Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний карбоновые кислоты

    Метод заключается в том, что бромиды переводят обработкой магнием в гриньяровские соединения и превращают затем при помощи фенилизоцианата в анилиды карбоновых кислот. [c.543]

    При выделении бутадиен-стирольных каучуков, полученных в присутствии мыл карбоновых кислот, в качестве электролитов используются хлорид натрия, очищенный от примеси солей кальция и магния осаждением их из раствора в виде гидроокиси и карбонатов (при введении щелочи и соды), и серная (или реже уксусная) кислота. Для снижения расхода электролита на коагуляцию в латекс для предварительной агломерации частиц обычно вводят небольшие количества раствора костного клея (2—3 кг на [c.260]


    Патентуется [англ. пат. 1327860] метод ингибирования коррозии и замедления образования ржавчины путем добавления в смазочные масла маслорастворимого ингибитора — литиевой соли алкил- или алкенилянтарной кислоты. В качестве маслорастворимых ингибиторов исследованы [239] также магниевые соли органических кислот. Так, алкилсалицилаты, сульфонаты и алкилфеноляты магния улучшают полярные, водовытесняющие и защитные свойства масла. Описаны [240] свойства и механизм защитного действия маслорастворимых ингибиторов коррозии — карбоновых кислот и их производных (сложных эфиров, сульфопроизводных и эфиров фосфорной кислоты). [c.187]

    Низкомолекулярные карбоновые кислоты Высаливание сульфатами натрия и магния 250 ООО— 300 ООО 55 [c.334]

    Карбоксилирование. Алкильные н арильные производные, а также ацетилиды металлов более положительных, чем магний, или соответствующие реактивы Гриньяра, способны присоединять очень слабо электрофильную двуокись углерода, давая соль соответствующей карбоновой кислоты. [c.265]

    Осуществлять подобное восстановление могут в соответствии-с их положением в ряду напряжения только неблагородные металлы. Щелочные металлы способны восстанавливать даже наиболее инертные карбонильные соединения (например, эфиры карбоновых кислот), в то время как магний или алюминий реагируют только-с альдегидами и кетонами. Цинк и железо способны быть восстановителями только в кислой среде. Однако и другие вещества, например благородные металлы (платина, палладий), могут действовать аналогично, отрывая необходимые для восстановления карбонильного соединения электроны от молекулярного водорода и перенося их на карбонильное соединение (каталитическое гидрирование) (см. также разд. Г. 4.5.2). [c.114]

    Для получения карбоновых кислот широко применяют металлоорганические соединения, образующие кислоты с высокими выходами. Наиболее широко используется реактив Гриньяра, однако в последние годы все большее применение находят литийорганические соединения, что, по-видимому, частично обусловлено наличием в продаже простейших литийорганических соединений, применяемых для реакции металлирования. Механизм этой реакции, как показано для реакции с реактивом Гриньяра, включает, вероятно, первоначальную быструю координацию иона магния с атомом кислорода двуокиси углерода с последующей нуклеофильной атакой группы R скорость последней стадии определяет скорость всей реакции [c.255]


    Ионы кальция и магния образуют с анионами тяжелых карбоновых кислот малорастворимые соли. Этот процесс можно выразить уравнениями  [c.98]

    Поэтому при стирке белья в жесткой воде, содержащей эти ионы, расход мыла повышается на 25—30 %. Малорастворимые соли кальция и магния оседают на ткани, забивают поры и потому делают ткань грубой, менее эластичной, с плохой воздухо- и влагопроницаемостью. Такие ткани приобретают сероватый оттенок, а окраска становится блеклой. Кроме того, осевшие на ткани известковые мыла приводят к снижению ее прочности. Это происходит потому, что анионы ненасыщенных карбоновых кислот при сушке тканей окисляются кислородом воздуха с образованием веществ пероксидного характера. Они же окисляют целлюлозу, из которой состоят ткани. [c.98]

    В принципе технологический процесс заключается в том, что смесь карбоновых кислот с глицерином непрерывно пропускают тонким слоем через большое число последовательно расположенных реакционных зон, находящихся под пониженным давлением. При этом весьма желательно пр исутств ие ускорителей, апр имер окисей магния 1или алюминия. [c.475]

    В состав всех углей обязательно входит неорганическая, золообразующая часть, которая тонко или дискретно распределена в органической части угля. Она обычно представлена такими минеральными включениями, как силикаты, кварц, карбонаты и др. В углях низких стадий метаморфизма значительная доля неорганических компонентов присутствует в виде катионов натрия, кальция, магния, железа, алюминия, ассоциированных с карбоновыми кислотами. Неорганическая часть углей отличается также многообразием микроэлементов из обнаруженных 84 элементов периодической системы большая часть присутствует в количествах, не превышающих 0,01% (масс.) [65]. [c.64]

    В качестве инициаторов жидкофазного окисления и-цимола рекомендуются гидроперекиси г-цнмола [185, 235, 236], дитретич-ного бутила [120], перекись бензоила [237, 238], эфиры 3-кето-карбоновых кислот [111], нафтенат магния [196], стеарат натрия, ацетат марганца и NaOH [235], сода [239] и другие [162]. Очень легко протекает окисление п-цимола в присутствии 2%-ной гидроперекиси п-цимола и добавок стеарата натрия, ацетата марганца и едкого натра. В присутствии ацетата марганца (0,5 %) за 25 час. при 100° С гидроперекись получается с выходом 28%-При окислении и-цимола в присутствии 1% NaOH (25%-ного водного раствора) с периодическим введением 1% озона и добавки ВаОг за 10 час. концентрация гидроперекиси в растворе достигает 19% [196]. При окислении г-цимола сухим воздухом в нрисутствии перекиси бензоила в течение 20 час. при 85—110° С концент рация гидроперекиси составляет 20%, а при 110° С достигает максимальной в 28%, после чего начинает понижаться [237]. Во всех этих случаях получаются продукты, образовавшиеся окислением как изопропильной, так и метильной группы. [c.268]

    В качестве противокоррозионных присадок к бензинам предложены высшие жирные кислоты и их олигомеры, простые и сложные эфиры, некоторые комплексные соли высших жирных и нафтеновых кислот и аминов или амидов. Используются также среднемолекулярные сульфонаты двухвалентных металлов кальция, магния, бария. Однако сульфонаты обладают повышенной зольностью, увеличивающей износ деталей двигателя. Поэтому предпочтение отдается беззольным присадкам, к которым относятся смешанные соли карбоновых кислот, диаминов и ароматических сульфокислот, алкилянтарные кислоты, нит- [c.373]

    В XIX в. было принято считать, что парафиновые углеводороды являются примерами нереакционноспособных соединений, что и послужило причиной их названия—парафины (parum aff inis—почти бездеятельный). Однако проведенные исследования показали обратное. Пресловутую химическую инертность парафинов еще в 1870 г. развенчал Кельбер [38], показавший, что воздух при 150—160° довольно легко окисляет парафины в соответствующие карбоновые кислоты. Далее было установлено, что карбонаты или гидроокиси металлов I н II трупа периодической системы заметно ускоряют окисление углеводородов, и добавки 1—2% стеарата магния способствуют образованию до 80% различных жирных карбоновых кислот. В продуктах реакции были установлены все кислоты от уксусной до стеариновой. Благоприятное действие при окислении углеводородов оказывают добавки небольших количеств воды, I—2% стеарата Zn или Мп, олеата Со или Мп, нафтенатов разных металлов и т. д. [c.218]

    Для получения спиртов очень часто используют реакцию взаимодействия алкилмагниевых солей (раньше применяли также цинкдиалкилы) с альдегидами, кетонами или эфирами кислот. При этом из алкилмагниевых солей и указанных соединений образуются сначала продукты присоединения, которые затем при действии воды распадаются на спирт и основную соль магния. Из альдегидов и эфиров муравьиной кислоты образуются вторичные спирты, а из кетонов и эфиров всех других карбоновых кислот — третичные  [c.111]

    Некоторые сложные эфиры, и особенно сложные эфиры третичных спиртов, получают действием хлорангидридов или ангидридов карбоновых кислот на алкоголяты, в частности на алкоголят магния (ROMg l)  [c.168]


    МАГНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ. — металлоорганические соединения общей формулы или RMgX (X — галоген). Наибольшее значение имеют соединения второго типа, впервые синтезированные П. Барбье и В. Гринья-ром. Последний установил, что измельченный магний (стружки или опилки) в абсолютном эфире реагирует с галогенопроизводными органических соединений RX, образуя растворы соединений Ri gX, называемые в настоящее время соединениями, или реактивами Гринья-ра. Такие растворы стойки без доступа влаги и воздуха, но бурно реагируют с различными органическими и неорганическими веществами. Например, с СО образуют соли карбоновых кислот  [c.151]

    Второй стадией этой реакции, которая намного медленнее первой, является атака атома азота амидной группы на карбоновую кислоту. Первичные амины взаимодействуют с избытком уксусного ангидрида, давая Ы-алкил- или Ы-арилимиды в присутствии магния, который служит для удаления образующейся уксусной кислоты [700] РЫНгЧ-АсгО + Мд КМ (A )2-l-+Mg(OH)2+H2. [c.154]

    В жесткой воде плохо мылится мыло, которое ггред-ставляет собой натриевые соли высших карбоновых кислот, например стеарат натрия С17Нз5СООЫа. При растворении мыла Б жесткой воде образуются плохо ра тво-римые в воде стеараты кальция и магния  [c.290]

    Мыла — натриевые или калиевые соли высших карбоновых кислот R— OONa, R— OOK. Их получают при щелочном гидролизе жиров. Натриевые мыла — твердые, калиевые — жидкие. Все они растворимы в воде. Использование мыла в жесткой воде, содержащей ионы кальция и магния, требует большего расхода мыла, так как часть его превращается в нерастворимые соли кальция и магния, выпадая в осадок. [c.296]

    Ключевая реакция метода может предполагать использование нестабильных реагентов или интермедиатов. Тем не менее, совокупность нескольких элементарных реакций, если они увязываются в стройную последовательность, начинающуюся с подходящих исходньк веществ, уже может составить основу хорошего синтетического метода. Так, например, реакция маг-нийорганических соединений (реактивов Гриньяра) с диоксидом углерода (одна из многих реакций Гриньяра) представляет собой надежный путь синтеза карбоновых кислот. Однако реактивы Гриньяра могут бьггь не очень устойчивыми, почти не подлежат хранению и лишь немногие из них являются коммерчески доступными. К счастью, их совершенно не обязательно готовить заранее, а можно получать непосредственно в реакционной колбе взаимодействием магния с легкодоступными галогенопроизводными и использовать сразу же для реакции с СО . Поэтому последовательность трех реакций, показанных ниже, с.лужит основой превосходного метода синтеза карбоновых кислот из органических галогенидов, в результате которого углеродная цепь удлиняется на один атом  [c.79]

    Конденсация а,р-ненасыщенных альдегидов и вторичных аминов в присутствии дегидратирующих агентов, таких, как безводный карбонат калия [63] или еще лучше безводный сульфат магния [641, приводит к образованию третичных диаминов этилена и(или) третичных диенилмоноаминов [65]. Для получения диаминов требуются низкие температуры (от —10 до 20 °С). В некоторых случаях конденсацию с участием карбоната калия видоизменяют, проводя окончательную разгонку в присутствии хинонов [66, 67] или поли-карбоновых кислот [68]. При хранении диенилмоноамины полимери-зуются [69], а ненасыщенные диамины темнеют [63]. Выходы, как правило, лишь посредственные. [c.531]

    Для того чтобы максимально сместить равновесие в сторону об разования сложного эфира, одно из исходных веществ (обычно спирт) применяют в избытке или один из получающихся продуктов (воду удаляют азеотропной перегонкой, а растворитель (бензол или толуол) возвращают в реакционную смесь при помощи ловушки Дина— Старка [7, 8]. Другими методами удаления воды могут служить следующие азеотропная перегонка в аппарате Сокслета, в-патрон которого помещают осушитель, например сульфат магния [9], или химический способ, заключающийся в реакции с диметилаце-талем ацетона, приводящей к образованию ацетона и метилового спирта [10]. Азеотропная перегонка при помощи аппарата Дина — Старка — лучший метод получения сложных эфиров, особенно эфиров высококипящих спиртов. Применение метилового спирта при этом представляет трудности вследствие его летучести. В этом случае используют специальную барботажную колонну для удаления промежуточных фракций, содержащих воду [И]. Однако в тех случаях, когда большие количества серной кислоты не оказывают влияния на карбоновую кислоту, из которой получают эфир, эту кислоту, метиловый спирт и серную кислоту просто можно кипятить-с обратным холодильником, а образующийся метиловый эфир экстрагировать толуолом по методу Клостергарда, предназначенному для получения этиловых эфиров, таких, как триэтиловый эфир-лимонной кислоты [12]. Разработан простой полумикрометод, похожий на приведенный выше, при котором метиловые эфиры образуются и разделяются так же эффективно, как и прн реакции кислоты с диазометаном (пример б). Наконец, удобным методо получения метиловых эфиров алифатических и ароматических кислот, дающим выходы 87—98%, является кипячение соответствующей кислоты (1 моль), метилового спирта (3 моля) и серной кисло- [c.283]

    Многие органические вещества легко растворяются в воде, но нерастворимы в концентрированных растворах солей. На этом основано выделение твердых веществ методом высаливания, которое можно сочетать с истинной кристаллизацией, если к горячему водному раствору органического вещества добавить горячей раствор соли и смесь охладить. Удобным осадителем в этом случае является хлорид натрия, растворимость которого меняется с температурой незначительно и поэтому можно не опасаться загрязнения осадка солью. Для высаливания используют также сульфаты магния, натрия и другие соли. Высаливание солей карбоновых кислот, ароматических сульфокислот, некоторых красителей основано на превы-ШЕнни произведения растворимости под влиянием увеличения концентрации одноименного нона. Поэтому оно может быть осуществлено при помощи не только солей, но и щелочей. [c.20]

    Вызывающие химические превращения в эмульгаторах, обладающих кислотными или кислотно-основными свойствами (СМАД-1, кубовый остаток СЖК, тарин, ЭС-2), с образованием металлических мыл высших карбоновых кислот, которые способствуют объемному структурообразованию обратных эмульсий (окиси кальция и магния, гидроокиси многоосновных металлов, ГКЖ-10, ГКЖ-11). [c.65]

    Комбинированный ввод добавок, вызывающих химическую модификацию основного эмульгатора (получение металлических мыл высших карбоновых кислот) с одновременным образованием свежеосажденной гидроокиси многовалентных металлов (кальция, магния, железа, алюминия и др.), более предпочтителен, чем введение инертных мелкодисперсных наполнителей. Так, обратная эмульсия, стабилизированная эмульталом и MAj -1, имеет термический диапазон практического применения до 75 С. Введение в ее состав окиси кальция расширяет этот диапазон до 100 С. Обратная эмульсия, стабилизированная СМАД-1 и окисью кальция, имеет удовлетворительные значения структурно-реологических свойств и фильтрации до 100 С, а при дополнительном вводе в нее водорастворимых солей железа, способствующих образованию гидроокиси железа коллоидной степени дисперсности и железных мыл карбоновых кислот окисленного петролатума,- до 150 С. [c.66]

    В США для инвертных эмульсий также патентуются многокомпонентные эмульгаторы. Так, Р. Вода в качестве первого компонента предложил карбоновые кислоты различных видов, содержащие до 22 атомов углерода, а в качестве второго компонента — полиокси-этилиров ные амины или амиды. В патенте В. Редди и К. Банд-рента эмульгаторами являются смеси полимеризованных многоосновных жирных кислот, оксиэтилированных продуктов, сырого таллового масла и тяжелых ароматических фракций нефти в сочетании со смесью неорганических компонентов — аттапульгита и окиси магния, пептиэированных поверхностйо-активными четвертичными аммонийными основаниями. [c.209]

    Большой интерес представляют инвертные эмульсии с повышенным содержанием воды (70—95%). Патенты США предусматривают для этой цели сложные смеси эмульгаторов и активных добавок. В одном из них Р. Вода предлагает двухкомпонентную смесь, в которой компонент А представлен насыщенной или ненасыщенной карбоновой кислотой или двухосновной адипиновой кислотой, ароматической сульфокислотой, а также их смесями. Компонентом В служат ПАВ типа этоксилированного гидроксиэтилацетиленида с углеводородной цепью из 8—22 атомов углерода либо амин с двумя этоксильными цепями. В патенте Реди и К. Бандрента компонентом А является смесь полимерных поликислот (33%), смолообразного аддукта окиси этилена (25%), тяжелой фракции ароматических углеводородов (39%) и таллового масла-сырца (3%). Компонент В состоит из 77% окиси магния, 15% аттапульгита и 7—8% катионоактивного ПАВ. [c.384]

    Диметилтетрагидротиопиран-4-карбоновая кислота. В круглодонную колбу емкостью 200 мл помещают смесь 32,0 г (0,206 моля) нитрила 2,2-диметнлтетрагидротиопиран-4-кар-боновоп кислты (см. стр. 20), 22,4 г (0,4 моля) порошкообразного едкого калия, 10 мл триэтиленгликоля, 10 мл этилового спирта н 15 мл воды. Содержимое колбы кипятят с обратным холодильником в течение 10—II ч. Прибавляют 80 мл 18%-ной соляной кислоты, дважды экстрагируют эфиром иори-,иями по 80 мл. Эфирный экстракт промывают водой и сушат сернокислым магнием. Отгоняют эфир, остаток перегоняют в вакууме, собирая фракцию, кипящую при 138— 14072. адж. Продукт перекристаллизовывают из 100 мл гексана. Выход 29,5—30,0 г (82,2-83,6%) т. ил. 66—67°. [c.34]

    К раствору алкоголята натрия, приготовленному из 47 г (2 г-атома) металлического натрия и 500 мл абсолютного спирта, сразу прибавляют 473 г (2 г моля) эфира у лорпропипмало-новой кислоты, в течение 4 час. смесь кипятят на водяной бане с нисходящим холодильником, причем отгоняется 400 мл спирта. К охлажденному остатку добавляют/ 600 мл подкисленной соляной кислотой воды и продукт реакции дважды извлекают эфиром. Эфирную вытяжку сушат прокаленным сернокислым магнием, эфир отгоняют и эфир циклобутанди-карбоновой кислоты перегоняют в вакууме, собирая фракцию 94—97° при 5 мм (см. примечание). Выход 308.7 г (77.1% от теоретич.). Выход эфира циклобутан-1,1-дикарбоновой кислоты, считая на взятый в первую стадию реакции хлорбромтриметилен, составляет 60% от теоретич. [c.96]

    В кислых средах соли карбоновых кислот переходят в слйбодиссоциированные и малорастворимые кислоты, а в присутствии некоторых катионов (кальция, магния) образуют нерастворимые соли, что резко снижает эффективность их действия как ПАВ, особенно ухудшает их моющее действие. Большими преимуществами в этом отношении обладают алкилсульфаты и алкилсульфонаты, которые являются солями сильных кислот и поэтому мо- [c.164]

    Получение 1-метил-1-ацетил циклопентана 125]. Из 34,1 г (0,24 моля) иодистого метила, 5,7 г (0,235 грамматома) магния и 100 мл эфира получают реактив Гриньяра. Раствор последнего медленно прибавляют при сильном перемешивании к раствору 29,2 г (0,20 моля) хлораь гидрида 1-метилциклопентан4-карбоновой кислоты в ЪО мл эфира при температуре —15°. К густой реакционной смеси прибавляют в избытке ледяную воду, после чего эфирный слой отделяют и промывают раствором двууглекислого натрия. В результате подкисления использованного для промывания раствора выделяют 8 г 1-метилциклопентан-1-кар- боновой кислоты. Эфирный раствор сушат и перегоняют. Получают 15 г (60 % ) 1-метил-1-ацетилциклопентана с т. кип. 52—53° (13 мм). [c.58]

    Монослои карбоновых кислот также могут накладываться на поверхность кварцевого стекла в два этапа вначале проводится адсорбция многозарядных ионов металла на поверхности кремнезема, а затем обработка образца мыльным щелоком. Используются такие металлы, как кальций, барий или магний [340]. Полученная таким путем поверхность кремнезема гидрофобна, поэтому на нее можно повторно наносить покрытия в процессе флотации добавлением извести с последующим введением стеарата натрия [341]. Гаудин и Фурстенау [342] показали, что в процессе флотации кварца ионы бария, адсорбиро-ваные в слое Штерна, затем адсорбировали лаурат-ионы, которые превращали поверхность кварца в гидрофобную в этом процессе барий получил название активатора . Флотация кремнезема из руд имеет важное промышленное значение. Ионы кальция используются в качестве активатора для флотации кремнезема с добавлением мыльного щелока. Интересно, что стеарат-ионы должны также сообщать железной руде гидрофобный характер, и, таким образом, руда будет всплывать с пеной в процессе флотации. Однако, если вначале добавляется крахмал, то он, адсорбируясь на оксидах железа, сохраняет их гпд-рофильность и, таким образом, может понижать флотируемость руды. Вероятно, поликарбоксильные группы в крахмале (или в окисленном крахмале), присоединенные к поверхности оксида железа в большом числе точек, не могут замещаться стеарат-ионами, которые гидрофобА и несут точно такой же по знаку заряд, что и крахмал, поэтому не способны проникать сквозь толстый гидрофильный анионный слой адсорбированного крахмала [343]. [c.952]


Смотреть страницы где упоминается термин Магний карбоновые кислоты: [c.575]    [c.289]    [c.59]    [c.132]    [c.341]    [c.285]    [c.109]    [c.178]    [c.77]    [c.24]    [c.46]    [c.4]    [c.68]   
Справочник по экстракции (1972) -- [ c.258 ]




ПОИСК





Смотрите так же термины и статьи:

Магний кислотой



© 2025 chem21.info Реклама на сайте