Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимическая пассивность, влияние

    Температура оказывает в большинстве случаев значительное влияние на скорость электрохимической коррозии металлов, так как изменяет скорость диффузии, перенапряжение электродных процессов, степень анодной пассивности, растворимость деполяризатора (например, кислорода) и вторичных продуктов коррозии. [c.353]

    Благоприятное действие оказывает титан на электрохимическое поведение алюминиевых покрытий в сероводородсодержащей среде (1200 г/л НгЗ). Введение 1,1 % Т1 приводит к некоторому облагораживанию стационарного потенциала (от —570 до —550 мВ), не оказывает влияния на потенциал полной пассивации ( = -500 мВ), способствует появлению обширной области пассивности, смещает потенциал пробоя от —180 до +140 мВ, уменьшает плотность тока полной пассивации в [c.93]


    Описаны основы коррозии и электрохимической защиты, теоретические основы и практика электрохимических измерений. Большое внимание уделено измерению потенциала в условиях подземной катодной защиты. Рассмотрены вопросы пассивной защиты, защиты протекторами и активной защиты как подземных сооружений, так н металлических сооружений в морской воде, а также защиты корпусов судов и отдельных элементов конструкций судов. Проанализировано влияние блуждающих токов на коррозию и методы дренажной защиты. Приведены сведения о защите скважин и внутренней защите промышленного оборудования. [c.4]

    После того как в 1920-х гг. технология сварки достигла уровня, позволяющего получать надежные сварные соединения, и благодаря этому магистральные трубопроводы начали прокладывать только на сварке, для широкого распространения катодной защиты уже собственно не было никаких препятствий. И если этого все же не произошло, то возможно потому, что инженеры, конструировавшие трубопроводные магистрали, получили машиностроительное образование, и способ электрохимической защиты для них был недостаточно понятен. Однако и инженеры-электрики дали завышенную оценку стоимости осуществления этого способа защиты и опасности, создаваемой токами катодной защиты для других трубопроводов. Поэтому сначала пытались обеспечить дальнейшее совершенствование пассивной защиты трубопроводов от агрессивных грунтов путем улучшения качества покрытий, а опасность влияния блуждающих токов стремились уменьшить путем врезки изолирующих муфт. [c.36]

    Защитные мероприятия делятся на активные и пассивные. Электрохимическая защита представляет собой важную и обширную часть защитных мероприятий, характеризующихся активным вмешательством в процессы коррозии. Пассивные защитные мероприятия заключаются в разъединении защищаемой поверхности и агрессивной коррозионной среды при помощи покрытия. Любые возможные активные и пассивные защитные мероприятия могут проводиться и отдельно, однако сочетание обоих способов защиты дает ряд преимуществ и в некоторых случаях даже настоятельно необходимо. Катодная защита и нанесение покрытий почти идеально дополняют друг друга. Это обусловливается, во-первых, экономическими причинами в принципе можно активно защищать и сооружения без покрытий, но затраты на защитную установку и эксплуатационные расходы при этом будут бесспорно высокими, так как потребуется большой катодный защитный ток. Кроме того, в случае подземных трубопроводов имеются и технические соображения, по которым катодная защита поверхностей без покрытия нежелательна. В первую очередь имеется в виду влияние на близрасположенные металлические конструкции, вызывающее опасность их коррозии. Такая опасность может оказаться весьма значительной, и предотвратить ее техническими средствами либо вообще невозможно, либо очень трудно. [c.145]


    Для уменьшения величины необходимого защитного тока, увеличения протяженности зоны защиты (см. раздел 2.3.5) и предотвращения влияния на другие установки (см. раздел 10) катодную защиту обычно сочетают с пассивными средствами защиты от коррозии. Химические и физические свойства покрытий для защиты от коррозии описаны в разделе 5. Электрохимические свойства покрытий рассматриваются в настоящем разделе. Они имеют существенное значение для катодной защиты, поскольку возможны следующие факторы взаимного влияния  [c.164]

    Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения. [c.73]

    Способность твердого соединения защищать металл зависит, конечно, от его растворимости в окружающей среде, адгезии с поверхностью металла, сцепления кристаллов и др. Различные системы металл — среда образуют слои твердых соединений, различающиеся по степени защиты, которую они сообщают металлу. Такие металлы, как N1, Сг, А1, Т1, и нержавеющие стали во многих средах обладают способностью образовывать тонкие невидимые пленки окислов (толщиной I—3 нм). Несмотря на электрохимическую активность этих металлов пленки оказывают значительное влияние на скорость реакции. Способность металла образовывать защитную пленку, так называемое пассивирование, является одним из самых важных средств противокоррозионной защиты. Одни металлы пассивны в разных условиях окружающей среды, другие — только в определенных условиях. Так, тантал пассивен в большинстве кислот, включая соляную кислоту, а железо — лишь в дымящейся азотной кислоте. [c.30]

    Температура воздуха. Продолжительность высыхания влажной пленки на поверхности металла зависит в основном от температуры и движения воздуха [54]. Температура оказывает также большое влияние на протекание таких процессов электрохимической коррозии, как скорость диффузии кислорода, растворимость деполяризатора, образование вторичных продуктов коррозии, пассивность металлов и др. [8]. [c.18]

    В сжатой информационной форме в виде графиков и таблиц, а также пояснений к их использованию, представлен материал об электрохимических методах катодной защиты от коррозии. Описаны методы пассивной и катодной защиты. Приведены данные о гальваническом влиянии высокого напряжения и способы коррозионных измерений, необходимые сведения об измерительной технике, о локальной катодной защите, катодной защите в морской воде и внутренней катодной защите. [c.159]

    Один пз ВОЗМОЖНЫХ путей учета совместного влияния различных электрохимических факторов состоит в определении скорости репассивации сплавов данной системы в рассматриваемой среде. Выход ступеньки скольжения у вершины трещины может привести к повреждению пассивной пленки и последующему локальному растворению, или питтингу, а также к ускорению коррозионных реакций, в ходе которых выделяется водород. Скорость репассивации, таким образом, является мерой интенсивности таких процессов. Отметим, что планарное скольжение сопровождается образованием более крупных и более многочисленных ступенек скольжения, оказывая таким образом влияние на КР. Как было показано [99], скорость репассивации во многих случаях хорошо коррелирует с параметрами КР. По такой корреляции, следовательно, можно судить о взаимодействии и суммарном влиянии различных электрохимических факторов, хотя сама по себе она не позволяет определить механизм растрескивания. [c.123]

    Почти во всех исследованных растворителях на анодных поляризационных кривых наблюдаются области активного растворения и пассивации железа. Продолжительность и соотношение этих областей в шкале потенциалов определяются природой электролита, в первую очередь его анионным составом [349, 977, 604, 605]. На формирование его пассивной области большое влияние оказывает присутствие воды. Природа пассивирующ,их пленок разнообразна от адсорбционных молекул растворителя до фазовых оксидных и солевых пленок [П99, 1227, 783]. Наряду с электрохимическим механизмом при коррозии железа наблюдается и чисто химический [632—635]. Уделено внимание теории подбора и практического использования ингибиторов коррозии в неводных средах [632— 635, 125, 126, 230]. [c.121]


    Сведения о коррозионном поведении сталей на основе железа и никеля немногочисленны, несмотря на важность таких исследований как в практическом, так и в теоретическом плане [206, 598, 599, 601, 602, 595, 596, 597, 89, 105, 396, 230]. Работы посвящены выбору конструкционных материалов для аппаратов электрохимических производств в неводных средах. Поэтому большинство исследований касается установления наличия пассивных участков на поляризационных кривых и влияния на них различных факторов (состав электролита, температура и т. д.). Обнаружены отдельные закономерности. Так, в индивидуальных алифатических кислотах коррозионная стойкость ряда сталей повыщается с увеличением молекулярной массы кислоты [206]. [c.122]

    Применяемые методы диагностики трубопроводов можно условно разде -лить на пассивные, когда регистрируют сигналы, возникающие в самом объекте под влиянием внешних факторов (акустическая и электромагнитная эмиссия, вибрация, электрические и электрохимические шумы, тепловидение), и активные - с посылкой сигналов извне и регистрацией отклика контролируемой системы на внешнее воздействие - акустические щупы-твердомеры, ультразвуковые (УЗ-), лазерные, электромагнитные (ЭМ-) и другие дефектоскопы. [c.26]

    Данные о влиянии гидродинамических факторов на коррозионное и электрохимическое поведение сталей и сплавов в пассивном состоянии представляются весьма важными при выборе коррозионно-стойких конструкционных материалов и определении оптимальных параметров анодной защиты. [c.24]

    Как показано выше, чтобы перевести железо или сталь в пассивное состояние, требуется в нейтральном электролите сместить его потенциал до +0,3- -+0,5 В, на что при внешней анодной поляризации в зависимости от скорости изменения потенциала требуется от 50 до 250 мА/см2. Если стоять на чисто электрохимических позициях и не приписывать ингибитору какого-либо специфического влияния, то полной защиты, например, стали в сульфатном растворе (0,1ч-1,0 н.) можно добиться лишь в случае, когда внутренний ток окислительно-восстановительной реакции превысит ток пассивации. [c.53]

    Защиту подземных сооружений от подземной коррозии можно условно разделить на пассивную защиту — изоляцию сооружения от контакта с окружающим грунтом и ограничение влияния блуждающих токов и активную (электрохимическую) — создание защитного потенциала сооружения по отношению к окружающей среде. [c.213]

    Такое влияние, по-видимому, обусловлено тем, что в силу высокой коррозионно-электрохимической устойчивости в указанной области потенциалов происходит накопление этих компонентов на поверхности сплава [40, 90—92]. Последнее обусловливает перевод сплава в пассивное состояние [90], или же создает поверхностные слои, обогащенные рассматриваемыми компонентами, повышающие перенапряжение анодного процесса ионизации основных компонентов сплава [40, 92]. [c.33]

    Заканчивая краткий обзор теоретических представлений о механизме КР, можно заключить, что хотя еще не создана единая теория КР, большинство случаев КР в электролитах можно объяснить на основе механо-электрохимических представлений. В начальный период основную роль в возникновении первичной трещины играет хемосорбционное взаимодействие активных ионов среды на каких-то отдельных неоднородностях поверхности металла. Дальнейшее развитие трещины идет при непрерывном возрастающем влиянии активации анодного процесса механическим растяжением решетки в зоне острия трещины. Эта активация особенно велика, если исходное состояние металла соответствует пассивному состоянию, а наложение растягивающих усилий приводит к местной активации в вершине трещины. В конечный период нарастают механические разрушения и разрыв происходит при превалировании механического фактора. [c.68]

    Наиб, часто Э. и. системы моделируется пассивной электрич. цепью в ввде последовательно соединенных сопротивления Rs и емкости С-. Активное сопротивление отражает влияние электрич. сопротивления электролита, замедленность переноса заряда через фаницу электрод-р-р, замедленность диффузии электрохимически активных в-в. Емкостное сопротивление отражает емкость двойного электрич. слоя, ди4 узию присутствующих в р-ре ПАВ, их адсорбцию (десорбцию) на электроде. При этом [c.463]

    Влияние напряженного состояния на электрохимические характеристики бьшо исследовано при непрерывной деформапии образцов со скоростью 1 мм/мин. Юше-тика анодного процесса изучалась в 1 М Na2S04 при электрохимическом потенциале 0,6 В, что соответствует пассивному, т. е. не склонному к КР состоянию этих сталей. Результаты исследований прршедепы в табл. 1.4.20. Было обнаружено, что резкий скачок скорости анодного процесса на гладких (без надреза) образцах соответствует напряжениям, примерно равным пределу текучести хромоникелевых сталей — 250-270 МПа. [c.71]

    Сопоставление температурно-временных областей возникновения склонности к МКК и хрупкости показывает, что они не совпадают и влияние титана на эти процессы различно (рис. 1.27). Более детальное представление о природе МКК и хрупкости аустенито-ферритных сталей дают фазовый анализ выделяющихся вторичных фаз и исследование электрохимического поведения сталей в широком интервале потенциалов (рис. 1.28). В закаленном состоянии низкоуглеродистые или стабилизированные стали равноценны по токам растворения в пассивной области. Однако, по-видимому, предупреждение МКК путем снижения углерода предпочтительнее, так как низкоуглеродистые стали имеют более широкую область оптимальной запассивированности (рис. 1.28, кривые 1—3). Склонности к МКК соответствует ухудшение пас- [c.36]

    Дамаскин Б. Б Петрий О. А., Введение в электрохимическую кинетику, М., 1975. Б. Б. Дамаскин. ЭЛЕКТРОХИМИЧЕСКАЯ РАЗМЕРНАЯ ОБРАБОТКА металлов и сплавов, основана на анодном растворении участков заготовки, подлежащих удалению, при пропускании пост, электрич. тока. Препятствующие растворению атомы пассивирующего О (см. Пассивность металла) вытесняются с пов-стя металлов активирующими анионами р-ра, если на металл наложено достаточно высокое электрич. напряжение. Вытеснение обусловлено большей полярностью хим. связи металла с анионом, чем с кислородом. На катоде образуются Нг и ионы ОН", на аноде — Ре " ", к-рые удаляются из р-ра, напр, по р-ции 20Н ре + Ре(ОН)2. Вредное влияние растворенных, твердых и газообразных отходов, возникающих при обработке, и перегрева в меж-электродйом пространстве устраняется протеканием электролита у растворяемых участков. [c.704]

    Электрохимическое полирование представляет собою процесс растворения металла в условиях частичной пассивности. В результате изменения состояния поверхности металл приобретает блеск. Первоначально этот процесс рассматривался как способ декоративной отделки изделий и обработки шлифов при металлографических исследованиях. Затем его стали использовать также для улучшения эксплуатационных характеристик аппаратуры. Благодаря специфическим условиям анодного растворения металла при алектрохимическом полировании удаляется поверхностный слой с повышенябй концентрацией напряжений, инородных включений, скрытых дефектов, весьма неблагоприятно влияющих на механические, электрические и физико-химические свойства материала. Изменение класса шероховатости поверхности происходит прежде всего в результате удаления острых неровностей, а также сглаживания высокочастотных микрошероховатостей и образования волнообразного рельефа. Эффективность влияния процесса на свойства металлов и сплавов связана с их составом, степенью деформации, толщиной обрабатываемой детали. [c.330]

    Протекание анодных реакций в тонких слоях имеет свои специфические особенности. Если обратиться к табл. 19, то легко заметить, что уже при незначительном сдвиге потенциала от стационарного значения, кроме реакций, рассмотренных выше, на аноде могут протекать и реакции электрохимического окисления меди ионами С1 , 504 и СОз " с образованием хлоридов, сульфатов и карбонатов в результате не вторичных процессов а первичного электрохимического акта. Образующиеся соединения, оче видно, не обладают зап итными свойствами. Впрочем, хлориды, сульфаты карбонаты и гидраты могут образовываться и в результате вторичных реак ций за счет взаимодейсгвия перешедших в раствор ионов меди с анионами Эти соединения, не обладая защитными свойствами, тем не менее оказы вают косвенное влияние на процесс наступления пассивного состояния [c.124]

    В тонких слоях электролитов довольно быстро достигается предел растворимости, и значительная часть электрода оказывается покрытой нерастворимыми продуктами анодной реакции. При этом активная часть электрода уменьшается, а плотность тока на указанных участках сильно возрастает. Последнее способствует сдвигу потенциала в положительную сторону и возникновению, вследствие электрохимического окисления, тех окисных и гидроокиснЕлх пленок, которые приводят медный анод в пассивное состояние. В этом отношении особое влияние на медь окажут сернистые соединения, хлорная медь, гидрат окиси меди и карбонат меди, которые обладают ничтожной растворимостью (табл. 20). [c.124]

    Таким образом, усиление коррозии металлов в присутствии хлора следует объяснять, как и для сернистого газа, появлением в системе нового деполяризатора, значительно превосходящего по своим окислительным свойствам кислород. Что же касается влияния хлора на другую электрохимическую реакцию, обусловливающую коррозионный процесс,— анодную,— и заключающуюся в ионизации металла, то здесь положение следующее. Если скорость коррозионного процесса лимитируется анодной реакцией, что, например, может иметь место в адсорбционных слоях или на металлах, находящихся в пассивном состоянии, то хлор может изменить скорость коррозионного процесса С лагодаря ускорению анодной реакции. Последнее может произойти как благодаря адсорбционному вытеснению кислорода с поверхности металла ионами хлора, появившимися в электролите в ре- [c.222]

    Электрохимическое и коррозионное поведение металлов в присутствии ванадатов различно и зависит от состава последних. Поведение ортованадата натрия NaзV04 ничем не отличается от поведения рассмотренных выше ингибиторов с обшим анионом типа М02 (рис. 5,16а), а поведение метаванадата натрия ЫаУОз, наоборот, существенно отличается. Метаванадат по мере увелц-чения его концентрации в растворе непрерывно уменьшает скорость коррозии, не приводя к увеличению ее интенсивности. При концентрации 0,25 моль/л коррозия стали в 0,1 н. N32804 полностью приостанавливается (рис. 5,166). Такое удивительное поведение ингибитора связано с тем, что он не выводит из сферы анодной реакции часть поверхности электрода, пока металл не переходит полностью в пассивное состояние. Растворение происходит по всей поверхности. Этот ингибитор не косвенно, а непосредственно влияет на кинетику анодной реакции эффективность катодного процесса при этом не изменяется, что сказывается на характере изменения потенциала (см. рис. 5,16 6). В широкой области концентраций метаванадат натрия не оказывает влияния на электродный потенциал последний остается таким же, как и в фоновом электролите. При этом различным скоростям растворения соответствуют одинаковые значения потенциала. [c.171]

    Некоторые эксперименты действительно показали принципиальную возможность значительного торможения анодного процесса растворения металла под влиянием адсорбции ионов кислорода. При этом наблюдалось заметное торможение анодного процесса даже при адсорбции кислорода в количествах, недостаточных для полного покрытия истинной поверхности электрода одним сплошным слоем адсорбированного кислорода. Для платины в растворе 0,5 N НС1 это было установлено Б. В. Эршлером [33], а для железа в растворах NaOH Б. Н. Кабановым [34]. Подобные электрохимические определения, проведенные в нашей лаборатории Ю. М. Михайловским и Г. Г. Лоповком [44], Н. М. Стру-ковым [45] на Ti в 10 iV H2SO4, также показали, что для перевода титана из активного в пассивное состояние требуется анодно пропустить количество электричества, эквивалентное посадке менее чем одного монослоя кислорода. [c.16]

    Нержавеющие стали — сплавы на основе железа, легированные хромом или хромом и никелем, а также и другими элементами, коррозионная стойкость которых обусловлена, в первую очередь, их пассивными свойствами. Поэтому проводят многочисленные исследования по изучению влияния различных факторов—состава, среды, температуры, на повышение пассивируемости сталей этого класса. Электрохимическое поведение основных компонентов этих сталей—железа, хрома, никеля в 1 iVH2S04 показано на рис. 44 [27]. Очевидно, что хром имеет наиболее отрицательное значение потенциалов пассивации Еп и полной пассивации Еап-, а также и минимальный ток растворения в пассивном состоянии пп по сравнению с железом и никелем. В соответствии с этим при повышении содержания хрома в сплавах с железом происходит смещение Еа и Еаа в отрицательную сторону, а также наблюдается уменьшение п и пп (рис. 45). Многими исследователями было отмечено, что изменение этих характеристик происходит наиболее резко при увеличении содержания хрома от 12 до 13%, как показано на рис. 46 [118]. При легировании железа никелем пассивируемость сплавов также возрастает [84, 119], но в гораздо меньшей степени, чем при легировании железа хромом. Пассивные свойства сплавов Fe — Ni являются промежуточными между пассивными свойствами чистых металлов. Введение в состав хромистых сталей 8% Ni и более приводит к уменьшению тока пассивации ia, но смещает потенциал нассивирования Еа в положительную сторону [84, 118] (рис. 47). Легирование нержавеющих сталей небольшими количествами [c.73]

    Было исследовано влияние одновременного легирования компонентами, повы-шаюш,ими пассивируемость (Сг, Мо) и катодную эффективность (Р(1) на коррозионное и электрохимическое поведение титана [126]. Подобные сплавы показали максимальную пассивируемость и максимальную устойчивость в серной и соляной кислотах по сравнению со всеми известными сплавами на основе титана. Повышение коррозионной устойчивости сплавов —15%Мо и Т1—15% Сг при легировании их 2% Рс1 может быть пояснено на основе анализа поляризационных кривых для этих сплавов в растворе 80%-ной Н2504 при температуре 18° С (рис. 64). Из диаграммы видно, что легирование титана 15% Мо снижает критический ток пассивирования г п и смещает в бо.лее отрицательную сторону потенциал полного пассивирования Легирование титана 15% Сг несколько увеличивает критический ток пассивирования, но сильно сдвигает в отрицательную сторону потенциал пассивирования, особенно потенциал полного нассивирования Еаа- Потенциал коррозии всех этих сплавов, дополнительно легированных 2% Рс1, вследствие весьма низкого перенапряжения водорода на тонкодисперсных включениях палладия, постоянен и приблизительно равен нулю вольт следовательно, он находился в зоне нестабильной пассивности сплавов (заштрихованная горизонталь на рис. 64). В этих условиях коррозионная устойчивость [c.94]

    Для испытаний ускоренных коррозионных процессов со смешанным контролем применяют комбинированные методы — методы, ускоряющие обе электрохимические реакции. К ним можно отнести испытания в растворах. хлористого натрия, содержащих 0,1 % Н2О2. Введение в растворы кислот небольшого количества хлористого натрия при испытании металлов, находящихся в пассивном состоянии, также будет способствовать увеличению скорости коррозии за счет влияния хлор-иона на анодный процесс. [c.35]

    Отсюда можно заключить, что в отсутствие явлений пассивности изменение потенциала анода за счет концентрационной поляризации будет несравненно меньшим, чем за счет электрохимической. Однако из этого не следует делать вывод, что размешивание не должно оказывать влияния на контактный ток. Необходимо иметь в виду, что с размешиванием сильно изменяется толщина диффузионного слоя (от 0,05 см для неразмешиваемого электролита до 0,001—0,003 см для сильно размешиваемого), а следовательно, и предельный катодный ток. Поэтому по мере усиления интенсивности размешивания нейтральных электролитов роль положительного контакта должна сильно возрасти. Однако увели-48 [c.48]

    Особо следует остановиться на поведении пассивных металлов и соотношении поверхностей контактирующих металлов. Сплавы, подобно нержавеющим сталям, которые в морской воде могут находиться как в активном, так и в пассивном состоянии, оказывают различное влияние. Будучи в пассивном состоянии, они усиливают коррозию менее благородных металлов, таких как алюминий, сталь и медные сплавы. Если же они находятся в активном состоянии, то претерпевают сами сильную коррозию при контакте с материалами, обладающими более положительным, чем они сами в активном состоянии, потенциалом (медные сплавы, титан, хастеллой и т. д.). В связи с этим наблюдается часто при развитии питтинговой коррозии сильная коррозия нержавеющих сталей при контакте их с более благородными металлами. При контакте нержавеющих сталей с такими неблагородными металлами, как малоуглеродистая сталь, цинк, алюминий, потенциал которых отрицательнее потенциала нержавеющих сталей в активном состоянии, последние электрохимически защищаются. Аналогичным образом можно добиться защиты от общей и точечной коррозии и менее легированных сталей. В частности, сообщается, что крыльчатки из хромистой стали Х13 обнаруживают высокую стойкость в насосах с чугунными корпусами при перекачке морской воды. [c.171]

    При изучении влияния Мо на электрохимическое поведение было установлено, что Мо снижает ток пассивации (1 % Мо уменьшает ток пассивации на порядок величины). У сталей с Мо потенциал пассивации несколько смещается в отрицательную область, ток в пассивиом состоянии уменьшается. Время самоактивации увеличивается, потенциал питтингообразования смещается в положительную сторону по сравнению со сталями, не легированными Мо. Таким образом молибден существенно улучшает пассивируемость нержавеющих сталей. В связи с этим в последние годы интенсивно изучается состав пассивных пленок на сталях с молибденом. [c.151]

    Было изучено [190] влияние меди (1,5 2,0 и 3,25 7о Си) на коррозионное и электрохимическое поведение литой стали 0,9С28СгЗМо в растворах 15—93 /о-ной H2SO4, 80 °С). Установлено, что легирование медью повышает коррозионную стойкость стали. Результаты электрохимических исследований показывают, что это может быть объяснено смещением потенциала коррозии из области активного растворения в пассивную. [c.221]

    Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Р1, Аи, kg, Си, N1 и, в меньшей степени. Ре). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные снлавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих иассивны.ч пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюминия, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа илн меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, 2п) в меньшей степени понижают коррозионную стойкость алюминия. [c.261]

    На рис. 122 иллюстрируется сравнительное влияние бора и кремния на электрохимическое поведение полностью-аморфного сплава Т115Ы175Вю и сплава подобного же состава, но с кремнием Т115М17551ю. Видно, что добавка 10 % (ат.) Si вместо бора несколько эффективнее повышает пассивационные и коррозионные свойства сплавов (наблюдаются большее смещение в положительную сторону стационарного потенциала, меньшие токи в пассивном состоянии). Это, по-видимому, связано с более совершенной аморфной структурой, зарегистрированной для тройных сплавов с кремнием. [c.339]

    Анализ коррозионно-электрохимических свойств карбидов иа основе хрома показывает, что в области активно-пассивного перехода возможно их растворение с высокими скоростями. Однако возможность избирательного растворения карбида из структуры стали во многом должна зависеть от химического состава стали и карбида, а также от соотношения потенциостатических характеристик указанных материалов в рассматриваемой области потенциалов. Например, в случае хромистой стали Х28 при ее растворении в активном состоянии установлено накопление на поверхности карбида (Сг, Ре) 2зСб, приводящее к самопассивации стали вследствие ускорения катодной и торможения анодной реакций [6]. Следовательно, в этом случае сталь растворяется с большей скоростью, чем карбид. Однако, при растворении хромоникелевых сталей в активном состоянии и при учете, что никель оказывает здесь сильное тормозящее влияние на скорость растворения, а содержание его в карбидах хрома меньше, чем в стали, возможно избирательное растворение указанных карбидов. По-видимому, этим можно объяснить локальные разрушения по границам зерен, наблюдаемые на отпущенных хромоникелевых сталях в активном состоянии [97, 1,001. [c.45]


Смотреть страницы где упоминается термин Электрохимическая пассивность, влияние: [c.233]    [c.74]    [c.88]    [c.91]    [c.6]    [c.24]    [c.68]    [c.98]    [c.99]    [c.32]   
Коррозия (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2025 chem21.info Реклама на сайте