Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром, амальгама

    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

    Часть затруднений удается преодолеть, если исследовать разряд ионов металла на жидком (ртутном) электроде, обладающем однородной поверхностью. Результаты таких исследований показывают, что ионы металлов, образующих амальгамы, восстанавливаются на ртутном электроде со значительной скоростью. Поэтому поляризационные явления, которые при этом наблюдаются, обусловлены в основном концентрационной поляризацией. В то же время ионы металлов группы железа (Ре +, N 2+,...), не образующих амальгамы, восстанавливаются на ртути с большим перенапряжением. Перенапряжение в этом случае связано либо с тем, что эти металлы из-за малой растворимости в ртути выделяются в высокодисперсном состоянии, более богатом энергией, либо с замедленным разрядом этих ионов. Последнее подтверждается тем,- что при помощи современных тонких экспериментальных методик удается установить медленный разряд на ртути также ионов цинка, марганца, хрома и других металлов, которые растворяются в ртути с образованием амальгам. Кроме того, при выделении металлов группы железа на твердых электродах при условиях, исключающих возникновение высокодисперсного состояния, разряд ионов также происходит со значительным перенапряжением. [c.630]


    При электролизе чистых растворов поваренной соли выход амальгамы по току может приближаться к 100%. Однако при наличии в растворе примесей солей тяжелых металлов доля тока, расходуемая на выделение водорода, существенно возрастает. Особенно сильное влияние на выделение водорода оказывают соли германия, ванадия, хрома и платины. Действие этих солей объясняется тем, что они восстанавливаются на ртутном катоде до свободного металла и, будучи нерастворимыми в ртути, плавают на новерхности в виде так называемого амальгамного масла . Так как перечисленные металлы обладают низким перенапряжением водорода, последний начинает выделяться на этих участках. [c.160]

    Сила тока короткозамкнутого элемента тем больше, чем ниже перенапряжение водорода на электроде, введенном в контакт с амальгамой. С этой точки зрения целесообразно применять в электродах металлы с низким перенапряжением водорода. Однако металлы в разной степени смачиваются ртутью, и скорость разложения амальгамы при добавлении этих металлов резко снижается. На практике пока единственным материалом, применяемым для ускорения разложения амальгамы, является графит. К его недостаткам следует отнести сравнительно высокое перенапряжение водорода, высокое удельное сопротивление и малую механическую прочность. Для снижения перенапряжения водорода на графите его предложено пропитывать солями хрома и молибдена, однако эффект, вызываемый этими солями, непродолжителен. [c.162]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Раствор соли двухвалентного хрома неустойчив , поэтому его готовят перед определением чаще всего встряхиванием раствора СгС или КСг(80 2 с амальгамой цинка до получения раствора синего цвета. [c.367]

    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]


    Раньше считалось, что вредными примесями являются ионы Са + и Mg2+, которые, разряжаясь на катоде, образуют амальгамы и на них интенсивно выделяется водород. В настоящее время эти примеси считают безвредными, если в электролите содержится магния до 0,1 г/л и кальция до 1,5 г/л. Вместе с тем оказалось, что ничтожные количества солей хрома, ванадия, молибдена, тантала, титана и германия очень резко снижают выход по току. Повышенное содержание SOi в электролите ускоряет сгорание анодов так же, как и в ванне с твердым катодом. Образующиеся при сгорании кусочки графита падают на амальгаму и являются катодными участками с малым перенапряжением для выделения водорода. Таким образом, это приводит к снижению катодного выхода по току. Кроме того, к катоду конвекцией переносится растворенный в [c.402]

    Установлено, что существенное влияние на катодный процесс оказывают ионы некоторых металлов, которые могут находиться в рассоле в количестве десятых и сотых долей миллиграмма. К таким металлам относятся германий, ванадий, молибден и хром. Очистку рассола от ионов этих металлов рекомендуется проводить с помощью амальгамы натрия или применять сорбционные методы, основанные на пропускании рассола через колонны, заполненные ионообменными смолами. [c.165]

    При наличии даже небольших примесей, так называемых амальгамных ядов, доля тока, расходуемая на выделение водорода, в производственных условиях часто возрастает на один-два порядка. Действие амальгамных ядов объясняют восстановлением их до металла и образованием на поверхности амальгамы мест с низким перенапряжением водорода. К амальгамным ядам относятся металлы с низким перенапряжением водорода, нерастворимые или малорастворимые в ртути и плохо смачиваемые амальгамой. Наибольшим действием из практически встречающихся ядов обладают ванадий, хром, германий и молибден [24—31]. В меньшей мере в качестве катализаторов разложения выступают такие примеси как железо, никель, кобальт, вольфрам. Малое влияние на процесс разложения оказывают примеси кальция, бария, магния и алюминия [32]. Считается, что примеси серебра, свинца, цинка, марганца и меди не влияют на скорость реакции разложения амальгамы, а примеси бора, кремния, фосфора и олова могут действовать как ингибиторы разложения [33, 34]. [c.38]

    Добавки некоторых металлов к амальгаме снижают вредное влияние амальгамных ядов. Действие таких добавок, как Zn, Sn, Pb и др., обусловлено образованием интерметаллических соединений, связывающих металлы, которые относятся к амальгамным ядам [35]. Отмечены случаи взаимного стимулирования или ингибированного действия примесей при совместном присутствии нескольких добавок [36, 37]. Наиболее часто в практике встречается ванадий, попадающий в раствор при выщелачивании из графитовых анодов в процессе электролиза, и хром, присутствующий в растворе вследствие коррозии аппаратуры. [c.38]

    Процесс образования амальгамы натрия преходит с малым перенапряжением. Поэтому потенциал катода при электролизе близок к равновесному потенциалу образования амальгамы и почти не зависит от плотности тока. В этих условиях выделение водорода на катоде незначительно. Положение меняется, когда на катоде будут участки из электропроводных материалов с низким перенапряжением водорода. Тогда водорода на катоде выделится много. Это явление возникает тогда, когда на поверхности потока амаль- гамы появляются инородные электропроводные частицы, например частицы графита или амальгамного масла, пленки затвердевшей-амальгамы, пленки металлов, или же когда появляются неподвижные островки из электропроводящего шлама, прилипшего к днищу. Металлические пленки на катоде появляются при наличии в рассоле амальгамных ядов. Амальгамными ядами называются соединения тех тяжелых металлов, которые не образуют амальгам и плохо смачиваются ртутью. В катодном процессе эти соединения вос-> станавливаются до металлов, и они могут выделяться на катоде в виде тончайших твердых пленок. Уже минимальные количества- примеси амальгамных ядов в анолите, часто не улавливаемые сов- ременными методами анализа, ведут к серьезному нарушению про- цесса. Наиболее вредны примеси соединений ванадия, молибдена, хрома и германия. I [c.94]

    Раствор хлорида хрома (И) получают путем взбалтывания с цинковой амальгамой солянокислого 5 %-ного раствора дихромата калия до окрашивания раствора в темно-снний цвет. [c.102]

    В качестве восстановителя использовали сульфат двухвалентного хрома, приготовленный в редукторе с амальгамой цинка. Раствор хро-ма(П) переводили в микропипетку. Восстановление и титрование проводили в микроконусе внутри влажной камеры на столике микроскопа. [c.187]

    Амальгама хрома получается электролизом концентрированного водного раствора треххлористого хрома, сильно подкисленного соляной кислотой, амальгама молибдена— из кислого раствора трехокиси. [c.12]

    Когда от амальгамы не требуется абсолютной чистоты, то ее готовят действием активной амальгамы, такой, как амальгама натрия, на водный или неводный раствор соли металла. Обычно реакцию трудно довести до конца. И конечный продукт всегда содержит следы исходной амальгамы (см. табл. 1). Этот метод очень прост, так как амальгама натрия легко доступна. Таким образом готовят амальгамы аммония, бария, стронция и хрома. [c.13]


    В отличие от жидких цинковых амальгам свинцовые амальгамы не восстанавливают хрома (III) и олова (IV). [c.83]

    В. С. Сырокомский и К. Н. Жукова [2511 впервые показали, что уран (VI) может быть легко восстановлен до урана (IV) при добавлении небольшого избытка раствора соли хрома (II) к сернокислому раствору соли уранила. Вследствие высокой восстановительной способности хрома (II) (окислительно-восстановительный потенциал пары Сг (1П)/Сг(11) равен—0,41 в) восстановление заканчивается в течение нескольких секунд. Избыток восстановителя удаляется простым встряхиванием восстановленного раствора в течение 2—3 мин. при доступе воздуха или при стоянии в течение 6—10 мин. Преимуш,ество применения солей хрома (II) по сравнению с восстановлением амальгамами металлов и самими металлами состоит в том, что для восстановления солями хрома требуется очень мало времени и выполняется оно чрезвычайно просто. [c.86]

    В литературе описан ряд методов приготовления растворов солей хрома (II) электролизом [3421, восстановлением цинком бихромата калия [974] или хромокалиевых квасцов [940], а также восстановлением бихромата калия цинковой амальгамой [25Г. [c.86]

    Окислы и гидроокиси. Закись хрома СгО получают при окислении воздухом или НКОз амальгамы хрома [1096] или термическим разложением в вакууме Сг(СО)0. Существует две разновидности закиси хрома мелкие гексагональные кристаллы красного цвета и пирофорный черный порошок. Закись хрома СгО интенсивно окисляется до Сг Оз на воздухе выше 100° С восстанавливается водородом при 1000° С до металлического хрома нерастворима в воде и разбавленных НКОд и 112804 реагирует с НС1 с выделением водорода. Гидрат закиси хрома Сг(0Н)2 осаждается щелочами из растворов солей Сг(П) в отсутствие кислорода воздуха в виде коричневого осадка, нерастворимого в воде и разбавленных кислотах медленно растворяется в концентрированных кислотах. Произведение растворимости равно 2,0-10 при 18° С. Гидрат закиси хрома легко восстанавливается до металла. [c.16]

    Того же результата можно достигнуть и с амальгамой натрия. Трехвалентная окись хрома СггОз имеет амфотерные свойства. С сильными кислотами образуются соли [СгС1з, Сгг(804)3], хорошо растворимые в воде. [c.516]

    В качестве материалов для генераторных электродов могут быть использованы платина, золото, серебро, ртуть, амальгамы, графит и иногда вольфрам, медь, свинец, хром и пр. Наиболее часто применяются платина и ртуть платина более пригодна для анодных процессов, а для катодных процессов — в тех случаях, когда электропревращение вещества протекает при более положительных значениях потенциала электрода, чем выделение водорода (из-за малого перенапряжения водорода иа платине). На ртутном электроде можно осуществить почти все катодные процессы благодаря большому перенапряжению водорода на нем. Однако из-за легкости анодного растворения ртути проведение электролиза при несколько более положительных значениях потенциала, чем потенциал НВЭ, недопустимо. Таким образом, эти два электрода дополняют друг друга. [c.208]

    Если разделить анодное и катодное пространство пористой перегородкой и применить в качестве анода платиновую сетку, погруженную в раствор восстановителя — ванадия (II), хрома (II) или же в амальгаму натрия в растворе щелочи, то в анодной камере пойдет окисление У(П) до У(1У) (рис. 33, в, кривая 1) или Сг(П), или Na(Hg), а в катодной — реакция восстановления (рис. 33, а, кривая 2). При этом /нач = 1 а° = 1к°. Сопротивление при электролизе в этом случае увеличивается, ток падает и в конце электролиза принимает значение 1кон=Ь1 = 1к- Разность потенциалов при этом будет равна коп- Пользуясь этим методом, можно заменить мешающий элемент в растворе другим элементом, тоже образующим амальгаму  [c.61]

    Оксид хрома (П) СгО — пирофорный черный порощок (иирофорность — способность в тонкораздробленном состоянии воспламеняться на воздухе). Получается окислением амальгамы хрома кислородом воздуха. Растворяется в разбавленной соляной кислоте  [c.197]

    Сильные i восстановители, как, например, r Ia, легко окисляются кислородом воздуха. Поэтому применение СгСЬ для перевода многих катионов в восстановленную форму удобно. Избыток СгСЬ легко окисляется при непродолжительном взбалтывании раствора. Раствор хлорида хрома (И) получают восстановлением бихромата калия или хлорида хро-ма(1П) металлическим цинком или амальгамой цянка.  [c.437]

    В СВЯЗИ с этим амальгама натрия оказывает значительно более сильное восстанавливающее действие в щелочных растворах На скорость реакции амачьгамы с водой может оказывать влияние также присутствие в растворе ионов других металлов Некоторые металлы, особенно ванадий, молибден, тантал и хром, даже при очеиь малых концентрациях сильно ускоряют разлож ,-ние амалыамы [32], что, безусловно, отрицательно влияет на ее действие в качестве восстановителя [c.54]

    Реакцию Вюрца применяли при попытках синтезировать циклоалканы из дигалогенидов. В этом случае вместо натрия следует применять цинк, но, к сожалению, выходы не очень хорошие, за исклю-лением синтеза циклопропана. Если взять 1 моль 1,3-дихлорпро-пана, 100%-ный избыток цинковой пыли, 1 моль карбоната натрия и 1/6 моля иодистого натрия в водном этаноле, выход неочищенного циклопропана составляет 95% [27]. Хорошие выходы были также получены при использовании в качестве растворителя безводного ацетамида. Циклопропан может быть также получен взаимодействием триметилендибромида (или 3-бромпропилтозилата) с комплексом двухвалентного хрома с этилендиамином [28]. Циклобутан получают специфической конденсацией под действием амальгамы лития [29], а циклопропилбензол с выходом 75—85% взаимодействием [c.34]

    Рассол, подаваемый в электролизеры с ртутным катодом, не должен содержать примесей амальгамных ядов, в первую очередь ванадия, хрома, молибдена и титана, гря нение рамрла амальгамными ядами проверяется так называемой амальгамной пробой рассола по объему вояорода, выделяемого при разложении амальгамы вопределенных условиях [26, 27]. [c.206]

    Ионы других тяжелых и щелочноземельных металлов, присутствующие в анолите, также могут активизировать процесс выделения водорода. Влияние их иногда проявляется в зависимости от того, в каком сочетании они присутствуют в электролите. Так, на-пример, вредное действие катионов никеля и железа усиливается в присутствии ионов кальция, хотя сам ион кальция не вызывает по-, Еышенного выделения водорода. Примеси к рассолу также являют- ся причиной образования амальгамного масла — коллоидной смеси ртути и амальгам железа, хрома и некоторых других металлов. В нем могут присутствовать не только амальгамы металлов, но. и сами металлы в коллоидной форме, получающиеся либо восста--новлением на катоде из солей, либо при распаде нестойких амальгам. [c.94]

    Для поглощения кислорода в газоанализаторе готовят раствор, исходя из аммониевохромовых квасцов. Растворяют 193 г квасцов в 1 л воды и осаждают гидроксид хрома (III) концентрированным аммиаком. Осадок гидроксида хрома Сг(ОН)з отфильтровывают, отмывают от ионов сульфата и растворяют в 200 мл разбавленной (1 1) соляной кислоты. Полученный раствор хлорида хрома (III) восстанавливают до хлорида хрома (II) амальгамой цинка. Для приготовления амальгамы к 100 г ртути прибавляют 5 г гранулированного цинка, несколько миллилитров 2 н. раствора НС и при помещивании нагревают на водяной бане до растворения цинка. После охлаждения амальгаму промывают водой декантацией. [c.103]

    Л1олибден можно точно определить в присутствии железа и хрома (но не ванадия) путем восстановления жидкой амальгамой кадмия в атмосфере СО2. При этом он восстанавливается до трехвалентного состояния в среде 3—4 N H2SO4. Затем его титруют раствором бихромата калия до пятивалентного состояния в присутствии восстановленной метиленовой голубой [ИЗ]. По окончании окисления молибдена до пятивалентного состояния начинается окисление двухвалентного железа при этом появляется голубое окрашивание метиленовой синей. Восстановление молибдена и железа заканчивается за 5—б мин. Для молибдена получают точные результаты. [c.184]

    Нитриды [3891. Известно два нитрида хрома r2N и rN. Последний получают пропусканием тока азота над нагретым при 600—900° С тонким порошком пирофорного хрома. Получают нитриды и возгонкой амальгамы хрома в атмосфере азота. [c.21]

    Электролиз С ртутным катодом. Хром практически не растворяется в ртути [196]. Однако при электролизе с ртутным катодом образуется амальгама хрома, которая, очевидно, является коллоид-ным раствором. Хром, для которого потенциал восстановления Сг(П1) — Сг(металл.) более отрицателен, чем потенциал выделения водорода на ртути, выделяется на ртутном катоде только из слабокислых растворов (0,05 М H2SO4) [626, 889]. Однако даже из 0,05 Af H2SO4 не достигается полное выделение хрома [504]. С увеличением концентрации H2SO4 степень выделения хрома резко уменьшается [626], очевидно, вследствие образования инертных комплексов. Установлено, что высокая плотность тока, повышение температуры и концентрации хрома способствуют увеличению полноты его выделения [670]. Обычно электролиз проводят при 40° С дальнейшее повышение температуры нежелательно из-за изменения структуры и вязкости амальгамы, что влечет за собой изменение величины поверхности ртутного катода, а следовательно, плотности тока и величины катодного потенциала [196]. [c.154]

    В отличие от Сг(1П) ионы r(VI) не полностью выделяются на ртутном катоде вследствие образования в электролите суспензии металлического хрома [626, 670] это явление обычно предотвращают предварительным восстановлением r(VI) Сг(1П) перекисью водорода. Присутствие посторонних ионов в электролите и в ртути влияет на степень выделения хрома например, присутствие в элек-ролите молибдена затрудняет выделение хрома. Если электролит содержит большое количество катионов металлов, не выделяющихся на ртутном катоде, но восстановливающихся до низких степеней окисления, то образуются буферные окислительные системы, например U(IV)—U(III), Ti(IV)—Ti(III), V(V)—V(IV). При высоком их содержании в электролите потенциал ртутного катода будет приближаться к потенциалу указанных выше пар его значение может быть недостаточным для выделения некоторых металлов, в частности хрома и молибдена. Обнаружено, что присутствие в электролите 10 3 урана полностью предотвращает выделение этих металлов на ртутном катоде [185]. Содержание малых количеств никеля и серебра в ртути способствует полному выделению хрома [989]. Подобное явление может быть объяснено образованием в амальгаме интерметаллических соединений [196]. [c.154]

    Конечным продуктом каталитического восстановления солей флавилия (XXI) в присутствии палладия на сульфате бария [118] или платиновой черни [119] являются хроманы (XXII). Те же соединения образуются и при восстановлении амальгамой алюминия [120]. [c.235]

    Из флаванона (V) при этом получаются оба возможных стереоизомерных флаванола (а, т. пл. 120° р, т. пл. 148°) [129], Восстановление цинком с соляной кислотой по методу Клемменсена приводит к получению хромана (VI) [131 ] при восстановлении амальгамой алюминия наряду с флаванолом (VII) образуется небольшое количество пинакона (VIII) [132]. Пинаконы можно также получать из халконов, действуя на них цинком и уксусной кислотой [c.286]

    Амальгама натрия или натрий и спирт являются подходящими восстановителями и применяются для прямого восстановления ненасыщенных кетонов в хроманы (XLVH—XLVIII) [56, 57]. [c.307]


Смотреть страницы где упоминается термин Хром, амальгама: [c.305]    [c.354]    [c.181]    [c.81]    [c.185]    [c.13]    [c.348]    [c.359]    [c.663]   
Неоргонические синтезы Сборник 3 (1952) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Амальгамы



© 2024 chem21.info Реклама на сайте