Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден в вольфраме металлическом

    По материалу матрицы композиты делятся на три группы металлические, керамические и органические. Композиционные материалы с керамической матрицей или керметы синтезируют методом порошковой металлургии на основе тугоплавких оксидов, боридов, карбидов и нитридов различных элементов и содержат такие тугоплавкие металлы как хром, молибден, вольфрам, тантал. [c.327]

    В побочную подгруппу VI группы входят хром, молибден, вольфрам. Характер изменения свойств элементов в группе сверху вниз в побочных подгруппах отличается от того, что наблюдается в главных подгруппах. Если у металлов главных подгрупп сверху вниз по группе потенциалы ионизации уменьшаются и металлическая активность, следовательно, увеличивается, то в побочных подгруппах, наоборот, потенциалы ионизации увеличиваются, а металлическая активность уменьшается. Второй особенностью элементов побочных подгрупп является то, что наибольшим сходством в свойствах обладают пары элементов, находяш,иеся в пятом и шестом периодах. Например, цирконий и гафний, ниобий и тантал, молибден и вольфрам образуют пары очень сходных по свойствам элементов. [c.271]


    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Среди металлических материалов исключительное полол<ение занимают сплавы на основе железа. Сплавы железа с содержанием углерода до 2% принято называть сталью, а свыше 2% — чугуном. Используемые в настоящее время в промышленности стали обычно делят на углеродистые и легированные. Создание новых н интенсификация существующих промышленных процессов заставляет все больше использовать легированные стали, которые обладают повышенной коррозионной стойкостью. Массовая доля средне- и высоколегированных сталей в настоящее время составляет почти 20% от общего количества производимых промышленностью черных металлов. Для легирования используют такие элементы, как никель, хром, молибден, вольфрам, ванадий, кобальт, марганец, медь, титан, алюминий. Сплавы железа с хромом составляют основу нержавеющих сталей, среди которых [c.136]

    В последнее время получены обширные сведения о влиянии различных металлических расплавов на прочность графита [25]. Обнаружены следующие виды взаимодействия 1) отсутствие смачивания и соответственно влияния на прочность (олово, галлий) 2) сильная коррозия — интенсивное растворение в таких расплавах как молибден, вольфрам 3) проявление своеобразной самозащиты в случаях образования прочных карбидов, препятствующих дальнейшему контакту углерода с расплавом (титан, цирконий) 4) значительное понижение прочности графита при контакте с жидким алюминием и натрием. В случае алюминия эффект [c.167]

    Метод испарения обычно неприложим непосредственно к анализу металлических проб. Характерными затруднениями с технической стороны являются здесь легкая окисляемость металлов, необходимость тонкого чистого измельчения проб и приготовления эталонов, в достаточной степени точно соответствующих анализируемым образцам. Кроме того, летучести многих примесей и основы оказываются у многих металлов близкими. Исключение составляют нелетучие и тугоплавкие рений [457], молибден, вольфрам [107] и другие металлы, допускающие нагревание в вакууме до 1800° С [c.245]


    Металлические покрытия, нанесенные на бериллий, молибден, вольфрам, титан, тантал, цирконий, ниобий, торий и уран, служат для облегчения пайки, в качестве защитной меры против окисления при повышенных температурах (чаще свыше 300 и 450°С, для вольфрама свыше 600°С), а для некоторых из этих металлов (молибдена, вольфрама, тантала, ниобия) —для понижения теплопроводности. Эти виды обработки приобрели большое значение в связи с требованиями космонавтики. [c.389]

    Алюмофосфатные клеи-цементы нашли применение для склеивания внутренних деталей в производстве вакуумных приборов [10 2, с. 12], а также для крепления проволоки различного диаметра к металлам и диэлектрикам, для склеивания металлических пластин (молибден, вольфрам, тантал) с диэлектриками. Окончательное отверждение клеев-цементов производится, как правило, в вакууме, где затем склеенные узлы дополнительно прогреваются при 700—1000°С. После такой обработки обеспечивается надежное крепление деталей в приборах, в которых длительное время сохраняется вакуум [c.141]

    Результат титрования при анализе стандартного образца № 38 ферросилиция свидетельствует о том, что около 2/з кремния перешло в раствор в виде 51 +. Металлические медь, алюминий, ванадий, молибден, вольфрам, марганец кобальт и никель в результате взаимодействия с 0,25-н. раствором хлорного железа переходят соответственно в Сц2+, АР+, У +, Мо +, / + Мп2+, С02+ и N 2+. Аналогично происходит взаимодействие этих металлов с раствором хлорного железа, если эти металлы входят в состав сплавов на основе железа. При взаимодействии металлического алюминия и марганца с раствором хлорного железа частично выделяется водород. Титан, цирконий, кремний, фосфор и хром, содержащиеся в некоторых сплавах на основе железа, переходят соответственно в Т1 +, 2г +, 51 +, Р + и Сг + ниобий, вероятно, переходит в N5 +. Углерод, входящий в состав сплавов на основе железа, пе реагирует с раствором хлорного железа. [c.99]

    Наиболее вероятным путем проникновения газов через оболочки прибора являются внутренние дефекты — микроскопические трещины, поры, раковины и волосовины. Подобные дефекты обнаруживаются наиболее часто на тугоплавких металлах (молибден, вольфрам и сплавы на их основе), а также на полуфабрикатах ковара, низкоуглеродистой стали, мельхиора, монели и т. д. Образование дефектов в металле связано в первую очередь с условиями их выплавки и кристаллизации, с количеством газовых и металлических примесей, растворенных в металле. Чем рациональнее выбраны примеси и их количество, тем лучше условия для кристаллизации металлов, тем меньше возможность образования внутренних дефектов. Отсутствие этих дефектов значительно повышает вакуумную плотность материалов. Минимальное содержание газов и вредных примесей и отсутствие внутренних дефектов можно получить при выплавке металлов и сплавов в вакууме. Такие металлы, как монель, мельхиор, низкоуглеродистое железо, ковар, коррозионно-стойкая сталь, используемые для деталей, ограждающих вакуумную полость, целесообразно применять только вакуумной выплавки. [c.5]

    К третьей группе следует отнести те металлы, которые пока еще не удается получить из водных растворов в металлическом состоянии [7]. Это молибден, вольфрам, уран, ниобий, титан, тантал. Для металлов третьей группы характерна повышенная реакционная способность по отношению к среде и образование поверхностных соединений. На окисленной поверхности дальнейшее восстановление металла резко затрудняется и значительно облегчается восстановление ионов-водорода. В силу этого металлы третьей группы выделяются на катоде в виде тонкого слоя окиси или гидроокиси. Поэтому электролитически не удается получить эти металлы в металлическом состоянии. [c.14]

    Пластичность металла определяется способностью металла не разрушаясь деформироваться так, что деформации остаются и после окончания действия нагрузки. Пластичность металлов имеет очень большое практическое значение. Благодаря этому свойству металлы поддаются ковке, прокатке, вытягиванию в проволоку (волочению), штамповке. Смещение заполненных атомами металла плоскостей в кристалле в определенных пределах не приводит к разрушению металлической связи. Механизм образования смещений связан с появлением и движением дислокаций. Хрупкими определенное время считались титан, вольфрам, хром, молибден, тантал, висмут, цирконий. Очищенные от примесей эти металлы — высокопластичные материалы, которые можно ковать, прессовать, прокатывать. В табл. 11.3 приведены значения относительного удлинения некоторых металлов, характеризующего их пластичность. [c.324]

    Начавшаяся примерно 100 лет тому назад научно-техническая революция (НТР), затронувшая и промышленность, и социальную сферу, также тесно связана с производством металла. Прежде всего она определялась появлением новых металлических материалов, содержащих редкие металлы (вольфрам, молибден, титан и др.). Создание на их основе коррозионностойких, сверхтвердых, тугоплавких сплавов резко расширило возможности машиностроения. Приведем несколько примеров нз истории техники того времени. [c.251]


    Побочную подгруппу VI группы составляют элементы хром Сг, молибден Мо и вольфрам W. Они относятся к -элементам. Их атомы на внешнем энергетическом уровне содержат у хрома и молибдена по одному электрону, у вольфрама — два электрона, что обусловливает их металлический характер и отличие от элементов главной подгруппы. В соответствии с числом валентных электронов они проявляют максимальную степень окисления +6 и образуют оксиды типа НОз, которым соответствуют кислоты общей формулы НаНО,. Сила кислот закономерно падает от хромовой до вольфрамовой. Большинство солей этих кислот в воде малорастворимо, однако хорошо растворяются соли щелочных металлов и аммония. [c.195]

    Металлические и особенно ионные радиусы молибдена и вольфрама близки (табл. 34) вследствие лантаноидного сжатия. Поэтому молибден и вольфрам сходны по физическим и химическим свойствам, но существенно отличаются от хрома. При переходе от хрома к вольфраму восстановительная активность металлов несколько понижается. [c.416]

    Как ВИДНО из данных, приведенных в табл. 38, в ряду Сг—Мо—Ш возрастают потенциалы ионизации, т. е. с увеличением зарядов ядер происходит уплотнение электронных оболочек их атомов, в особенности сильное при переходе от молибдена к вольфраму. Хром, молибден и вольфрам относятся к -элементам. Имея на внешнем уровне один (хром и молибден) или два (вольфрам) электрона, рассматриваемые элементы, в отличие от элементов главной подгруппы VI группы, обладают преимущественно металлическими свойствами. Сходство между элементами обеих подгрупп проявляется только в соединениях с высшей степенью окисления (+6). [c.468]

    Наиболее тугоплавкими металлическими элементами являются ниобий, молибден, рений, тантал, осмий и вольфрам. Если принять запасы ниобия в земной коре за 100%, то относительная распространенность остальных пяти элементов в земной коре выглядит так, % ниобий 100 молибден 3 вольфрам —3 тантал 0,1 рений —5-10 осмий 5-10 . [c.215]

    Сплав основного металла и металлического покрытия происходит на поверхности, подвергаемой диффузии. Размеры обрабатываемого изделия изменяются незначительно. Диффузионные покрытия применяют для многих металлов и сплавов, включая медь, молибден, никель, ниобий, тантал, титан и вольфрам, но особенно часто — для черных металлов. [c.104]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    По химическим свойствам вольфрам близок к молибдену. В элементарном состоянии это типичный металл. В соединениях он поливалентен. Металлические свойства его в соединениях падают с ростом ва- [c.222]

    В металлическом молибдене, вольфраме и их сплавах натрий определяют методами пламенной атомно-эмиссионной и атомно-абсорбционной спектрометрии [35, 82, 179, 443, 469, 790, 798, 862, 898, 1013]. Молибден и вольфрам в пламени излучают сплошной спектр, который мешает определению малых количеств натрия, поэтому пред- [c.166]

    Лучше, однако, вести синтез по способу 16 (табл. 53). Бориды и силициды, особенно Т-металлов (d —d ), получают путем спекания смесей порошкообразных простых веществ прн медленном повышении температуры до максимальной (1200—1500 °С). Предварительное уплотнение образца при прессовании смесн порошков в таблетки облегчает диффузию компонентов. В качестве материалов для изготовления сосудов применяют оксид алюминия, графит, нитрид бора, металлические молибден или вольфрам. [c.2167]

    Для кадмия, олова, свинца, осаждающихся почти без перенапряжения (поляризации), приходится изыскивать специальные условия. В противном случае получаются грубокристаллические некомпактные осадки, совершенно не обладающие защитными свойствами. Металлы, разряд и выделение которых сопровождается высоким перенапряжением, — железо, никель, кобальт, хром — осаждаются в виде мелкокристаллических компактных осадков. Такие металлы, как молибден, вольфрам, титан, тантал и ниобий, вообще не удалось выделить из водных растворов в чистом виде. Они выделяются только в виде оксидов, гидроксидов или очень тонких (до 0,3 мкм) металлических пленок. [c.364]

    Описаны металлические производные полиариленэфиркетонов с фрагментами аренметалл (хром, молибден, вольфрам)трикарбонилов, получаемые взаимодействием полиэфиркетона с гексакарбонилами соответствующих металлов. Содержание металла в полимере регулировалось в широких пределах от 0,7 до 12 мас.%. Такие полимеры удается перерабатывать в изделия из раствора (пленки, покрытия) и расплава (монолитные прессованные образцы) с хорошими механическими, оптическими и адгезионными свойствами [34]. [c.201]

    Керметы — керамико-металлические материалы — это гетеро-фазные композиции, получаемые методом порошковой металлургии и обладающие комплексом улучшенных свойств. Они отличаются от дисперсноупрочненных сплавов тем, что основной фазой в них является керамическая. Первым керметом конструкционного назначения была композиция оксид алюминия — хром, которую удалось улучшить введением различных добавок. Более перспективным оказался кермет оксид алюминия — тугоплавкий металл (молибден, вольфрам, тантал). Широкое применение в атомной технике нашли керметы на основе оксидов урана и тория иОг—Мо( У) ТЬОг—Мо (Ш), а также на основе оксида циркония [c.155]

    КЕРАМИКО - МЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ, керметы — материалы, представляющие собой гетерогенные композиции одной или нескольких керамических фаз с металлами класс композиционных материалов. Обладают улучшенными св-вами, не присупщми исходным компонентам. Впервые предложены (1922) в Германии как твердые сплавы. Композиции, в к-рых керамическая фаза улучшает св-ва металла, относятся к дисперсноупрочненным материалам (инфракерметы), соответственно керамика с металлом является улучшенной керамикой (ульт-ракерметы). В К.-м. м. в качестве керамической фазы чаще всего иснользуют окислы, карбиды, бориды и нитриды тугоплавких металлов, в качестве металлической фазы — металлы группы железа или тугоплавкие металлы — ванадий, хром, молибден, вольфрам, ниобий и тантал. Компоненты К.-м. м. должны удовлетворять спец. требованиям в отношении хим. стабильности, термической совместимости и возможности образования связи на границе фаз. Требование относительно хим. стабильности определяет такое сочетание [c.565]

    В некоторых случаях кварц во время работы необходимо защищать от воздействия на него веществ, участвующих в транспортной реакции. Это достигается с помощью цилиндрических тиглей из спеченной окиси алюминия, прикрытых крышками. Тигли помещают внутрь ампулы и в них проводят транспортную реакцию. В тех случаях, когда работа производится при температурах, близких к температуре размягчения кварца, в кварцевую ампулу для защиты ее стенок вводят цилиндрическую гильзу, изготовленную из пифагоровой массы. При работе с еще более высокими температурами наряду со специальными керамическими материалами для изготовления реакционных сосудов используются и такие металлы, как молибден, вольфрам и платина. Металлическую фольгу можно свернуть в гильзу, накатав на стеклянную палочку, а концы гильзы затем сплющить. Поместив гильзу в трубку, ее можно нагревать электрическим током, пропуская его непосредственно через гильзу. Поскольку гильза не герметична, то, поместив ее в трубку, можно создать в ней вакуум, а затем наполнить газом. Так как при этом внешнее и внутреннее давление газа на стенку гильзы будет одинаковым, диффузия газообразных веществ из внутренней части гильзы будет незначительной. Поэтому помещенное в гильзу твердое вещество можно подвергнуть процессу транспорта вдоль нагретого участка трубки за счет естественного температурного градиента [21]. Кейтер, Плант и Гиле [22] сообщили о проведенном ими транспорте вещества в замкнутом молибденовом тигле. При температурах выше 1300° часто применяются установки с раскаленной проволокой. [c.19]

    При этой технологии (табл. 2-42) поК рытие изготавливается из суспензии металлического порошка (или смеси порошков) в биндере. Порошки могут состоять только из металлов, нерастворяющихся или мало растворяющихся в соединительных сплавах (разд. 2, 5-3) и образующих прочное соединение с керамикой. Применяемыми при этом металлами являются молибден, вольфрам, марганец, железо, хром, медь, никель, рений. К металлическим по рошкам иногда добавляют небольшое количество окисло1в (например, окисел марганца), чтобы облегчить процесс окисления, необходимый для образования соединения. Можно применить окисел молибдена вместо молибденового порошка либо смесь 10КИСЛОВ молибдена п марганца (в соотношении 20 1). [c.148]

    Серебряные припои, в состав которых входит литий (до 0,25%), оказались значительно лучше обычных в смысле жид-котекучести, смачивающей способности, сопротивления разрыву и удару. Такие припои находят применение, в частности, для пайки железных и других металлических изделий, содержащих окисляющиеся компоненты — хром, молибден, вольфрам. [c.475]

    Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы Д. И. Менделеева. Это в основном металлы I, VI, VII и VIII групп медь, серебро, хром, молибден, вольфрам, уран, железо кобальт, никель, платина, палладии и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, способствующих каталитической активности переменной валентностью, склонностью к комплексообразованию, сравнительно невысокой работой выхода электрона и т. п. Особенно велика каталитическая активность металлов, у которых сумма (1- и х-электронов выше, чем число электронов, участвующих в металлической связи, так как наличие неспаренных электронов на внешних с1 и 5-орбиталях особо выгодно для поверхностных взаимодействий. В приближенном рассмотрении катализ на металлах основан на активированной адсорбции (хемосорбции) реагентов поверхностью катализатора, которая сопровождается акцептор но-донорными переходами электронов в -оболочку мета лла и в обратном направлении, в зависимости от типа реакций. Однако нельзя считать, что этими переходами исчерпывается вся сущность каталитического акта. [c.244]

    Термическая диссоциация талогенидов бора на накаленной металлической нити. Основные примеси кремний, железо, алюминий, кальций, магний. Материал нити молибден, вольфрам, тантал. [c.93]

    В прошлом значительное число работ посвящалось вопросу о способности к образованию соединений между РЗМ и остальными элементами периодической таблицы. Гшнайднер и Ва ер [68] нашли, что интерметаллические соединения образуются с элементами, стоящими в периодической таблице справа от столбца хром — молибден — вольфрам. Грубо говоря, это обобщение включает пниктиды, халькогениды и галогениды, которые лучше выделить из класса интер металлических соединений. Они либо были отдельным предметом обсуждения появившихся недавно обзоров, либо были включены в обзорные статьи в связи с обсуждением различных редкоземельных систем [42, 69—71]. [c.29]

    Хром является представителем побочной подгруппы шестой группы периодической системы. Главная подгруппа шестой группы, как мы уже знаем, состоит из элементов, являющихся типичными металлоидами. В побочной подгруппе находятся элементы четных рядов, т. е. первых половин больших периодов, атомы которых характеризуются недостроенными предпоследними энергетическими уровнями. Поэтому у всех элементов побочной подгруппы, на внешнем электронном слое аюмов находится не более двух электронов-что и обусловливает их металлические свойства. Эти элементы не дают отрицательных ионов, поскольку они но могут присоединять электронов, подобно элементам главной подгруппы. В этом их коренное отличие. Отдавать электроны атомы элементов побочной группы могут не только с внешнего слоя, но и с предпоследнего недостроенного слоя, который содержит 12 электронов (у хрома 13). Таким образом, при химическом взаимодействии у атомов этих элементов принимают участие 2 электронных слоя внешний и предпоследний. Общее количество электронов, которые они могут отдать, равно шести. В этом проявляется их сходство с элементами главной подгруппы. К побочной подгруппе элементов шестой группы относятся металлы хром, молибден, вольфрам и уран. Все они имеют очень важпое значение уран как радиоактивный элемент, остальные как металлы, применяющиеся в технике для получения различных сплавов. Среди них наиболее важным является хром. [c.263]

    Элементы Сг, Мо и XV имеют высокие температуры плавления и кипения и являются твердыми металлами. Они относительно инертны к коррозии благодаря покрывающей их поверхность прочной оксидной пленке, которая защищает расположенный под ней металл. Тонкий слой СГ2О3 на поверхности металлического хрома делает хромовые покрытия эффективным средством защиты для менее устойчивых металлов, таких, как железо. Наряду с V эти три металла используются главным образом в качестве легирующих добавок в сталях. Ванадий придает стали ковкость, а также сопротивляемость статическим и ударным нагрузкам. Хром позволяет получать нержавеющие стали, стойкие к коррозии, молибден упрочняет сталь, а вольфрам используется для изготовления инструментальных сталей, сохраняющих твердость даже при нагреве до красного каления. [c.443]

    Для гидрирования конденсированных ароматических углеводородов, например нафталина, можно применять металлические катализаторы (скелетные и на носителях) и сульфидные (сернистый молибден, сернистый вольфрам, алюмоникельвольфрамовый, никельвольфра-мовый сульфидный) [218—220]. [c.87]

    Металлические хром, молибден и вольфрам получают обычно карботермическим или металлотермическим восстановлением их оксидов или электролизом расплава их солей. Для нужд черной металлургии обычно нет необходимости получать очень чистый легирующий металл. Поэтому при карботермическом восстановлении совместно с железными рудами получают обычно феррометаллы (феррохром, ферромолибден, ферровольфрам). [c.335]

    Хром, молибден и вольфрам — металлы. Их металлические свойства обеспечивают минимальное число электронов на внешнем уровне, а также малые значения ионизационного потенциала (пп. 3, 4). Как видно из п. 3, атомы этих элементов имеют на предпоследнем уровне сверхоктетные электроны у Сг и Мо — по 5, у Ш — 4 В образовании валентных связей принимают участие сверхоктетные электроны. Поэтому эти элементы проявляют валентность от +2 до +6. Соединения [c.207]

    Третий метод уменьшения скорости газовой коррозии заключается в защите поверхности металла специальными термостойкими покрытиями термодифузионными железоалюминиевыми или железохромовыми покрытиями (процессы нанесения этих покрытий известны под названием алитирование и термохромирование ), металлокерамическими покрытиями, или керметами, металлоокисными покрытиями, для получения которых в качестве неметаллических компонентов применяют тугоплавкие окислы, например А12О3, М 0, и соединения типа нитридов и карбидов. Металлическими компонентами служат металлы группы железа, хром, вольфрам и молибден.  [c.14]

    Все три элемента близки по химическим свойствам. Это относится, в частности, к поливалентности, способности образовывать изополи-и гетерополисоединения, проявлению как металлических, так и неметаллических свойств.Основные свойства окислов усиливаются от хрома к вольфраму. Хромовая кислота Н2СГО4 более сильная, чем вольфрамовая. Устойчивость соединений с низшей валентностью растет от вольфрама к хрому. Соединения Мо(У) более устойчивы, чем (V). Соединения Сг(П1) — ярко выраженные ионные соединения. Соединения (У) и Мо(У) почти не имеют ионного характера. Об этом, в частности, говорит их высокая летучесть. Молибден и вольфрам намного более способны образовывать изополи- и гетерополисоединения, чем хром. [c.159]


Смотреть страницы где упоминается термин Молибден в вольфраме металлическом: [c.415]    [c.566]    [c.691]    [c.284]    [c.21]    [c.1861]   
Химико-технические методы исследования (0) -- [ c.538 , c.540 ]




ПОИСК





Смотрите так же термины и статьи:

Вольфрам в металлическом вольфраме

Металлический вольфрам



© 2025 chem21.info Реклама на сайте