Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод водородного электрода

    Поэтому в присутствии белков рискованно вообще полагаться на данные, полученные колориметрическим методом, до тех пор, пока они не проверены потенциометрическим методом (водородный электрод). [c.73]

    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]


    Так как электродные потенциалы играют очень большую роль в коррозионных процессах, то весьма важно знать значения этих потенциалов, а отсюда и действительную разность потенциалов между металлом и раствором электролита. Однако абсолютные значения потенциалов до сих пор не удалось определить. Нет достаточно надежных методов экспериментального измерения или теоретического вычисления абсолютных значений потенциалов, и вместо абсолютных электродных потенциалов измеряют относительные, пользуясь для этого так называемыми электродами сравнения. Этот принцип определения значений электродных потенциалов основан иа том, что если определить э. д. с. коррозионных элементов, составленных последовательно из большинства технических металлов и какого-нибудь одного, одинакового во всех случаях электрода, потенциал которого условно принят за нуль, то измеренные э. д. с. указанных элементов позволят сравнить электрохимическое поведение различных металлов. В качестве основного электрода сравнения принят так называемый стандартный водородный электрод, представляющий [c.23]

    Наряду с экспериментальными методами определения стандартных электродных потенциалов важное место занимает расчетный метод с использованием термодинамических данных, особенно полезный, когда электроды неустойчивы, например щелочные или щелочноземельные металлы в водных растворах их солей или оснований. Расчетный метод основан на том, что потенциал электрода равен э. д. с. электрохимической цепи, составленной из данного и стандартного водородного электрода. Например, для электрода Na+ Na цепи Ыа Ыа+ЦН+ Н2, Р1 соответствует реакция [c.478]

    При сравнении различных методов измерения кислотности в приэлектродном слое возникает вопрос о соответствии экспериментально определенного значения истинному, которое должно быть подставлено в кинетическое уравнение. За истинную кислотность у поверхности электрода должна быть принята концентрация ионов водорода на границе двойного и диффузионного слоев. Оптические методы и методы отбора проб дают в приэлектродном слое достаточной толщины усредненное значение кислотности, которое отличается от истинного. Измерения, проведенные методом металл-водородного электрода и методом дискового электрода с кольцом должны давать истинные значения. [c.308]

    Нормальный электродный потенциал ср" позволяет оценивать термодинамическую активность различных химических веществ, но в настоящее время нет методов, позволяющих измерять абсолютное значение его. В связи с этим электроды характеризуют так называемым стандартным потенциалом электрода, который представляет собой (по предложению Нернста) разность нормальных потенциалов рассматриваемого и стандартного водородного электродов, определенных при 25 °С (298 К). При таком подходе стандартный электродный потенциал водорода фн, условно принимают равным нулю. Тогда стандартный потенциал вещества, электродный потенциал которого в указанных условиях, более отрицателен, чем потенциал стандартного водородного электрода, считается отрицательным. Если же электродный потенциал вещества менее отрицателен, чем потенциал стандартного водородного электрода, стандартный потенциал вещества считается положительным. Значения стандартных потенциалов некоторых веществ приведены в [2, табл. 79]. [c.237]


    Наконец, третья группа методов основана на измерении электрохимических свойств самого определяемого вещества (иногда без химической реакции). Так, например, можно опустить в испытуемый раствор водородный электрод (см. 49) и по показанию потенциометра непосредственно без титрования определить концентрацию водородных ионов (или pH) раствора. Подобные методы, основанные на измерении потенциала, носят общее название потенциометрия. Потенциометрическое титрование является частью потенциометрии (или потенциометрического анализа). [c.435]

    Большое значение имеет определение концентрации водородных ионов (pH растворов) потенциометрическим методом. Кроме водородного электрода (см. 49), для этой цели разработано много других электродов, из которых наиболее распространены хингидронный и стеклянный. [c.436]

    В настоящее время наука еще не располагает методами определения абсолютных значений потенциалов отдельно взятых электродов. Мы всегда измеряем разность потенциалов. Поэтому для практического пользования понятием потенциал электрода понадобился электрод сравнения, потенциал которого условно равен нулю. Таковым является потенциал водородного электрода. Этот электрод, как известно, состоит из платиновой пластинки, которая электролитическим способом покрыта платиновой чернью и погружена в раствор ионов водорода с активностью, равной единице, через который пропускается ток газообразного водорода, под давлением 760 мм рт. ст. [c.135]

    За нулевую точку измерения потенциалов условно принят нормальный потенциал водородного электрода. В настоящее время наука еще не располагает методами, позволяющими измерять абсолютное значение электродных потенциалов. Мы обычно всегда измеряем только разность потенциалов. Вот почему и понадобилось какой-то потенциал условно принять равным нулю. Таким потенциалом является нормальный потенциал водородного электрода. Для изготовления его используют способность платины растворять газообразный водород. Платиновая проволока или пластинка, содержащая растворенный водород, играет роль водородной пластинки , а функции раствора солей может выполнять любой водный раствор, в котором всегда присутствуют ионы водорода Н+. Причем [c.227]

    Водородная цепь, В основу этого метода определения положен принцип измерения э.д.с. в концентрационном элементе, составленном из двух водородных электродов, один из которых погружен в исследуемый раствор, другой, служащий электродом сравнения,— в [c.249]

    Потенциометрический метод определения pH. Метод основан на измерении ЭДС элемента, в котором один и ) электродов обратим относительно водорода, а второй является электродом сравнения. В зависимости от величины pH и характера исследуемого раствора применяется тот или иной индикаторный (измерительный) электрод. Так, измерение pH раствора в пределах от 1 до 14 можно производить с помощью водородного электрода, если этот раствор не содержит солей менее активных (более благородных) металлов, чем водород, цианидов и поверхностно-активных веществ. [c.58]

    Э. д. с. цепи следует выражать в вольтах по отношению к нормальному водородному электроду. Для определения гНз не существует методов измерения, и эта величина вычисляется по формуле, указанной выше. [c.112]

    Потенциометрический метод определения pH позволяет находить pH мутных и окращенных сред. При использовании водородного электрода в качестве индикаторного можно определять pH растворов в щироком интервале (от pH 1 до pH 14). Недостатком является необходимость длительного насыщения электрода водородом для достижения равновесия. Его нельзя применять в присутствии поверхностно-активных веществ и некоторых солей. [c.246]

    Таким образом, рассмотрение формы и взаимного расположения кривых заряжения позволяет сделать ряд важных качественных выводов о строении границы электрод — раствор в условиях, когда на поверхности электрода происходит адсорбция атомов водорода и кислорода. Чтобы на основе этого метода сделать количественные выводы о структуре поверхностного слоя платиновых металлов, необходимо использовать термодинамическую теорию водородного электрода, развитую в последние годы в работах А. Н. Фрумкина, О. А. Петрия и сотр. [c.71]

    Так как не существует ни теоретических, ни экспериментальных методов определения величины Ео, то его значение становится определенным только при выборе условного нуля отсчета. В качестве такового выбран потенциал стандартного водородного электрода. Потенциалы всех остальных электродов сравниваются с потенциалом стандартного водородного электрода. Для этого полуэлементы, одним из которых является стандартный водородный электрод, а другим — исследуемый [c.321]

    Электрометрический метод определения pH широко используется в химии, биологии, биохимии благодаря высокой точности, а также потому, что этот метод дает возможность определять pH без изменения состава и свойств исследуемых растворов. Практически водородным электродом, как уже отмечалось, пользоваться неудобно, поэтому используют индикаторные электроды, которые дают возможность обойтись без водорода. К числу таких электродов относятся стеклянный, хингидрон-ный и некоторые другие электроды. [c.340]


    Вместо длин отрезков тип обычно измеряют их сопротивления Ят и Н . Поскольку В гальваническом элементе в качестве электрода сравнения используется стандартный водородный электрод, то искомый электродный потенциал будет равен измеренной компенсационным методом эдс. Например, если измеренная эдс гальванической цепи из стандартных водородного и медного электродов составляет +0,34 В, то, значит, стандартный потенциал меди равен [c.262]

    Наиболее точным методом определения pH является потенциометрический метод, основанный на измерении зависимости потенциала электрода от активности ионов водорода в исследуемом растворе. Этот метод практически осуществляется с помощью концентрационной гальванической цепи, составленной из стандартного водородного электрода и водородного электрода с неизвестной концентрацией ионов водорода. Предположим, что эдс гальванической цепи, состоящей из стандартного водородного электрода (Сн+= 1 моль/л, рнг = 101325 Па) и водородного электрода (рн2 = Ю1 325 Па) в растворе с неизвестным значением pH, равна 0,414 В (25°С). Концентрацию ионов водорода можно рассчитать, используя формулу (см. 30)  [c.303]

    Электрод Потенциалы нулевого заряда, отнесенные к нормальному водородному электроду, В Состав раствора Метод [c.481]

    Однако прямых методов измерений такой разности потенциалов не существует, поэтому условились определять электродные потенциалы по отношению к так называемому нормальному водородному электроду, потенциал которого условно принят равным нулю (часто его называют также электродом сравнения). [c.207]

    Для нахождения pH по методу стандартных растворов необходимы водородный и каломельный электроды, сосуд для хлорида калия, два буферных раствора — стандартный и насыщенный, а также насыщенный раствор КС1. Собрав гальванический элемент, как показано на рис. X. 31,а, включают его в компенсационную схему. В сосуд для водородного электрода наливают стандартный буферный раствор, плотно закрывают сосуд пробкой, в которую вставлен водородный электрод и солевой мост, заполненный насыщенным раствором КС1. В течение, 15—20 мин через раствор пропускают водород из электролизера, и измеряют э. д. с. Измерения повторить с пятиминутным интервалом до постоянства значения э. д. с. [c.659]

    Потенциал полуэлемента зависит от потенциала двойного электрического слоя, но экспериментальных методов для его определения не существует. Поэтому находят не абсолютную ф, а относительную величину электродного потенциала, выбирая какой-либо другой полуэлемент для сравнения. В качестве электрода сравнения принят водородный электрод, состоящий из восстановленной формы — газа Нг и окисленной формы — раствора сильной кислоты, содержащего ионы Н+(Н2 5= 2Н+). Электродные потенциалы, значение которых определено по отношению к значению потенциала водородного электрода, обозначают через Е и выражают в вольтах (В). Испытываемый полуэлемент соединяют с водородным полуэлементом металлической проволокой и определяют ЭДС полученного химического источника тока. [c.182]

    Катализаторы гидрирования как обратимые водородные электроды, Применение электрохимических методов к исследованию катализаторов гидрирования в жидкой фазе позволило установить, что данные катализаторы, насыщенные водородом, ведут себя как обратимые водородные электроды. Водородный электрод — окислительно-восстановительный электрод, на котором устанавливается равновесие между электронами металла, ионами водорода в растворе и растворенным молекулярным водородом. Активность последнего фиксируется известным парциальным давлением водорода в газовой фазе. Термодинамически равновесный обратимый водородный потенциал на границе катализатор — раствор опреде-деляется суммарным процессом [c.185]

    В настоящее время нет методов измерения разности потенциалов отдельных полуэлементов или электродов. Можно измерить только ЭДС гальванического элемента. Поэтому условились за электродный потенциал принимать его потенциал относительно стандартного или нормального водородного электрода, под которым понимают водородный электрод, взятый при давлении водорода рнг— 1 атм и активности водородных ионов 0 + = 1. [c.373]

    Широкое применение находит метод ЭДС при измерении pH растворов. Для этого можно воспользоваться водородным электродом. Однако на практике чаще используют другие более удобные электроды, например, хингидронный. [c.380]

    Схема установки для определения потенциала растворения металла по сравнению с водородным электродом компенсационным методом приведена на рис. 123, где V — элемент Вестона с электродвижущей, силой 1,083 В, почти не зависящей от температуры. Элемент Вестона включается на сопротивление АВ (с линейным законом изменения сопротивления), исследуемый элемент включается на это же сопротивление через скользящий контакт С. Если падение внешнего потенциала от элемента Вестона на участке АС равно ЭДС элемента, то гальванометр (Г) покажет отсутствие тока. Отсюда легко найти ЭДС испытуемого элемента (Дё ) [c.233]

    Харман определил концентрацию гидроксильных ионов в растворах силиката натрия и степень гидролитической диссоциации по методу водородного электрода. Эта концентрация уменьшается по мере возрастания содержания кремнекислоты и увеличения концентрации. Сантинормальный раствор с отношением Na20 Si02=l 1 при гидролизе диссоциирует до 27,8%, а растворы такой же концентрации с отношениями 1 3 и 1 4—только до 1,5%. При возрастающих содержаниях кремнекислоты и при различных концентрациях гидролитическая диссоциация все более и более выравнивается. Из относительно низкой степени гидролиза Харман сделал, вывод о более сильном гидролизе, чем это было определено, и о необходимости выдвинуть предположение, согласно которому на коллоидной кремнекислоте происходит либо значительная адсорбция гидроксильных ионов, либо кремнекислота в растворе изначально находится не просто в виде золя, а в форме простого или комплексного аниона. [c.643]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Д. Электрические методы анализа. К электрическим свойствам, которые используются для анализа и позволяют поместить реакционный сосуд непосредственно в измерительную аппаратуру, относятся диэлектрическая проницаемость, электрическое сопротивление, pH (с использованием стеклянного, каломельного или водородного электродов), окислительно-восстано-вительный потенциал и (в случае газовых реакций) теплопроводность. Эти свойства легко измерять, что позволяет, так же как и при оптических методах, использовать автоматические регистрируюпще устройства. Однако и эти методы можно применять лишь после тщательной калибровки с их помощью также трудно достичь точности, превышающей 1%, если не провести соответствующего усовершенствования методики. [c.63]

    Величины pH обычно выражают с точностью до сотых долей едпиицы. С такой точностью можно определить величину pH, измеряя электродвижущие силы с помощью водородного электрода, находящегося в испытуемом растворе, и второго стандартного электрода, потенциал которого известен. Индикаторный метод меиее точен, и им можно определить величины pH с точностью до целых чисел или до десятых долей единицы. Индикаторный метод основан на сравнении окраски индикатора в испытуемом раст1юре с его окраской в растворах с известными величинами pH. [c.12]

    Выбор химической модели, а именно количества реакций и их стехиометрических коэффициентов, может потребовать варьирования не только концентраций реагентов, но и других условий, в первую очередь температуры. Примером является рН-метрическое исследование равновесий в растворах боратов. Несмотря на многолетние исследования, состав полиборат-анионов вызывал постоянные сомнения, путь к разрешению которых был неясен, и изучение таких систем на некоторое время прекратили. При этих исследованиях широко применяли ЭВМ, пытаясь дискриминировать химические модели, в частности, по величине остаточной дисперсии. Лишь недавно [12 ] были получены новые сведения о составе полиборат-анионов. При этом применялись измерения с водородным электродом в широком диапазоне температур, причем оказалось, что различные частицы лучше всего выявляются в своей температурной области. Из этого примера видна большая роль инициативы химиков, позволяющей в трудных случаях выйти за рамки традиционной области исследований, включить в рассмотрение дополнительный параметр или даже метод исследования. [c.175]

    Электродный потенциал - один из основных электрохимичесз-ких параметров, измерение которого составляет суть метода потенциометрии, - был предметом многочисленных исследований. Впервые в 1889 г. В. Нернст вывел термодинамическую зависимость э.д.с. от концентрации ионов в растворе. В настоящее время под термином "электродный потенциал" понимают э.д.с. электрохимической цепи ( ), составленной из стандартного водородного электрода и электрода, представляющего любую другую окислительно-восстановительную полуреакцию. Таким образом, данная формулировка включает два основных типа электродов электроды, функционирующие на основе а) электронного и б) электронно-ионного равновесия, иными словами, электроды, обладающие электронной и смешанной (электронноионной) проводимостью. Однако необходимо принять также во внимание третий тип, а именно электроды, перенос зарядов в которых осуществляется за счет ионов, т.е. электроды с ионной проводимостью. По этому принципу функционируют так называемые мембранные электроды, которые рассматриваются в разделе "Ионометрия". [c.20]

    Методы определения различных физико-химических величин и количественного анализа растворов на основе измерения ЭДС получили общее название потенциометрни. В потенциометрии широко используется измерение потенциала исследуемого электрода относительно какого-либо электрода сравнения (см. с. 20). Потенциалы выражаются в шкалах либо выбранного электрода сравнения (последний обязательно должен указываться), либо пересчитываются в водородную шкалу, которая отвечает стандартному (нормальному) водородному электроду сравнения [Р1, На ( = 1 атм = 101,325 кПа), Н+ (а = 1)1. Для стандартного (нормального) водородного электрода будет использоваться принятое в нашей стране сокращенное обозначение н. в. э. [c.108]

    А. Метод кривых заряжения Кривой заряжения называют зависимость потенциала электрода Е от количества электричества AQ, сообщенного электроду. Наиболее удобно при измерении кривых заряжения для металлов группы платины исполюовать в качестве электрода сравнения обратимый водородный электрод в том же растворе. Потенциалы, измеренные относительно этого электрода, обозначают через [c.182]

    Потенциометрия представляет собой метод измерения напряжения гальванических элементов, составленных из двух полуэлемен-тов, характеризующихся определенными значениями потенциалов. Один из полуэлементов должен быть стандартным электродом сравнения. Официально признанным стандартным полуэлементом сравнения служит нормальный водородный электрод, в основе которого лежит реакция [c.87]

    Таким образом, потенциалы металлов можно сравнивать по эдс гальванической цепи с водородным электродом. Однако из-за условия стандартности концентраций ионов h+= uu+ = 1 моль/л описываемое устройство непригодно для такого рода измерений, так как вольтметр покажет равновесное значение эдс только в момент замыкания цепи. Вследствие прохождения тока и протекания реакции концентрации ионов в растворах сразу же начнут изменяться, эдс будет непрерывно уменьшаться и, когда в системе будет достигнут минимум изобарного потенциала, эдс станет равной нулю. Поэтому для измерения электродного потенциала применяют метод, при котором ток в цепи не протекает и потенциалы на электродах сохраняются постоянными. Этот метод, называемый компенсационным, заключается в том, что от внешнего источника тока на электроды методом подбора подают такое напряжение, которое равно разности потенциалов между электродами, но противоположно по знаку. При этом ток в системе будет отсутствовать и на электродах установится состояние, максимально приближающееся к равновесному. Таким образом, измерение потенциала сводится к измерению компенсирующего напряжения. Прибор для измерения разности потенциалов (или эдс) этим методом называется потенциометром. [c.261]

    Другим методом получения чпстого безуглеродисто-14J железа является электролитический, позволяющий н(), 1учить продукт 99, 95-процснтной чистоты. Поскольку от п1дартный потенциал равен 0,44 В, т. е. бли юк к равновесному потенциалу водородного электрода, и железо выделяется со значительной химической поляризацией, [c.252]

    М. Дол, пользуясь квантовомеханическим методом, разработал свою теорию стеклянного электрода. Дол полагает, что в с тличие от водородного электрода, через стеклянную мембрану проникает ион водорода вместе с гидратной оболочной. Конечные уравнения Дола полностью совпадают с уравнением Никольского (VII, 28). Отклонение потенциала электрода от водородной функции в кислой среде, по Долу определяется выражением [c.195]

    Регенерация отработанных травильных растворов в производстве печатных плат (см. задачу 355) производится электрохимическим методом. Катодный потенциал в примененном электролизере-регенераторе, измеренный по отношению к платиновому электроду сравнения, помеш,енному в католит, равен е — 0,41 В. Потенциал анода по отношению к платиновому электроду сравнения, находящемуся в анолите, был равен ба = + 0,86 В. Температура процесса 40° С. Равновесный окислительно-восстановительный потенциал в регенерируемом растворе равен ер -= - - 0,445 В по отношению к насыщенному каломельному электроду (н. к. э ). Окислительновосстановительный потенциал в растворе аналогичной ионной силы с таким же содержанием СиСМг, как и в регенерируемом растворе, и некоторым количеством одновалентной меди, но в отсутствие солей железа равен ер = - - 0,646 В по нормальному водородному электроду (н. в. э.). Равновесный потенциал медного электрода в растворе последнего вида, но в отсутствие СиС12 составляет - + 0,033 В (н.в.э.). Разница между потенциалами платиновых электродов, установленных у поверхностей катода и анода, равна Д V, 2,84 В, а при установке таких электродов по обе стороны диафрагмы, вплотную к ней — ЛКд 0,60 В. [c.260]

    Так как до сих пор не существует методов измерения абсолютные величин потенциалов, то в качестве потенциала сравнения, условно принятого за нуль, выбран потенциал нормального водородного электрода [Н ] в растворе Н2804 1 г-ион л и давление газообразного водорода 1 атм. По отношению к этому стандартному электроду измеряют потенциалы различных электродов (см. 2). [c.196]

    На первый взгляд, выход из этого положения можно найти, используя уравнение (6.9) сравнением потенциалов водородного, электрода в растворе с точно фиксированным значением рН и в растворе с неизвестной величиной pH. Однако и этот путь не является вполне корректным вследствие погрешностей, привносимых за счет диффузионных потенциалов, возникающих на границе растворов различного ионного состава. В самом деле, при измерении потенциала Ех водородного электрода в растворе с фиксированным значением pH необходимо образовать гальванический элемент водородный электрод — стандартный электрод сравнения. Но тогда потенциал на границе двух электролитов неизбежно входит как слагаемое значение э. д. о. такого элемента. То же самого справедливо и в отношении измерения потенциала водородного электрода в растворе с неизвестным pH относительно того же самого электрода сравнения. Предположение о том, что в обоих случаях диффузионный потенциал совершенно одинаков, в какой-то степени можно допустить только в том случае, когда pH = рН . Такое положение явно не выполняется при всяком ином соотношении между pH стандартного и исследуемого растворов. Таким образом в целом необходимо признать, что, несмотря на широкое использование в самых различных целях потенциометрического метода определения концентрации водородных ионов, мы не распола-лагаем совершенно безупречным способом измерения этой величины. [c.120]


Смотреть страницы где упоминается термин Метод водородного электрода: [c.507]    [c.470]    [c.581]    [c.148]    [c.308]    [c.252]    [c.210]   
Физическая химия силикатов (1962) -- [ c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Водородный электрод

Метод электрод



© 2024 chem21.info Реклама на сайте