Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром определение в молибдена

    С другой стороны, примерами пассивных металлов по определению 1 могут служить хром, никель, молибден, титан, цирконий, нержавеющие стали, сплавы 70 % N1 — 30 % Си (монель) и др. [c.71]

    Большое значение в современной технике имеют легированные стали. Они содержат так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. Легирующие элементы добавляются для придания стали определенных свойств. Так, х р о м о н и к е л е- [c.264]


    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    При анализе образцов металлического плутония сильно влияло железо, содержание которого составляло 0,02—0,08%. Так как железо титруется вместе с плутонием, то определение его следует проводить другим подходящим методом. В данной работе железо определяли фотометрически. Определению мешают хром, титан, молибден, вольфрам, уран и ванадий. Нитрат-ионы мешают определению за счет их восстановления в редукторе. При отделении плутония от примесей необходимо учитывать полноту выделения. [c.183]

    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]


    В работе В. В. Андреевой и Т. П. Степановой [67] изучено влияние анодной и катодной поляризации на рост и разрушение пассивных пленок на нержавеющей стали п ее компонентах — хроме, никеле, молибдене — оптическим поляризационным мето-дом определения толщины тонких поверхностных пленок. [c.37]

    В подобных же условиях можно определять хром и молибден (после анализа на марганец). Аналитические признаки для определения хрома и молибдена приведены в табл. 11 и 12. [c.55]

    Все элементы с электроотрицательностями до 1,36 и более 1,75, в том числе и переходные металлы, образуют связи металл — водород в определенных молекулах или ионах. Наиболее резкая граница возможности образования регулярных структур бинарных гидридов проходит приблизительно при электроотрицательности 1,35, причем единственными надежно установленными исключениями являются ванадий, хром и молибден. [c.20]

    II в процессе плавки ввести в определенном количестве другие элементы (хром, никель, молибден и др.), то структура аустенита может сохраниться в стали и при более низкой температуре. Стали, способные сохранять устойчивую однородную структуру при комнатной температуре, относятся к аустенитному классу. [c.7]

    В углеродистых сталях аустенит появляется только при нагревании свыше 723° С. Если изменить химический состав стали и в процессе плавки ввести в определенном количестве другие элементы (хром, никель, молибден и др.), то структура аустенита может сохраниться в стали и при более низкой температуре. Стали, способные сохранять устойчивую однородную структуру при комнатной температуре, относятся к аустенитному классу. [c.6]

    Специальные элементы вводятся в сталь для придания ей определенных физико-механических свойств. К этим элементам относятся хром, никель, молибден, вольфрам, титан, кремний (при его содержании более 0,50/,), марганец при его содержании более 1%, медь, бор и др. Специальные элементы вводятся в сталь как в отдельности, так и в различных сочетаниях друг с другом, обусловливая тем самым получение необходимых физико-механических свойств. В зависимости от способа выплавки качественные легированные стали подразделяются на две группы 1) сталь качественную и 2) сталь высококачественную. [c.167]

    Определению железа роданидным методом мешают большие количества сульфатов, хлоридов, фосфатов, фторидов, ацетатов, тартратов, боратов, а также кобальт, никель, хром, висмут, молибден, вольфрам, медь, титан, кадмий, цинк, свинец, нио-бин, палладий, ртуть и др. Мешающее влияние анионов обусловлено конкурирующими реакциями в процессе комплексообразования [53]. По степени мешающего влияния анионы можно расположить в ряд Р">оксалаты>тартраты>цитраты>фос-фаты>ацетаты>504 >С1->.Н0з СЮ4- Мешающее влияние катионов связано с образованием перечисленными металлами роданидных комплексов, большинство из которых окрашено л хорошо экстрагируется. [c.99]

    Помимо приведенных выше, известен еще ряд методов определения молибдена, но они большого интереса не представляют, хотя некоторые из них, как, например, метод осаждения нитратом ртути (I) из почти нейтрального карбонатного раствора, дают весьма точные результаты при анализе чистых растворов молибдена. Нитратом ртути (I) осаждаются также хром, ванадий, молибден, вольфрам, фосфор и мышьяк, и эта реакция в отдельных случаях применяется лишь для предварительного выделения молибдена из карбонатных растворов, получаемых в результате выщелачивания водой плава породы с карбонатами щелочных ме-таллов . [c.338]

    Гольдштейн с сотр. [10] сообщал о модификации своего метода, в результате которой удалось увеличить чувствительность почти в 5 раз. Точность модифицированного метода ниже, но можно определять микроколичества осмия. Осмий окисляют до четырехокиси и добавляют к водному раствору дифенилкарбазида. Нагревают раствор до 65° и образовавшийся комплекс экстрагируют хлороформом. Молярный коэффициент погашения раствора комплекса в хлороформе составляет в этом случае 1,5-10 . Установлено, что определению осмия мешает присутствие железа(1П), меди, рутения и золота, а никель, хром(У1), молибден, иридий и ионы С1 только в случае их очень высокой концентрации. [c.296]

    Двунатриевая соль 1,2-диоксибензол-3,5-дисульфоновой кислоты (тирон) дает с титаном интенсивную желтую окраску в области pH 4,3—9,6. При использовании этого реагента для определения титана Йо и Армстронг вредное действие железа исключали восстановлением его гидросульфитом натрия при pH 4,7. Поглощение подчиняется закону Бера при достаточно высоких концентрациях реагента окраска стабильная. Из металлов, сильно мешающих анализу вследствие образования окраски в условиях определения, следует указать хром, медь, молибден, ванадий и вольфрам (вольфрам дает почти бесцветный комплекс, сильно поглощающий при 410 мц). Допускается содержание железа до 250 ч. на млн. Максимальные концентрации неко- [c.785]


    К металлам, пассивным по первому определению, относятся хром, никель, молибден, титан, цирконий, нержавеющие стали, монель-металл и некоторые другие металлы и сплавы, пассивные на воздухе. В эту же группу входят металлы, которые становятся пассивными в пассивирующих растворах, например железо в растворах хроматов. Металлы и сплавы этой категории обладают значительной анодной поляризуемостью. Отчетливо выраженная анодная поляризация понижает наблюдаемые скорости реакции и, таким образом, металлы, пассивные по первому определению, обычно попадают в категорию металлов, пассивных также и по второму определению. Потенциалы коррозии металлов, пассивных по первому определению, стремятся достигнуть потенциала катодных участков (например, потенциала кислородного электрода). [c.62]

    Присутствие до 20% олова, марганца и ванадия, 10% алюминия, 5% меди, железа, хрома или никеля не мешает определению. Молибден в особых условиях также образует комплекс, имеющий зеленую окраску, но мешающее влияние молибдена можно подавить предварительной зкстракцией молибденилтиоцианата н-бутилацетатом, как описано в методике на стр. 104. [c.102]

    ЛЕГИРОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю) — введение в металлы и сплавы легирующих материалов для получения сплавов заданного хим. состава и структуры с требуемыми физ., хим. и мех. св-вами. Применялось еще в глубокой древности, в России — с 30-х гг. 19 в. Л. осуществляют введением легирующих материалов (в виде металлов и металлоидов в свободном состоянии, в виде различных сплавов, напр, ферросплавов, или в газообразном состоянии) в шихту или в жидкий (при выплавке) сплав. Иногда добавки легирующих материалов вводят в ковш. В закристаллизовавшемся сплаве легирующие материалы распределяются в твердом растворе и др. фазах структуры, изменяя его прочность, вязкость и пластичность, повышая износостойкость, увеличивая глубину прокаливаемости и др. технологические св-ва. Л. существенно влияет па положение критических точек стали. Никель, марганец, медь и азот расширяют по температурной шкале область существования аустенита, причем при известных соотношениях содержания углерода и этих элементов аустенит существует в области т-р от комнатной и ниже до т-ры плавления. Хром, кремний, вольфра.м и др. элементы сужают эту область и при определенных концентрациях углерода и легирующего элемента расширяют область с>тцествоваиия альфа-железа (см. Железо) до т-р плавления. При некоторых концентрациях углерода и легирующего материала сталь даже после медленного охлаждения имеет структуру закалки. Легирующие материалы, не образующие карбидов (напр., никель, кремний и медь), находятся в твердых растворах, карбидообразующие материалы (хром, марганец, молибден, вольфрам и др.) частично растворяются в железе, однако в основном входят в состав карбидной фазы и при больших концентрациях сами образуют карбиды (напр.. [c.681]

    Если осадок продолжает выделяться, и после того как на дне сосуда его собралось большое количество (что указывает на слишком высокое содержание карбоната в растворе), вводят по каплям разбавленную (1 1) азотную кислоту до тех пор, пока отстоявшийся раствор не перестанет мутнеть после добавления капли раствора нитрата ртути. (I). Нагревают до кипения, дают осадку осесть на дно, после чего его отфильтровывают и промывают горячей водой, содержащей нескблько капель раствора нитрата ртути (I). Осадок высушивают и снимают с фильтра, чтобы предотвратить потерю молибдена во время прокаливания, а также порчу тигля вследствие восстановления мышьяка. Осадок осторожно нагревают в платиновом тигле под тягой до удаления ртути, затем прокаливают при температуре не выше 400—500 °С и сплавляют с небольшим количеством карбоната натрия в окислительных условиях. Плав выщелачивают водой и испытывают раствор на ванадий, как указано в разделе Методы определения (стр. 513, учитывая при этом, что в растворе содержатся весь хром и молибден, а также некоторые количества фосфора, мышьяка и вольфрама. [c.511]

    Экстракционный пламенно-фотометрический метод определения бора основан на экстрагировании его (0,1—1,0 мг) из водного раствора в виде тетрабутиламмониевой соли борофтористоводородной кислоты метилизобутилкетоном (10 мл). Экстракт в органическом растворителе непосредственно вводят в пламя смеси водорода с кислородом и регистрируют интенсивность излучения при 548 ммк. Вместе с бором экстрагируются и мешают его определению хром (VI), молибден (VI), ниобий (V), ванадий (V), вольфрам (VI), дающие собственное излучение. [c.264]

    Определению мешают молибден, вольфрам, ванадий и хром. Определение осмия (VIII) (первый вариант). Стандартный раствор готовят растворением окиси осмия в серной кислоте. В реакционный сосуд вводят различные объемы этого раствора (л мл) и (10 —л) мл 0,1 и. раствора серной кислоты. При приготовлении стандартного раствора учитывают, что метод применим в интервале концентраций осмия от 0,0004 до 0,05 мкг/мл. [c.142]

    Представляет интерес метод вакуумной экстракции для определения кислорода в ниобии [27], основанный на результатах исследований, утверждающих, что кислород можно экстрагировать из ниобия при нагревании до 2000° в вакууме 10торр. Водородный метод применяется для определения кислорода в висмуте [28] и сурьме [29]. Образцы висмута весом 1—10 г в зависимости от содержания кислорода в металле нагреваются при 850—900° в течение 30 мин. Примесь углерода приводит к завышенному содержанию кислорода. Восстановление окислов сурьмы водородом происходит в токе сухого водорода при 700°. Полное время восстановления равно около 4,5 час. Метод вакуум-плавления с железной ванной применяется для определения газов в хроме [30], молибдене, вольфраме [26] из элементов седьмой группы в марганце [1] в элементах восьмой группы в кобальте, никеле [31]. Газы в железе и платине также определяются методом вакуум-плавления. Из рассмотрения свойств других платиновых металлов можно ожидать, что методом вакуум-плавления могут определяться газы в родии и палладии. [c.87]

    Большое значение в современной технике имеют легированные стали, содержащие так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. Легирующие элементы добавляются для придания стали определенных свойств. Так, хромоникелевые стали, содержащие, помимо неизбежных примесей, хром и никель, обладают высокими механическими и антикоррозионными свойствами, а также жаростойкостью. Из них изготовляют многие части машин и предметы домашнего обихода (нержавеющие ложки, ножи, вилки и др.). Хромомолибденовые и хромованадиевые стали тверды и прочны при повышенных температурах и давлениях. Из них изготовляют трубопроводы, детали авиационных моторов и компрессоров. Из хромовольфрамовых сталей делают режущие инструменты. Марганцевистые стали весьма устойчивы к трению и удару. Из них изготовляют камнедробильные машины, железнодорожные скаты, стрелки. [c.472]

    В связи с широкой химизацией земледелия в нашей стране все большее значение приобретают методы химической диагностики плодородия почв и контроля за правильным использованием удобрений и различных химикатов в сельском хозяйстве. За последние годы особенно возросло внимание к применению микроудобрений борных, марганцевых, молибденовых, медных и др. С организацией государственной агрохимической службы в целях рационального применения макроудобрений развернулись широкие исследования по определению в почвах подвижных форм микроэлементов и составлению соответствующих почвенно-агрохимических карт. Определение ряда микроэлементов (кобальт, марганец, хром, медь, молибден, бор и др.) в почвах имеет большое значение при изучении генезиса почв, миграции элементов по профилю и в пределах ландшафта, для характеристики почвенных режимов. Изучение содержания микроэлементов в растениях, кормах, продуктах питания и воде необходимо также для выявления и предупреждения эндемических заболеваний растений, животных и человека. [c.3]

    Шестивалентные хром и молибден удается последовательно определять амперометрически с платиновым электродом при потенциале + 0,35 в на фоне 4N НС1 титрованием раствором хлорида двухвалентного хрома [138]. При определении 2,4—19 мг Сг и 2,4—6,0 мг Мо получены удовлетворительные результаты. [c.101]

    Миллиграммовые количества Т1 + и с ошибкой < 1 отн.% определяют с использованием хинона, генерируемого окислением гидрохинона на платиновом аноде в сернокислых растворах (0,1—10 н. по Н2504). Определению ванадия мешают хром и молибден, но не мешают титан и марганец [846]. [c.104]

    В нашей лаборатории проводились исследования для определения влияния материала катода на электрохимическое восстановление органических соединений. В кислом и щелочном растворах испытывали следующие катоды кадмий, цинк, свинец, ртз ть, олово, висмут, медь, никель, кобальт и железо. Алюминий испытывали лищь в кислом растворе, а хром, вольфрам, молибден и [c.11]

    Разработан экстракционно-фотометрический метод определения молибдена(У) в ввде его анионного комплекса с тиогликолевой кислотой. ИА с ДФГ экстрагируют смесью изоамилового спирта и хлороформа (1 1). Определение молибдена производят из 0,3 н НС / растворов, что в практическом отношении является большим преимуществом. Максимальное светопоглощение экстракта ИА при 400 нм. Молярное отношение молибден(У) тиогликолевая кислота ДФГ =1 1 1. Чувствительность реакции 0,4 мкг/мл. Метод имеет некоторые преимущества по сравнению с аналогичным - без экстракции [10]. Благодаря ЭФ варианту повышена чувствительность, по крайней мере, в пять раз кроме того, повышается селективность определения.Молибден можно определять в присутствии любых количеств ванадия(У) и хрома(Ш). Не метают определению молибдена сульфат- и нитрат-ионы (до 100-150 мг), титан(1У), ванадий(1У), желсзо(П) и др. Следует отметить, что на примере экстракции молибдена(У1) и молибдена(У) в виде анионных комплексов с тиояблочной и тиогликолевой кислота- [c.133]

    НЫЙ перекисный метод [4, 22, 127 — 129]. В щелочном растворе в присутствии перекиси водорода уран образует желтый перуранат. В слабо кислых растворах (pH 4—5) окраска комплекса урана с Н2О2 значительно слабее. Перекись водорода прибавляют к щелочному раствору карбонатного комплекса урана или подщелачивают едким натром кислый раствор урана, содержащий перекись водорода. Перекисный метод обладает малой чувствительностью, но отличается высокой избирательностью и простотой выполнения. Наиболее интенсивная и устойчивая окраска образуется в растворах с pH > 12. При pH С 12 наблюдается ослабление окраски. Для того чтобы устранить уменьшение интенсивности окраски во времени, необходимо избегать присутствия в анализируемом растворе кислых карбонатов и солей аммония. Поглощение измеряют при 370—400 нм. Определению урана мешают хром(УХ), молибден(У1) и ванадий(У). [c.424]

    Ниже приведены две методики определения титана в материалах, содержащих железо обе они основаны на применении в качестве реагента перекиси водорода В методике А не указаны никакие операции разделения. Железо обесцвечивают фосфорной кислотой. Измеряя оптическую плотность при 400 и 460 мц, можно определить титан в присутствии значительных количеств ванадия. Окраску никеля, хрома и необесцвеченного железа исключают, измеряя экстинкцию анализируемого раствора относительно порции раствора пробы, не обработанной перекисью. Мешает определению молибден, и поэтому должна быть введена поправка на его содержание из независимого определения. Ниобий и вольфрам не оказывают большого влияния. Количество титана в пробе должно быть более 0,01%. Общую точность метода можно оценить на основании данных табл. 116. [c.788]

    При определении газов в хроме и молибдене по методу вакуумплавления часто имеет место так называемая недостача по водороду, т. е. [c.284]

    Для определения кислорода и азота в металлическом хроме и молибдене мы использовали опыт работы с твердыми образцами С. Л. Мандельштама, О. Б. Фальковой [1,2], Н. Г. Герасимовой, Т. Ф. Ивановой, Н. С. Свентицкого, К. И. Таганова, Г. П. Старцева и М. Э. Третовиуса [3], а также П. П. Галенова [4]. Авторы указанных работ возбуждали спектры газов в твердых образцах стали, применяя источники света с большой энергией. [c.289]

    Легированные стали. Элементы, специально вводимые в сталь в определенных концентрациях для и. шенения ее свойств, называются легирующими э л с м е и г а и и, а сталь, содержащая такие элементы, называется легированной сталью. К важнейшим легирующим элементам относятся хром, никель, марга(гец, кремнии, ванадий, молибден. [c.685]


Смотреть страницы где упоминается термин Хром определение в молибдена: [c.20]    [c.215]    [c.316]    [c.258]    [c.215]    [c.124]    [c.469]    [c.85]    [c.13]    [c.31]    [c.561]    [c.668]    [c.556]    [c.846]    [c.139]   
Химико-технические методы исследования (0) -- [ c.146 ]




ПОИСК





Смотрите так же термины и статьи:

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома цинка

Окисление иодид-иона перекисью водорода (определение титана, циркония, гафния, тория, ниобия, тантала, молибдена, вольфрама, железа, хрома и фосфора)

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение молибденита

Определение никеля, кобальта, хрома (Сгв и Сг3), железа, марганца, титана, молибдена, меди и вольфрама

Определение хрома в присутствии молибдена

Определение хрома, никеля, кобальта, железа, марганца, алюминия, молибдена, меди, титана и вольфрама

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза



© 2025 chem21.info Реклама на сайте