Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение хрома в присутствии молибдена

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    Молибден может быть определен в присутствии шестивалентного хрома (0,004—0,009 г). В этом случае осадок необходимо прокаливать до МоОз. Шестивалентный вольфрам осаждается реагентом из кислых растворов и мешает определению молибдена. Двухвалентный кобальт (0,1 г), никель (0,15 г) и медь (0,12 г) не мешают полученный в этом случае осадок промывают сначала 0,2 N НС1, затем 0,02 А/ НС1. В присутствии трехвалентного железа (0,8 г) и пятивалентного ванадия (0,008 г) прибавляют 1—2 г комплексона III. [c.166]

    Ванадий и молибден в особых условиях также образуют с перекисью водорода окрашенные комплексные соединения. Интенсивность окраски ванадиевого комплекса сравнима с интенсивностью окраски титанового комплекса, но окраска подобных соединений молибдена слабее. Мешают анализу окрашенные соли железа, хрома и никеля. Метод применяется для анализа промышленных сортов титана в этих материалах ни один из элементов, мешающих определению, не присутствует в количествах, которые могли бы оказать заметное влияние на результаты анализа. [c.98]

    Определение в присутствии урана. При необходимости отделить уран от алюминия, вместо нейтрализации аммиаком, крк указано выше (см. Определение в присутствии фосфора, мышьяка, ора и бора ), раствор нейтрализуют насыщенным раствором карбоната аммония, после чего прибавляют еще по 25 мл раствора карбоната на каждые 100 мл раствора и нагревают приблизительно до 50° С (избегая бурного выделения газов, вызываемого слишком быстрым нагреванием) Определение в присутствии элементов, образующих устойчивые комплексные цианиды (ж е-лезо, никель, кобальт, медь, молибден, хром ). Анализируемый раствор, содержащий свободную соляную и хлорную [c.573]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    Препятствующие анализу вещества. Определению мешает молибден, который образует тоже красно-фиолетовый продукт реакции. Кроме того, ртуть (I и II) при низкой кислотности взаимодействует с реактивом с образованием вешества синего или фиолетово-синего цвета. Железо (III) и ванадий (V) образуют при действии реактива продукты, окрашенные в желтый или желто-бурый цвет. Поэтому допустимы только небольшие количества этих катионов (до 0,1 жг в испытуемой пробе). Однако при введении фосфорной кислоты в качестве комплексообразователя можно вести определение хрома в присутствии железа. [c.360]

    Гольдштейн с сотр. [10] сообщал о модификации своего метода, в результате которой удалось увеличить чувствительность почти в 5 раз. Точность модифицированного метода ниже, но можно определять микроколичества осмия. Осмий окисляют до четырехокиси и добавляют к водному раствору дифенилкарбазида. Нагревают раствор до 65° и образовавшийся комплекс экстрагируют хлороформом. Молярный коэффициент погашения раствора комплекса в хлороформе составляет в этом случае 1,5-10 . Установлено, что определению осмия мешает присутствие железа(1П), меди, рутения и золота, а никель, хром(У1), молибден, иридий и ионы С1 только в случае их очень высокой концентрации. [c.296]

    Реакция хрома с дифенилкарбазидом положена в основу лучшего метода определения незначительных количеств хрома Метод почти специфичен для хрома в том смысле, что в растворе минеральной кислоты подобную фиолетовую окраску дает единственный элемент — молибден(У1), который, однако, реагирует со значительно меньшей чувствительностью. Ртуть (I и И) дает синюю или фиолетово-синюю окраску, однако, за исключением низких кислотностей, эта реакция не чувствительна, особенно в присутствии хлорида. Наличие железа(П1) и ванадия(У) мешает определению хрома, так как они образуют с реактивом желтые или желто-бурые соединения. [c.351]

    Используют и раствор арсенита натрия для определения хромата в присутствии ванадатов, так как последние не восстанавливаются. Сильный восстановитель— раствор соли титана(III)—можно применять для определения железа и меди в смеси сначала железо (III) превращается в двухвалентное, а затем восстанавливается медь(II) до одновалентной. Существуют и методы титрования другими сильными восстановителями, например растворами солей хрома (II) или олова, хотя работа с такими растворами сопряжена с необходимостью защиты их от действия кислорода воздуха. Раствор хлорида олова (И) восстанавливает молибден (VI) до молибдена (V) и ва-надий(У) до ванадия(1П) так можно определить оба элемента при их совместном присутствии. [c.459]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Как видно из табл. 7, алюминон способен давать окрашенные соединения с большим количеством ионов, но регулируя pH среды, можно определять одни ионы в присутствии других. Так, например, молибден и хром могут быть определены в кислой среде в присутствии кобальта, цинка, никеля и некоторых других ионов. Помимо регулирования pH для колориметрического определения одного иона в присутствии других широко применяют реакции маскирования. [c.57]


    Примечание. Применение аскорбиновой или лимонной кислоты позволяет определить молибден в присутствии вольфрама, ванадия, хрома, никеля и кобальта. Присутствие ионов NOg до 0,15 моль/л также не мешает определению. [c.115]

    Молибден, хром и ванадий восстанавливаются свинцом, и так как продукты, их восстановления титруются иодом, то для олова получаются повышенные результаты. Присутствие этих элементов обнаруживается по изменению окраски раствора при восстановлении олова. Молибден, например, после восстановления окрашивает раствор в коричневый цвет, а ванадий — в пурпуровый. Малые количества мышьяка не мешают определению Из остальных веществ, не мешающих титрованию, можно отметить сульфаты, фосфаты, иодиды, бромиды, фториды, железо, никель, кобальт, цинк, марганец, уран, алюминий, свинец, висмут, магний и щелочноземельные металлы. [c.339]

    Описанным способом можно проводить определение молибдена в присутствии всех катионов сероводородной группы железа, алюминия, хрома, бериллия, урана, цинка, кобальта, марганца и щелочноземельных металлов. Определению мешают вольфрам, ванадий и титан, также осаждающиеся оксином. Титан можно предварительно выделить аммиаком из растворов, содержащих комплексон. В фильтрате после доведения его до требуемого pH можно осадить молибден вышеприведенным способом. [c.111]

    При анализе почв и золы растений для устранения влияния РЬ и d вводят комплексон П1 [87]. В присутствии Fe(HI) анализ проводят на фоне щелочного тартратного раствора [221]. Фон состава 9 М NaOH + 6% маннита применяют для быстрого и высокочувствительного определения хрома в его сплавах с молибденом на полярографе переменного тока [93]. Потенциал полуволны r(VI) равен —0,65 в (отн. Hg-анода). Величина диффузионного тока восстановления r(VI) пропорционалвна содержанию хрома в растворе в большом диапазоне концентраций — от 0,1 до 200 мг л. Для навески 0,5 з пределы обнаружения хрома равны 0,005% при воспроизводимости 5% и 0,001% при воспроизводимости dz20%. Железо(ПГ) восстанавливается при —1,1 в и не мешает определению хрома. Однако его присутствие оказывает влияние на постоянство диффузионного тока. Так, при 1000-кратном избытке Fe(IH) диффузионный ток убывает через 45 мин. [c.54]

    Для определения хрома предложено несколько способов [211— 214]. Раздельное определение хрома и молибдена в сталях [212] проводят с применением Ag I-анода и хорошо размешиваемой ртути в качестве катода. Хром определяют восстановлением при потенциале —0,3 в относительно насыщ. к. э. в ацетатном буферном растворе (pH = 4) в присутствии 0,3 М HG1, а молибден при потенциале —0,40 в при pH = 1,5 в 0,3 М НС1. В присутствии хрома молибден лучше определять с использованием в качестве электролита буферной смеси HjGOONa — НС1 (pH = 1,5—2) и с предварительным восстановлением Gr до Сг нагреванием с добавкой спирта. [c.26]

    Молибден редко присутствует в определимых количествах, даже в пробе весом 5 г, но изредка молибденит играет роль акцессорного минерала в гранитах, и тогда определение его заслуживает внимания. Мышьяк представляет собой другой редко определяемый элемент, хотя при наличии его в заметном количестве он будет обнаружен вместе с молибденом в ходе определения хрома и ванадия. Цинк редко ищут, хотя он был найден в пранитах и основных породах. Обычно он содержится в весьма малых количествах. [c.41]

    Из элементов шестой группы Периодической системы куло-нометрией при контролируемом потенциале определяют хром [204, 204а, 272—276], молибден [274], селен [277] и теллур [278]. Определение хрома осуществляют несколькими способами. Раздельное определение хрома и молибдена в сталях [274] проводят с применением Ag l-aнoдa и хорошо размешиваемой ртути в качестве катода. Хром определяют восстановлением при потенциале —0,3 в относительно н. к. э. в ацетатном буферном растворе (pH 4) в присутствии 0,3 М раствора НС1, а. молибден — при потенциале —0,40 в (pH 1,5) в 0,3 М растворе НС1. В присутствии хрома молибден лучше определять с использованием в качестве электролита буферной смеси СНзСООКа—НС1 (pH 1,5—2) и с предварительным восстановлением Сг(У1) до Сг(1П) нагреванием с добавкой спирта. [c.30]

    Определение в присутствии элементов, образующих устойчивые комплексные цианиды (железо, никель, кобальт, медь, молибден, хро м ). Анализируемый раствор, содержащий свободную соляную и хлорную кислоты, разбавляют примерно до 250 мл и прибавляют 50 мл 20%-ного раствора винной кислоты. Если раствор не был обработан для удаления хрома, вводят 20 мг нитрата свинца, который способствует последующему выделению марганца в виде сульфида. Прибавляют раствор аммиака в небольиюм избытке, 10 г цианида калия и значительное количество беззоль-ной мацерированной бумаги. Через раствор пропускают сильную струю сероводорода в течение 20—25 мин. Фильтруют через 11-сантиметровый фильтр, содержащий немного мацерированной бумаги и промывают осадок 8—10 раз сероводородной водой, содержащей по 2% тартрата аммония, цианида натрия и хлорида аммония. [c.524]

    НЫЙ перекисный метод [4, 22, 127 — 129]. В щелочном растворе в присутствии перекиси водорода уран образует желтый перуранат. В слабо кислых растворах (pH 4—5) окраска комплекса урана с Н2О2 значительно слабее. Перекись водорода прибавляют к щелочному раствору карбонатного комплекса урана или подщелачивают едким натром кислый раствор урана, содержащий перекись водорода. Перекисный метод обладает малой чувствительностью, но отличается высокой избирательностью и простотой выполнения. Наиболее интенсивная и устойчивая окраска образуется в растворах с pH > 12. При pH С 12 наблюдается ослабление окраски. Для того чтобы устранить уменьшение интенсивности окраски во времени, необходимо избегать присутствия в анализируемом растворе кислых карбонатов и солей аммония. Поглощение измеряют при 370—400 нм. Определению урана мешают хром(УХ), молибден(У1) и ванадий(У). [c.424]

    Поданным Вебстера и Файрхола, висмут, кадмий, кобальт, медь, фтор-ион, железо(И), магний, марганец, ртуть, молибден, никель, нитрат-ион, олово(П), сульфат-ион и цинк, присутствуя в количестве нескольких миллиграммов, не образуют с родамином Б окрашенных соединений. Из данных табл. 37 следует, что небольшие количества многих других металлов также не мешают определению. Хром(У1) обесцвечивает родамин Б. Ртуть(П) в 3 М соляной кислоте дает соединение, окрашенное в красный цвет окраска, обусловленная присутствием золота, более интенсивна в 3 УИ, чем в 6 УИ соляной кислоте. [c.233]

    Приведенный ниже ход анализа включает разложение анализируемого образца породы сплавлением с едким натром или со смесью едкого натра и перекиси натрия, выщелачивание сплава водой, отгонку мышьяка в виде мышьяковистого водорода из фильтрата и определение его методом образования молибденовой сини. Рекомендуется к плаву добавлять перекись натрия, если в образце присутствует большое количество сульфидов или органических материалов (осадочные породы). Содержание мышьяка в остатке после выщелачивания очень мало (максимум 3% при анализе диабаза), поэтому обычно не требуется проводить повторное сплавление. Показано, что извлечение мышьяка, добавленного к граниту и диабазу, составляет более 95%. В 0,5 г анализируемого образца можно определить мышьяк Б количестве нескольких десятых ч. на 1 млн. Оэобщают, что медь, серебро, германий и теллур не мешают определению мышьяка, присутствуя в количествах 1 мг. Известно также, что хром, кобальт, никель, молибден, вольфрам и ванадий не влияют, присутствуя даже в значительно больших количествах. Сурьма в таких количествах, в которых она присутствует в осадочных породах или породах вулканического происхождения, не приводит к ошибкам. [c.258]

    Гидразин также поглощает свет с этой длиной волны, поэтому при определении рения нужно вносить поправку, измеряя светопоглощение анализируемого раствора еще и при 265 мц. Определению рения мешают молибден и различные другие металлы. Рений в количествах до 0,1 мг можно определять с ошибкой в несколько процентов в присутствии до 0,4 г Мо, если сначала удалить молибден экстракцией его купферрата хлороформом. Чувствительность этого метода равна 0,016 у Re/ jn для Ig /о// = 0,001 при 282 мц. Аналогичный, но дающий лучшие результаты метод определения рения основан на восстановлении рения(VII) до рения(III) при действии хлоридом хрома(П) в растворах горячей 10 М соляной кислоты с последующим окислением рения(1П) кислородом воздуха до Re(IV) с образованием гексахлоррената, светопоглощение растворов которого определяют при 281,5 мц Хром в некоторой степени поглощает свет с этой длиной волны, но это можно исключить, беря холостой раствор. Особенно мешает определению рения молибден. [c.684]

    Микротвердость бывших аустенитных участков можно увели-чить с помощью термической обработки, однако закалка белого чугуна нредставляет определенную трудность, сопровождается воз< никновением микротрещин и приводит к снижению стойкости при многократных ударных нагрузках. В связи с этим основным методом повышения твердости бывших аустенитных участков следует считать легирование белого чугуна элементами, способствующими переохлаждению аустенита и переводу его в мартенсит при обычных скоростях охлаждения отливок. Такими элементами являются хром, никель (при совместном присутствии), марганец, молибден и некоторые другие. [c.34]

    Последовательное титрование трехвалентного железа и шестивалентного молибдена раствором соли двухвалентного хрома или другого восстановителя может привести к удовлетворительным результатам только при их соизмеримых количествах. При определении небольших количеств молибдена в присутствии железа более целесообразно определять молибден по методу Клингера, Штенгеля и Коха [931]. Они определяли молибден в сталях, ферромолибдене, шлаках и рудах путем его восстановления при помощи металлического цинка в среде НС1. а затем довосстановления при помощи раствора СгСЬ и последующего потенциометрического титрования трехвалентного молибдена раствором К2СГ2О7. Первый скачок потенциала соответствует окончанию окисления избытка Or la, а второй — окончанию окисления трехвалентного молибдена. [c.200]

    Разложение при помощи соляной кислоты. Природный сульфид свинца — галенит разлагают концентрированной НС1 на холоду. Пирит в соляной кислоте, свободной от хлора, растворяется незначительно. Соляной кислотой разлагаются пирротин, сфалерит, его богатая железом разность марматит и сульфид марганца (алабандин). При определении сульфатной серы в рудах, содержащих значительное количество пирротина, при разложении соляной кислотой происходит частичное окисление сульфидной серы до сульфатной. Полное окисление происходит при разложении сульфидов хлорноватокислым калием в среде достаточно концентрированной соляной кислоты при этом легко разлагаются сульфиды и сульфосоли мышьяка и сурьмы. Соляная кислота не разлагает молибденит M0S2 и киноварь HgS, однако в присутствии хрома-тов эти минералы растворяются полностью. Пириты и халькопирит полностью разлагаются, при этом сульфидная сера количественно окисляется до сульфатной [1325]. Сульфиды меди, мышьяка трудно или вовсе нерастворимы в соляной кислоте. [c.161]

    Присутствие до 20% олова, марганца и ванадия, 10% алюминия, 5% меди, железа, хрома или никеля не мешает определению. Молибден в особых условиях также образует комплекс, имеющий зеленую окраску, но мешающее влияние молибдена можно подавить предварительной зкстракцией молибденилтиоцианата н-бутилацетатом, как описано в методике на стр. 104. [c.102]

    Определение никеля фотоколориметрическим методом. Метод основан на реакции образования растворимого окрашенного в красный цвет комплексного соединения никеля с диметилглиоксимом в щелочной среде в присутствии окислителя. Состав образуемого комплекса пока полностью не установлен. Определению мешает большой избыток окислителя, так как он может вызвать обесцвечивание раствора. Определению мешают также железо, хром и марганец, поэтому при определении их связывают в растворимые бесцветные комплексные соединения сегнетовой солью (виннокислый калий-натрий). В этих условиях определению не мешают кобальт до 1,5%, молибден до 3%, хром до 18%, вольфрам до 18 %, медь до 2%, ванадий до 1 %. Измерение интенсивности окраски можно проводить визуальным методом, методом шкалы эталонных растворов, на фотоколориметре и спектрофотометре. [c.308]

    Осаждение в присутствии минеральных кислот выполнять нельзя вследствие растворимости молибдата свинца. Отделение молибдена от многих элементов, мешающих его определению, производят едкой щелочью, при этом молибден переходит в раствор в виде На2Мо04, не-амфотерные металлы (Ре, Мп, Т1, 2г, Си и др.), а также частично хром остаются в осадке. После их отделения раствор подкисляют уксусной кислотой и осаждают МоО . [c.348]

    Окрашенные ионы металлов — марганца, трехвалентного хрома, трехвалентного железа, кобальта, пятивалентного и шестивалентного молибдена — мало поглощают или совсем не поглощают свет при 765 ммк. С другой стороны, четырехвалентный и пятивалентный ванадий, двухвалентная медь и в меньшей степени никель поглощают при 765 ммк и мешают определению кремния, поэтому их надо удалить или скомпенсировать их влияние. Кроме того, трехвалентное железо, пятивалентный ванадий, шестивалентный молибден и двухвалентная медь мешают, окисляя хлористое олово, которое добавляют для восстановления кремнемолибденового комплекса. Трехвалентное железо в момент добавления ЗпСЬ может присутствовать в количестве не более 2—3 мг, в противном случае получаются заниженные для кремния результаты. Мешающее влияние железа можно устранить его восстановлением до двухвалентного состояния в серебряном редукторе перед добавлением молибдата аммония. Двухвалентное железо частично восстанавливает кремнемолибденовый комплекс до молибденовой сини, но не восстанавливает молибдат аммония. К сожалению, этого нельзя сказать о пятивалентном молибдене [c.46]

    Объемному определению каждого из элементов после восстановления в редукторе, само собой разумеется, мешают все прочие восстанавливающиеся наряду с ним элементы, а именно железо, титан, европий, хром, молибден, ванадий, уран, ниобий, вольфрам и рений. Помимо того, следует упомянуть азотную кислоту, органические вещества, олово, мышьяк, сурьму и политионаты. Наиболее часто приходится сталкиваться с азотной кислотой, которая восстанавливается до гидроксил-амина и других соединений, на которые при титровании расходуется окислитель. Например, при определении железа в белой глине можно получить неверные результаты вследствие содержания нитрата аммония в осадке от аммиака, даже тщательно промытом. Для полного удаления азотной кислоты обычно требуется двукратное, даже лучше трехкратное, выпаривание раствора с серной кислотой до появления ее паров, причем стенки сосуда необходимо каждый аз тщательно обмывать. Иногда, как, например, в присутствии урана или при разрушении фильтровальной бумаги обработкой азотной и серной кислотами, азотная кислота удерживается настолько прочно, что для ее удаления двукратного выпаривания с серной кислотой недрстаточно. При разрушении фильтровальной бумаги можно избежать введения азотной кислоты, для чего к раствору, выпаренному в закрытом стакане до появления паров серной кислоты, прибавляют осторожно по каплям насыщенный раствор перманганата калия до появления неисчезающей розовой окраски, а затем продолжают нагревание в течение нескольких минут. [c.138]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    При использовании свинца в качестве восстановителя определению олова межают азотная кислота, вольфрам, молибден, хром и ванадий. Азотная кислота реагирует с иодистоводородной кислотой, выделяя иод, отчего получаются для олова понижённые результаты. Вольфрам восстанавливается с образованием соединения, окрашенного в синий цвет, и присутствие большого его количества маскирует конечную точку титрования (окрашивание крахмала иодом). Если же вольфрама мало и синяя окраска получаемых после его восстановления продуктов слаба и не мешает обнаружить конечную точку титрованиях крахмалом, то результаты получаются точные, так как соединения восстановленного вольфрама не титруются иодом. [c.339]

    Этот метод не отличается большой чувствительностью (предел чувствительности метода 0,01 % урана), но применению его мешает относительно небольшое число элементов. Основными элементами, влияющими на определение урана, являются, помимо хрома, молибден (VI) и ванадий (V), которые также дают окраску с перекисью водорода в карбонатной среде, хотя значительно кенее интенсивную, чем уран. Имеются указания на то, что ванадий не мешает колориметрированию урана в растворе, содержащем едкий натр и перекись натрия. Значительное влияние оказывает марганец, что обусловлено заметной окклюзией урана двуокисью марганца и каталитическим разложением перекиси. Большие количества железа также каталитически разлагают перекись кроме того, выделяющимся осадком захватывается некоторая часть урана. Для исключения мешающего влияния железа колориметрирование рекомендуется осуществлять в аммиачной среде в присутствии тартрата. [c.532]

    Эти методы менее над(зжны, чем объемный метод, изложенный на стр. 659, но они обладают тем преимуществом, что ими можно пользоваться в присутствии железа. При использовании для титрования метиленовой сини солянокислый раствор хлорида титана восстанавливают цинком, предпочтительно в редукторе Джонса (стр. 135). Полученный после восстановления раствор защищают от действия воздуха, создавая атмосферу двуокиси углерода, и титруют раствором метиленовой сини до появления неисчезающей голубой окраски. Восстанавливать и титро- вать лучше горячие растворы. Присутствие азотной и серной кислот нежелательно, так как они затрудняют определение конечной точки титрования. Мешают титрованию также молибден, ванадий, вольфрам, хром и олово, которые реагируют с метиленовой синью. Метод применим в присутствии кремния, железа, алюминия, сурьмы, мышьяка и фосфора. [c.662]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Изучалась точность различных методов определения фтор-иона [7—9]. Установлено, что присутствие больших количеств ш,елочных металлов делает их непригодными [10] определению мешает молибден, который дает осадок aMoOe [6] хром и ванадий— не мешают. [c.91]

    Мешающие вещества. Реакция с дифенилкарбазидом почти специфична для хрома. Молибден(У1) и ртуть(П) образуют с ди" фенилкарбазидом окрашенные соединения, но при том значении pH, при котором определяют хром, оба эти элемента допустимы в концентрациях до 200 мг/л. Ванадий мешает, но его присутствие Допустимо в количествах, превышающих содержание хрома в 10 раз. Железо в условиях проведения определения не мешает, Марганец при большом его содержании в пробе и при отсутствий катализатора нитрата серебра может выпасть в осадок в вида гидрата диоксида марганца осадок тогда отделяют фильтрова- нием через стеклянную пористую пластинку или через стеклян- ную вату. [c.152]

    Из табл. 3 видно, что чувствительность метода определения железа роданидами повышается, если реакцию проводить в присутствии ацетона чувствительность метода еще больше повышается, если определение железа проводить смесью трибутиламмоаия и амилового спирта. Проведению реакции мешает ряд веществ. Прежде всего должны отсутствовать анионы ряда кислот, которые дают более прочные комплексные соединения, чем роданид железа фосфаты, ацетаты, арсенаты, фториды, бораты, а также хлориды и сульфаты, присутствующие в значительных количествах. Также должны отсутствовать элементы, ионы которых дают комплексные соединения с роданидом кобальт, хром, висмут, медь, молибден, вольфрам, титан в 3- и 4-,валентном состоянии, ниобий, палладий, кадмий, цинк, ртуть. [c.136]

    В кислых средах для отделения вольфраматов и молибдатов от других ионов удобно пользоваться лимонной кислотой, образующей с молибдат- и вольфрамат-ионами прочные комплексы. Клемент [53] изучал отделение молибдат-ионов от таких металлов, как медь, свинец, никель, железо, хром и ванадий (IV), которые в лимоннокислой среде при pH 1 могут быть поглощены катионитами в Н-форме. Как показали И. П. Алимарин и А. М. Медведева [3], при более высоких значениях pH поглощение катионов затрудняется вследствие образования цитратных комплексов. Методика Клемента была тщательно проверена и слегка видоизменена Уоткинсопом [118 ], который установил, что она пригодна также для удаления элементов (железа, меди, олова и ванадия), мешающих спектрофотометрическому определению вольфрама (вольфрам и молибден оказываются в вытекающем растворе). Метод применялся для определения этих элементов, а также ванадия, в почвах и растениях. Аналогичный метод использовался для удаления иопов, мешающих полярографическому и снектрофотометрическому определению молибдена в сталях [17. 84] и минералах [51]. Если в растворе присутствует ванадий в виде ванадата, то перед катионообменным отделением от молибдата он должен быть восстановлен двуокисью серы [56]. [c.352]

    Вообще определение молибдена в присутствии вольфрама является достаточно сложной задачей. Этому вопросу посвящены работы Б, С. Христофорова Р04] и работа В. Г. Горюшиной и Т, В. Черкашиной 205], рекомендующая титровать молибден восстановителем (хлористым хромом) в присутствии вольфрама, восстанавливающегося труднее, чем молибден. [c.90]


Смотреть страницы где упоминается термин Определение хрома в присутствии молибдена: [c.20]    [c.171]    [c.492]    [c.31]    [c.556]    [c.180]    [c.174]   
Смотреть главы в:

Химико-технические методы исследования -> Определение хрома в присутствии молибдена




ПОИСК





Смотрите так же термины и статьи:

Определение молибденита

Хром определение в молибдена



© 2025 chem21.info Реклама на сайте