Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность металлов анодная

    ПАССИВНОСТЬ МЕТАЛЛОВ. АНОДНЫЕ ОКСИДНЫЕ СЛОИ [c.365]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]


    Если электролитом является вода, то обильный подвод к корродирующему металлу кислорода может сильно замедлить протекание анодного процесса вследствие наступления пассивности металла, что приведет к большой анодной поляризации и повышению коррозионной стойкости металла при преобладающем влиянии анодного процесса (см. с. 305). [c.243]

    Пассивностью металлов называют состояние относительно высокой коррозионной стойкости, вызванное торможением анодного процесса электрохимической коррозии. [c.302]

    Эффект увеличения скорости растворения металла наблюдается, если скачок потенциала сосредоточен в ионном двойном слое. Эффект снижения скорости растворения металла (пассивность может наблюдаться, если скачок потенциала приходится на поверхностный слой металла анодная поляризация уменьшает кинетическую энергию поверхностных электронов (поверхностного уровня Ферми), что приводит к усилению их связи с поверхностными положительными ионами металла и, как следствие этого, к уменьшению свободной энергии и адсорбционной способности поверхности металла. [c.311]

    При изучении ироцессов атмосферной коррозии металлов-следует учитывать, что при интенсивном доступе кислорода к металлической иоверхности увеличивается вероятность возникновения анодной пассивности металлов, т. е, протекания реакци ,. тормозящих процесс растворения металлов. [c.174]

    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]


    Разрушение пассивности ионами С1 чаще происходит локально, на тех участках поверхности, где структура или толщина пассивной пленки изменены. Образуются мельчайшие анодные участки активного металла, окруженные большими катодными площадями пассивного металла. Разность потенциалов между подобными участками 0,5 В или более, и эти элементы называют активно-пассивными элементами. Высокие плотности тока на аноде обусловливают высокую скорость разрушения металла, что создает катодную защиту областей металла, непосредственно окружающих анод. Фиксирование анода на определенных участках приводит к образованию питтингов. Чем больше ток и катодная защита около питтинга, тем меньше вероятность образования другого питтинга по соседству. Поэтому плотность расположения глубоких питтингов обычно меньше, чем мелких. Исходя из вероятности образования активно-пассивного элемента очевидно, [c.84]

    Как уже отмечалось в разд. 5.4, некоторые металлы (например, железо и нержавеющие стали) могут быть надежно защищены, если их потенциал сдвинуть в положительную сторону до значений, лежащих в пассивной области анодной поляризационной кривой (см. рис. 5.1). Это значение потенциала обычно поддерживают автоматически с помощью электронного прибора, называемого потенциостатом. Практическое использование анодной защиты и применение для этих целей потенциостата впервые было предложено Эделеану [26]. [c.229]

    Пассивность металлов. Состояние повышенной коррозионной устойчивости металлов в условиях, когда термодинамически возможно их взаимодействие с веществами, находящимися в окружающей среде, называется пассивным-Известна устойчивость железа в концентрированной НКОд, никеля и железа — в щелочных растворах, алюминия — па воздухе, платины и золота — во многих агрессивных средах и т. п. В определенных условиях некоторые металлы практически не способны к процессу анодного растворения, например свинец в растворах сульфатов. [c.519]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых окисных пленок или солевых пленок, возникающих при растворении металлов. Образование окисных пленок — причина устойчивости многих металлов, например алюминия. Из рис. 96 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют [c.215]

    До сих пор рассматривалась скорость коррозии, лимитируемая катодными реакциями. Однако иногда коррозия может контролироваться и анодными реакциями. Обычно это наблюдается на металлах, способных пассивироваться, таких, как хром, алюминий, титан, цирконий, никель, тантал и др. Пассивностью металла называется состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Согласно термодинамическим расчетам, пассивный металл может подвергаться коррозии, но практически не корродирует из-за того, что анодное растворение его протекает крайне медленно. Например, стандартные потенциалы алюминия (Еар+/а1 = = —1,66В), циркония (Е г +/2г= —1,54 В), титана (Ет =+/т1 = = —1,63В), хрома (Есг"+/сг = — 0,74 В) значительно отрицательнее потенциалов кислородного и водородного электродов, поэтому можно было бы ожидать, что они будут корродировать как с выделением водорода, так и с поглощением кислорода. Однако они отличаются высокой коррозионной стойкостью благодаря склонности к пассивации. Пассивность в основном вы- [c.233]

    К особенности анодных процессов относится пассивность металлов, при которой резко падает скорость анодного растворения металла, несмотря на увеличение анодной поляризации. Как видно из рис. XVI.6, при увеличении анодной поляризации растет плотность анодного тока. При некоторой поляризации, равной АЕ , потенциал анода становится равным потенциалу [c.421]

    Разряд анионов из раствора на инертном электроде (платине, золоте, пассивном металле). Примером такого процесса может служить анодное выделение кислорода при электролизе воды [c.28]

    Пленочной теории пассивности противоречит обнаруженное резкое торможение скорости растворения платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, что его поверхность изолируется от раствора окисной пленкой. Наступление пассивного состояния в рамках этой теории связывается с изменением энергетического состояния поверхностных атомов металла. При обсуждении механизма анодного растворения металлов в активном состоянии было показано, что этот процесс протекает преимущественно на наименее прочно связанных атомах дислоцированных в дефектных местах кристаллической решетки. Именно такие атомы в первую очередь вступают в адсорбционное взаимодействие с кислородом воды, в определенной степени теряя свойственный им избыток энергии. Такой атом, связанный с кислородом, переходит иа более глубокий уровень энергии, что влечет за собой повышение энергии активации ионизации и, в конечном счете, торможение скорости ионизации металла. [c.203]


    Три объяснении влияния анионов на анодное поведение металлов необходимо учитывать вытеснение адсорбированного кислорода анионами, внедрение анионов в оксидную пленку, которое изменяет ее свойства, а также прямое участие анионов в процессе растворения пассивного металла (Я.М. Колотыркин). [c.371]

    Изучая химическую стойкость окисных пленок по отношению к агрессивных растворам, Эванс обнаружил, что, вопреки существовавшему мнению, снятая с железа высокотемпературная окалина практически не растворяется даже в очень сильных кислотах. Очень медленно растворяются кислотой и прозрачные чешуйки пленок, снятые с железа, окислившегося при комнатной температуре. Следовательно, сплошная окисная пленка в принципе вполне может защитить металл не только от химического окисления, но и от электрохимического растворения на аноде. В то же время многие окислы металлов, особенно в тонких слоях, обладают достаточной элект-тронной проводимостью для того, чтобы на покрытой ими поверхности могли протекать любые анодные процессы, связанные с разрядом молекул или ионов, т. е. с передачей электронов от компонентов раствора к металлу. А это, как уже отмечалось, характерно для пассивных металлов, выполняющих роль нерастворимых анодов. [c.434]

    При анодной защите электродный потенциал металла сдвигают в положит, сторону до образования на его пов-сти пассивирующей пленки (см. Пассивность металла). Анодная защита предотвращает коррозию хим. аппаратуры в р-рах к-т, щелочей и солей. Значение защитного потенциала зависит от материала конструкции, физ.-хим. св-в коррозионной среды и др. факторов. Напр., в H2SO4 пассивное состояние нек-рых нерл<авеющих сталей обеспечивается при потенциале от 4-300 до -1-1200 мВ, титана— от 4-500 до -ЫООО мВ. [c.704]

    Процессы, уменьшающие анодную поляризацию, называются деполяризационными процессами (например, перемешивание, снижающее концентрационную поляризацию), а вещества, их осуществляющие, — анодными деполяризаторами (например, ком-плексообразователи NHg. N и др., сильно понижающие активность простых ионов металлов в растворе вследствие их связывания втруднодиссоциирующие комплексы, или ионыСГ, затрудняющие наступление анодной пассивности металлов). [c.197]

    Кинетическая теория пассивности металлов (Ле-Блан, Фёр-стер, Закур) связывает это явление с затруднением в протекании непосредственно самого анодного процесса ионизации металла  [c.309]

    Металлы и сплавы, склонные к пассивации, но не самопасси-вирующиеся, могу-г быть в подходящих для этого условиях переведены в пассивное состояние анодной поляризацией и тем самым защищены от коррозии (например. Ре, сталь 1Х18Н9 в 1 2804). [c.321]

    При недостаточной концентрации анодных ингибиторов для наступления полной пассивности металла (особенно в присутствии активных депассивирующих ионов, например, ионов СГ) они являются о гасными, так как могут ускорить общую или местную коррозию, действуя как катодные деполяризаторы (рис. 245 и 246). [c.347]

    Ультразвук в одних случаях затрудняет наступление пассивности металлов (при анодном растворении железа, меди, кадмия, стали Х18Н9) в результате десорбции кислорода и диспергирования защитных пленок, а в других случаях (А1 и Ni в NaaS04, Fe в NaOH + СГ) облегчает пассивацию, по-видимому, из-за удаления с поверхности металла активаторов. [c.369]

    Переход металла из активного в пассивное состояние носит название пассивации, а обратный процесс — активации или де-пасснвации. Пассивный металл с термодинамической точки зрения не. является более благородным, чем активный, а замедление коррозионного процесса происходит благодаря образованию иа металлической поверхности фазовых или адсорбционных слоев, тормозящих анодный процесс. [c.59]

    Торможение процесса растворепия металла может произойти, если пленка образуется на особо активных анодных участках в этом случае активность аиодной поверхности уменьшается. При этом электродный потенциал металла заметно облагорай<ивается. Смещение потенциала в положительную сторону связи с образовавшейся пассивной пленкой может служить оценкой степени пассивности металла в данных условиях по сравнению с потенциалом этого же металла с чистой, не-запассивированной поверхностью. [c.63]

    Потенциостатическая поляризационная кривая содержит больше информации, чем гальваностатическая, так как более точно соответствует действительному поведению пассивных металлов, являющихся электродами гальванических элементов. Из рис. 5.1 видно, что железо активно при малых плотностях тока и анодно корродирует с образованием Ре " согласно закону Фарадея. При увеличении тока на поверхности электрода образуется частично изолирующая пленка, состоящая из Ре504. При критическом значении плотности тока / рит 0>2 А/см (при перемешивании или [c.72]

    Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 н. H2SO4. Оказалось, что на потенциостатических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т NajSOi при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но [c.209]

    Рааличве между химической и электрохимической пассивностью заключается в том, что явления пассивности металлов в данном случае связаны с электрохимическим процессам. Причины, вызывающие электрохимическую пассивность, разноогбразиы. В процессе анодного растворения металлов на аноде могут образовываться осадки нерастворимых компонентов анода. [c.116]

    При добавлении в раствор различных анионов в определенных условиях происходит активация пассивных металлов. Эффективность действия анионов обычно падает в ряду С1 >Вг >1 >Р >С10г> >0Н , 504", хотя в зависимости от природы металла порядок ионов в этом ряду может изменяться. На рис. 197 приведены потенциостатические кривые анодного растворения железа в боратном буферном )астворе и в присутствии ЫааЗО . [c.371]

    При добавлении в раствор различных анионов в определенных условиях происходит активация пассивных металлов. Эффективность действия анионов обычно падает в ряду С1 > Вг > Г > F > > lOi > ОН, sor, хотя в зависимости от природы металла порядок ионов в этом ряду может изменяться. На рис. 194 приведены потенциостатические кривые анодного растворения железа в боратном буферном растворе и в присутствии NajSOi. При объяснении влияния анионов на анодное поведение металлов необходимо учитывать вытеснение адсорбированного кислорода анионами, внедрение анионов в окисную пленку, которое изменяет ее свойства, а также прямое участие анионов в процессе растворения пассивного металла (Я. М. Колотыркин). [c.385]

    Природа пассивности металлов до конца не выяснена. Ясно, однако, что это явление вызвано образованием хемосорбционных и фазовых оксидных или солевых пленок, возникающих при растворении металлов. Образование оксидных пленок — причина устойчивости многих металлов, например алюминия. Из рис. IX. 6 видно, что скорость коррозии можно уменьшить, если сдвинуть потенциал металла в область пассивности, т. е. при помощи анодной защиты металлов. Для этого прибегают к анодной поляризации металла от внешнего источника тока. Анодную защиту осуществляют также, напыляя более благородный металл на защищаемый, используя благородные металлы в качестве легирующих добавок или протекторов. В результате основной металл поляризуется анодно и переходит в пассивное состояние. Переход в пассивное состояние может вызвать присутствие в растворе окислителей, например кислорода и др. (рис. IX. 6). Так, пассивацию железа вызывают концентрированные HNOa и H2SO4, что позволяет использовать железную тару для перевозки серной и азотной кислот. Образование оксидных слоев сильно влияет не только на анодное растворение металлов, но приводит к ингибрированию и многих других электродных процессов. Поэтому изучение механизма пассивации, процессов образования, роста и свойств оксидных слоев на металлических электродах — важная задача современной электрохимии. [c.258]

    Пассивирующие окислы многих металлов не всегда являются соединениями высшей степени окисления. При достато чном повышении анодного потенциала подавляющее большинство этих окислов может быть окислено дальше. Если новое соединение, образовавшееся в результате такого процесса, растворимо, то пассивность металла нарушается и он начинает растворяться, образуя ионы высшей валентности. Нарушение пассивности при весьма сильной анодной поляризации или окислительном воздействии среды получило наименование пе-репассивации . [c.403]

    В местах, куда окислитель не поступает, коррозия, а первый взгляд, должна отсутствовать. Однако так как металл и раствор обладают электропроводно стью, протекающий с некоторым перенапряжением анодный процесс ионизации меташла не локализуется только на тех местах, где идет сопряженный процесс восстановления кислорода, а распространяется и на смежные с ними участки. Более того, нередко на местах, легко доступных для кислорода, возникают пассивные цленки иногда анодный процесс, а значит, и разрушение металла практически целиком сосредоточиваются на участках, не цодвергающихся аэрации. Развивается так называемая коррозия с дифференциальной аэрацией, которая возможна при участии не только кислорода, но и других окислителей, споообньрх вызывать пассивность металла. [c.421]

    Если потенциал металлического анода имеет более отрицательное значение, чем потенциал ионов ОН или других веществ, присутствующих в растворе, в газовой фазе около электрода или на электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Если потенциал металлического анода близок к потенциалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например разряд ионов 0Н . В этом случае также говорят об электролизе с растворимым анодом, но учитывают и другие анодные процессы. Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве нерастворимых анодов применяют золото и платиновые металлы, диоксид свинца, оксид рутения и другие вещества, имеющие положительные значения равновесных электродных потенциалов, а также графит. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сггль. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла. [c.210]

    К числу металлов с низкой электронной проводимостью окислов принадлежат алюминий, титан, цирконий, тантал, известные своей способностью подвергаться оксидированию при высоких анодных потенциалах (см. 6 этой главы). Что касается растворения металла в пассивном состоянии, то оно существенно отличается от перехода в раствор ионов металла на активном участке поляризационной кривой. Это отличие прежде всего количественное. При сохранении постоянного потенциала анодной ток в пассивной области обнаруживает тенденцию к постепенному и очень медленно идущему уменьшению, снижаясь до крайне низких значений порядка Ь "а/см . Такой спад тока растягивается на длительные промежутки времени. Поэтому приводимые значения плотности тока в пассивном состоянии следует рассматривать как довольно условные величины, относящиеся к какой-либо определенной выдержке металла при заданном потенциале. Отличие процесса перехода в раствор ионов металла в пассивной области от активного растворения заключается в том, что такой переход протекает в три последовательные стадии. Одной из них является переход катионов металла в окисную пленку. Далее следует миграция ионов под действием электрического поля катионов — к раствору, а анионов кисло-юда или ионов гидроксила — к границе раздела окисел — металл. Наконец, последняя стадия представляег переход катионов из окисной пленки в раствор, т. е. самый процесс растворения пленки. Скорость каждой из трех этих стадий зависит от потенциала, и на этом основании процесс растворения металла в пассивном состоянии можно рассматривать как электрохимический. В противоположность этому в классической теории пассивности принимается, что ионы пассивного металла поступают в раствор в результате химического растворения материала пассивирующей окисной пленки в окружающем электролите. [c.202]


Смотреть страницы где упоминается термин Пассивность металлов анодная: [c.478]    [c.313]    [c.71]    [c.371]    [c.371]   
Теоретическая электрохимия (1959) -- [ c.585 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.583 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Пассивность

Пассивность анодная

Пассивные металлы

Ток анодный



© 2025 chem21.info Реклама на сайте