию электронов с одной р-орбиталн на другую, так чтобы в каждый момент в молекуле кислорода имелись непарные электроны, создающие магнитный момент. [c.86]

    Излучат. К. п. классифицируют по типам квантовых состояний, между к-рыми происходит переход. Электронные К.п, обусловлены изменением электронного распределения-переходами внеш. (валентных) электронов между орбиталями (типичные энергии я 2,6-10 Дж/моль, частоты излучения лежат в видимой и УФ областях спектра), ионизацией внутр. электронов (для элементов с зарядом ядра 2 т 10 А я 1,3 -10 Дж/моль, излучение в рентгеновском диапазоне), аннигиляцией электронно-позитронных пар (Д % 1,3 10 Дж/моль, излучение в /-диапазоне). При переходах из возбужденных электронных состояний в основное различают флуоресценцию (оба состояния, связанные К. п., имеют одинаковую мульти-метность) и фосфоресценцию (мультиплетность возбужденного состояния отличается от мультиплетности основного) (см. Люминесценция). Колебат. К. п. связаны с внутримол. процессами, сопровождающимися перестройкой ядерной подсистемы (Д % 1 10 -5-Ю Дж/моль, излучение в ИК диапазоне), вращат. К. п.-с из.менением вращат. состояний молекул (10-10 см я 1,2-10 -1,2 х X 10 Дж/моль, излучение в микроволновой и радиочастотной областях спектра). Как правило, в мол. системах при электронных К. п. происходит изменение колебат. состояний, поэтому соответствующие К. п. наз. электронно-колебательными. Отдельно выделяют К. п., связанные с изменением ориентации спина электрона или атомных ядер (эти переходы оказываются возможными благодаря расщеплению энергетич. уровней системы в магн. поле), изменением ориентации квадрупольного электрич. момента ядер в электрич. поле. Об использовании указанных К. п. в хим. анализе и для изучения структуры молекул см. Вращательные спектры. Колебательные спектры. Электронные спектры, Мёссбауэровская спектроскопия, Электронный парамагнитный резонанс, Ядерный магнитный резонанс, Ядерный квадрупольный резонанс. Рентгеновская спектроскопия. Фотоэлектронная спектроскопия. [c.368]

    При исследовании лигнинов в настоящее время очень широко используются спектральные методы (ультрафиолетовая и инфракрасная спектроскопия, ядерный магнитный резонанс, электронный парамагнитный резонанс). С помощью этих методов изучают структуру лнгнина и происходящие в ней изменения прн химической переработке растительного сырья и технических лигнинов. [c.414]

    Основные задачи выделение в индивидуальном состоя -нии изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтра-цни, ультрацентрнфугирования, противоточного распределения и т. п. установление структуры, включая пространственное строение, на основе подходов органической и физико-органической химии с применением масс-спектрометрии, различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа, ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и т. п. в сочетании с расчетами на ЭВМ химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных,— с целью подтверждения структуры, выяснения связи строения и биологической функции, получения практически ценных препаратов биологическое тестирование полученных соединений in vilro и in vivo. [c.11]

    Парамагнитный резонанс. Измерение спектров электронного парамагнитного резонанса (ЭПР) твердых веществ непосредственно в процессе облучения быстрыми электронами было впервые осуществлено в 1958 г. [55]. В установке использовался спектрометр ЭПР с высокочастотной модуляцией магнитного поля, работающий на длине волны —3,2 см [56]. Поглощающей ячейкой служил прямоугольный резонатор типа Hoi2- Пучок электронов, создаваемый электронной ускорительной трубкой, пропускался через цилиндрический канал в одном из полюсных наконечников магнита и выводился через алюминиевую фольгу из вакуумной части установки. Электроны, пройдя ионизационную камеру, попадали на образец через отверстие в стенке резонатора. Некоторое ухудшение однородности магнитного поля, обусловленное наличием канала в полюсном наконечнике-магнита, практически не ухудшало разрешающей силы спек- [c.41]

    Интересно отметить, что протонный химический сдвиг в арилироваиных боразинах наблюдают в относительно высоком поле [31, 157]. На основании данных по инфракрасным спектрам Бехер и Фрик [153] впервые высказали предположение, что в таких замещенных боразинах ароматическое ядро ориентировано перпендикулярно к плоскости боразинового кольца. Данные протонного магнитного резонанса, по-видимому, подтверждают это предположение, ибо установлено, что экранирующий эффект такого ароматического кольца на метиленовые группы имеет место только выше плоскости цикла [142]. В заключение следует отметить, что боразины не дают спектров электронного парамагнитного резонанса [141]. [c.173]

    Одним из наиболее важных преимуществ этих методов яв 1яется то, что по сравнению с другими методами определения структуры (рентгеновская дифракция, ядерный магнитный резонанс, электронный парамагнитный резонанс и др.) они дают определенную информацию о строении молекулы в короткий срок и без трудоемких вычислений. [c.106]

    Наряду с традиционной задачей синтеза новых соединений современная химия уделяет большое внимание изучению электронного строения соединений и его связи с физико-химическими свойствами. Это не удивительно. Область химических исследований настолько расширилась, число эмпирических закономерностей, установленных для отдельных классов соединений, настолько велике, что желание исс.ледователя навести порядок в море эксне-рил1ентальных фактов сейчас не только естественно, но и необходимо. Это может быть сделано лишь с привлечением новейших физических методов, как экспериментальных, так и теоретических. Многие экспериментальные методы изучения структуры и свойств соединений (рентгеноэлектронная, оптическая и инфракрасная спектроскопия, ядерный магнитный резонанс, электронный парамагнитный резонанс и др.) стали неотъемлемым элементом химических исследований. [c.3]

    Наличие электронного спина и связанного с ним магнитного момента lie обусловливает возможность снятия вырождения спиновых состояний внешним магнитным полем и индуцирования переходов между ними. Эти переходы происходят с поглощением энергии электромагнитного излучения в микроволновой (30...2 мм) области (СВЧ диапазон 9...35 ГГц интервал значений индукции постоянного магнитного поля 0,34—1,25 Т), что и называют электронным парамагнитным резонансом. В зарубежной литературе используется термин электронный спиновый резонанс (ESR), однако в рассматриваемом методе радиоспектроскопии состояния из-за спинорбитальной связи не являются чисто спиновыми, поэтому более адекватно название ЭПР или даже парамагнитный резонанс. [c.54]

    Однако, если атом входит в состав молекулы, так что сферическая симметрия атома теряется, расчет становится более сложным. А. Сейка и К. Сликтер (19Е4 г.) предложили рассматривать общее экранирование как возникающее в результате сложения нескольких эффектов. Один из них — диамагнитное экранирование за счет электронов данного атома, которое можно рассчитать по формуле (38) для атомов. Однако вклад диамагнитного экранирования будет частично компенсирован вторым членом, парамагнитным, имеющим противоположный знак, хотя и обусловленым теми же самыми электронами. Этот член отражает тот факт, что молекула теряет сферическую симметрию и потому ноле, индуцируемое в направлении, противоположном Но, соответственно уменьшается. Иное положение состоит в том, что в присутствии магнитного поля будет иметь место некоторое смешение основного состояния молекулы с возбужденными электронными состояниями подходящей симметрии. В случае протонов вклад парамагнитной составляющей в константу экранирования является незначительным (им обычно пренебрегают), но при наблюдении магнитного резонанса на ядрах с низколежащими возбужденными уровнями (например, Р, и др.) парамагнитная составляющая может иметь большую величину. В 1957 году Дж. Гриффит и Л. Оргел, рассматривая химические сдвиги Со в октаэдрических комплексах Со +, получили парамагнитный вклад, который можно рассчитать по уравнению [c.64]

    Довольно широкое применение в фотохимии при исследовании промежуточных продуктов нашли методы магнитного резонанса. Для исследований как дублетных радикалов, так и молекул в триплетном возбужденном состоянии используется собственно метод электронного парамагнитного резонанса (ЭПР). Хотя в газовой фазе молекулы с орбитальным моментом (например, Ог Дг) также дают парамагнитный резонанс, основной областью применения этого метода являются исследования в жидкой фазе. Один из недостатков собственно метода ЭПР заключается в ограниченном временном разрешении (около I мкс), преимущественно обусловленном параметрами микроволнового резонатора. Метод спинового эха позволяет достигать временного разрешения примерно 50 нс. Однако наилучшее временное разрешение порядка нескольких наносекунд дает метод оптически детектируемого магнитного резонанса (ОДМР). Этот метод относится к большой группе методов двойного резонанса. Переход в микроволновой области распознается не по поглощению, непосредственно измеряемому в микроволновом диапазоне, а по некоторому эффекту, например изменению поглощения или флуоресценции в видимой области вследствие изменений взаимодействия при перераспределении заселенностей спиновых состояний. Мы уже ссылались (см. разд. 3.7) на метод химической поляризации ядер и метод химически индуцированной динамической поляризации электронного спина при изучении поведения радикальных пар. В первом методе используется поляризация рекомбинирующих мо- [c.198]

    Можно предположить, что в постоянном ноле система находится в тепловом равновесии, и тогда нахождение функции распределения сводится к решению уразнений Блоха. В случае зависимости напряженности поля от времени для вычисления функции распределения необходимо введение соответствующих уравнений Больцмана. Рассмотренные процессы являются основой методов, используемых в химии для получения информации о строении и реакционной способности веществ методы статической магнитной восприимчивости, электронного парамагнитного резонанса. кдерного магнитного резонанса и др. [c.707]

    Условие резонанса (652) по существу является одним и тем же и для электронных, и для ядерных магнитных переходов. Разница состоит лишь в том, что в случае ядерного магнитного резонанса (ЯМР) в уравнение (652) вместо магнетона Бера и gj — фактора Ланде — входят ядерный магнетон (ЯМ) (см. гл. VI, 1) и яд — фактор ядра, учитывающий сложную структуру ядра. В силу того, что М 1836m, резонансная частота ЯМР заметно меньше частоты электронного парамагнитного резонанса (ЭПР). Поэтому электронный резонанс наблюдается при микроволновых частотах в диапазоне 1 —10 Гц [8, 91, тогда как при исследовании ядерного магнитного резонанса обычно используют диапазон коротких радиоволн [10, 11]. [c.366]

    Расширяется круг доступных технологу тонких физических методов. Кроме традиционных дифракционных методов (рентгено- и электронография) применяют нейтронографию, мессбауэрографию, появились. методы каналирования тяжелых частиц и электронов Работы по изучению минеральных веществ и продуктов переработки невозможны без исследования их электронных и колебательных спектров. Развиваются новые спектральные методы, растет их значение. Вслед за эмиссионной и абсорбционной рентгеновской спектроскопией получили развитие электронная рентгеновская спектроскопия и ее раздел — оже-спектроскопия, которые открывают новые возможности изучения процессов и веществ. Ценную химическую информацию дает мессбауэровска (ядерная 7-резонансная)" спектроскопия, которая во многих научных центрах становится рядовым, широко применяемым методом. Достижения радиоспектроскопии (электронный парамагнитный и ядер-ный магнитный резонанс, в том числе в релаксационном варианте) обеспечивают возможность изучения жидких и твердых веществ почти всех элементов периодической системы. Давно используются магнитные измерения. Все чаще привлекается масс-спектрометрия. [c.200]

    Наибольшие трудности для автоматизации представляет молекулярный анализ многокомпонентных смесей веществ, при котором новые методы, основанные на атомном, ионном, изотопном анализе, не имеют решающих преимуществ. Поэтому лазернгья и электронная спектроскопия, ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР) не находят широкого применения в химической промышленности. [c.336]


Смотреть страницы где упоминается термин Электронный парамагнитный резонанс. Магнитный резонанс электронный парамагнитный : [c.2]    [c.384]    [c.245]    [c.245]    [c.282]    [c.210]    [c.4]    [c.20]    [c.521]   
Введение в молекулярную спектроскопию (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Резонанс парамагнитный

Электрон магнитный

Электронный парамагнитный

Электронный парамагнитный резонанс

Электронный резонанс



© 2025 chem21.info Реклама на сайте