Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соляная кислота и азотная кислота, окисление

    Смесь соляной и азотной кислот ( царская водка ) применяют для растворения благородных металлов и их сплавов, сульфидов, окисленных руд, ртути, соединений мышьяка и др. [c.122]

    Баркер [38, 39, 40] приводит ряд способов приготовления медных сплавов. Сплавы, в особенности железа и меди, марганца и меди или марганца, свинца и меди, поверхностно обрабатывают соляной или азотной кислотой для образования пористого слоя соли металла, которая прокаливанием превращается в окись. Сплавы, состоящие из 25% марганца, 10% свинца и 65% меди, поверхностно окисляют, а затем подвергаются воздействию восстанавливающих агентов, после чего образуется пористая металлическая поверхность. Для приготовления железо-медных сплавов, применяемых при окислении окиси углерода до двуокиси углерода или сернистого ангидрида до серного ангидрида, рекомендуется хлористый водород заменять кислородом. [c.298]


    Типы минералов, содержащих железо, настолько разнообразны, что из многочисленных возможных методов их разложения каждый находит применение. Некоторые минералы растворимы в воде. Многие окисленные минералы, нерастворимые в воде, разлагаются соляной кислотой, азотной кислотой или царской водкой, часто лишь после очень топкого измельчения и продолжительного действия кислоты. Для разложения многих кислотоупорных минералов требуется сплавление с различными плавнями, указанными на стр. 919. В качестве плавней могут применяться как щелочно-окислительные смеси, так и пиросульфаты и даже кислые фториды. Выбор плавня зависит от природы анализируемого материала и намеченной цели. При анализе сульфидов и арсенидов щелочное сплавление часто предпочитают кислотной обработке, потому что при выщелачивании плава водой достигается количественное отделение серы, мышьяка, фосфора, ванадия и молибдена от многих основных металлов. Вот почему при определении серы в пиритсодержащих рудах кислотной обработке предпочитают метод щелочного сплавления. [c.435]

    Прежде чем продолжать анализ после выделения кремнекислоты или осаждения группы сероводорода, если последнее было проведено, нужно позаботиться о том, чтобы все железо находилось в состоянии трехвалентного. Если применяли обработку сероводородом, в растворе всегда будет железо (И). В незначительных количествах железо (П) может присутствовать и тогда, когда обработка сероводородом не проводилась, но выпаривание с соляной кислотой для выделения кремнекислоты проводилось в платиновой чашке. Для окисления железа (II) прибавляют в избытке бром и кипятят раствор для удаления этого избытка или же кипятят для удаления сероводорода (если он применялся), прибавляют азотную кислоту и снова кипятят раствор. [c.947]

    Азотная кислота. При окислении хинолина чистой азотной кислотой под давлением при температуре 150—180° С выход никотиновой кислоты низок (около 30%) [41]. С повышением температуры до 200—250° С выход увеличивается [121]. Однако большинство исследований проведено при окислении хинолина азотной кислотой в присутствии серной кислоты и катализаторов при различных температурах селен при 260—270° С [122] селен, ртуть, медь при 305—310° С (выход 88%) [123] йод (выход 86—90%) [124] соляная кислота при 215—225° С (выход 73% [125] молибденовокислый аммоний при 245—250° С (выход 69,2%) [126. Наиболее подробно разработан периодический процесс получения никотиновой кислоты из хинолина в присутствии серной кислоты (1 1,5 объем) окислением азотной кислотой при участии катализатора пятиокиси ванадия (1%) при температуре 220—230° С. Выход технического продукта 50,8%, а медицинского 45,2% [81, 127, 128]. Реакция протекает по следующей схеме  [c.195]


    Разрабатывается способ окисления соляной кислоты азотной кислотой в смеси с серной кислотой в условиях, исключающих возможность образования хлористого нитрозила. Образующуюся в ходе реакции смесь хлора и NO2 разделяют и двуокись азота вновь перерабатывают в азотную кислоту известными способами. По рекламным сообщениям , капиталовложения при регенерации СЬ из соляной кислоты этим методом должны составить 23 тыс. долл. на 1 т/сутки хлора, эксплуатационные затраты — до 27 долл. на 1 т. хлора. [c.268]

    Осаждение кадмия в обоих методах должно проводиться в сернокислых растворах, не содержащих азотной и соляной кислот. Азотная кислота может вызвать процессы нитрования и окисления красителя. [c.39]

    Окисление ведут хлором в смеси концентрированных соляной и азотной кислот. [c.334]

    Не рекомендуется применять вместо соляной кислоты азотную или серную кислоты, так как в этом случае могут происходить побочные реакции окисления — восстановления. [c.377]

    Присутствие вольфрама может быть установлено по желтому осадку вольфрамовой кислоты, выделяющемуся при растворении стали в соляной кислоте и последующем окислении азотной кислотой. [c.159]

    Навеску очищенной фортепианной проволоки растворяют в смеси соляной и азотной кислот. Азотная кислота применяется для окисления Ре + до Ре +. После отделения [c.119]

    КИСЛОТЫ, накрывают чашку, выпаривают до появления обильных паров и продолжают выпаривание до возможно меньшего объема, но не досуха [25]. Немного охлаждают (до начала кристаллизации), затем быстро разбавляют соляной кислотой 1 99 до 25—30 мл. Добавляют немного бумажной пульпы из специально обработанной фильтровальной бумаги для облегчения выделения кремневой кислоты, осадок немедленно отфильтровывают через специально обработанную фильтровальную бумагу и промывают один раз соляной кислотой 1 99. Помещают фильтр с кремневой кислотой в ту же платиновую чашку, добавляют 5 мл концентрированной азотной кислоты и З мл хлорной кислоты, накрывают часовым стеклом и осторожно нагревают для окисления бумаги. [c.43]

    Первоначальное осаждение в виде сульфата. Иногда обстоятельства позволяют или требуют прямого осаждения кальция в виде сульфата в отсутствие или в присутствии других элементов, сульфаты которых нерастворимы. Раствор может быть нейтральным или слабо подкисленным соляной или азотной кислотой. Прибавляют разбавленную (1 1) серную кислоту в десятикратном избытке и затем 4 объема спирта, перемешивают, оставляют на 12 ч, фильтруют, промывают осадок 75%-ным спиртом, высушивают, озоляют отдельно (если они легко отделяются друг от друга) фильтр и осадок в платиновом тигле, прокаливают при темно-красном калении, охлаждают и взвешивают в виде СаЗО. При озо-лении фильтра может произойти восстановление незначительной части сульфата кальция до сульфида, но при последующем прокаливании происходит обратное окисление сульфида кальция до сульфата. [c.711]

    Поверхность полиолефинов можно подвергать окислению насыщенным раствором хлора в воде при 50° С, смесью соляной и азотной кислот (3 1) при 40° С, гипохлоритом натрия при 30—90° С, перекисью водорода разных концентраций, концентрированной азотной кислотой или нитрующей смесью [38]. Перед нанесением лакокрасочных покрытий поверхность требуется тщательно промыть. Предложено также обрабатывать поверхность полиолефинов водными растворами хлора, брома, фтористого водорода [47] и концентрированной серной или хлорсуль-фоновой кислотами [44]. [c.60]

    Исследования проводились на образцах, окисленных при 1050° в растворах серной, соляной и азотной кислот с 3%-ной добавкой фторида натрия. [c.137]

    Обменные реакции. Примером нуклеофильной реакции обмена может служить поведение тетрахлор-1,4-бензохинона (т. пл. 290 °С). Промышленный способ, по которому тетрахлор-1,4-бен-зохинон (хлоранил) получается с выходом 60%, заключается в том, что в перемешиваемую смесь фенола и концентрированной соляной кислоты пропускают хлор для образования 2,4,6-трихлорфенола при последующем прибавлении азотной кислоты происходит окисление и дальнейшее хлорирование. Хлоранил растворяется в водной щелочи, образуя красный раствор, и при подкислении выпадает осадок хлор-аниловой кислоты. [c.415]

    Сера. Пирит FeSo и халькопирит uFeSj разлагают соляной кислотой с добавкой хлората натрия, при этом сульфидная сера окисляег- я до сульфатной. Для окисления сульфидной серы до сульфатной применяют бром в смеси с соляной или азотной кислотой или с метанолом применяют также азотную кислоту с добавкой иодида калия или винной кислоты. Хлорная кислота в смеси с азотной хорошо разлагает и окисляет сульфиды. Избирательно растворяются в аммиаке с пероксидом водорода реальгар и аурипигМент (сульфиды мышьяка), в то время как сульфиды железа и ртути не растворяются. Элементарную серу в породах растворяют в сероуглероде или четыреххлористом углероде, а иногда раствором сульфида натрия (с образованием тиосульфата). Для определенпя серы в углях и разложения сульфидов применяют спекание со смесью Эшка (смесь карбоната натрия и оксида магния 1 2). Силикаты спекают со смесью оксида цинка и карбоната натрия (7 3) при 800—850 С. [c.19]


    Смесь, состоящая из одного объема концентрированной HNO3 и трех объемов концентрированной НС1, называется царской водкой . Такое название этой смеси, сохранившееся со времен алхимии, связано с тем, что она разрушает золото — царя металлов . В ней растворяется не только золото, но и платина. Растворение этих металлов в царской водке происходит благодаря высокой активности атомного хлора, выделяющегося в результате окисления соляной кислоты азотной кислотой и разложения хлористого нитрозила NO I  [c.318]

    В ряду напряжений марганец находится между алюминием и цинком стандартный электродный потенциал системы Мп +/Мп равен —1,179 В. На воздухе марганец покрывается тонкой оксидной пленкой, предохраняющей его от дальнейщего окисления даже при нагревании. Но в мелкораздробленном состоянии марганец окисляется довольно легко. Вода при комнатной температуре действует на марганец очень медленно, при нагревании — быстрее. Он растворяется в разбавленных соляной и азотной кислотах, а также в горячей концентрированной серной кислоте (в холодной Н2504 он практически нерастворим) при этом образуются катионы Мп2+. [c.663]

    Действие царской водки объясняется тем, что HNO3 окисляет H I с образованием свободного хлора и хлорида нитрозила Н0С1, которые и окисляют золото, платину, сульфид ртути и т. д. Суммарное уравнение реакции окисления золота царской водкой по стадиям 1) взаимодействие соляной и азотной кислот с образованием атомарного хлора и хлорида нитрозила -1+5 О +3 [c.135]

    Окисленный уголь готовят из активного угля БАУ, Сначала уголь обеззоливают, для этого его 3—4 ч кипятят с 2 н. соляной кислотой. Затем кислоту заменяют свежей а снова кипятят. Такую операцию повторяют три раза. Обеззоленный уголь промывают декаптацпей водой, затем 2%-ным раствором водного аммиака до отрицательной реакции на С1 (при добавлении к пробе раствора азотной кислоты до кислой реакции и раствора AgNOj не должно появляться мути или осадка). [c.143]

    В 2-литровую круглодонную трехгорлую колбу, снабженную мешалкой и двумя холодильниками с широкой внутренней трубкой, помещают 200 мл 50%-ной азотной кислоты и 0,25 г пятиокиси ванадия. Колбу нагревают до 65—70° на водяной бане (термометр в воде) и добавляют 1 мл циклопентанона. Начало окисления заметно по образованию бурых паров. Водяную баню отнимают и из капельной воронки через холодильник добавляют 42 г (за вычетом 1 мл) циклопентанона со скоростью 1 капли в 3 сек. Благодаря теплоте реакции температура реакционной массы поддерживается при 70°. Если температура падает ниже 70°, то окисление прекращается до тех пор, пока не накопится значительное количество кетона, и тогда реакция может пойти почти с силою взрыва. В этом.случае или к случае, когда температура слишком высока, образуется большое количество янтарной кислоты. По добавлении всего количества циклопентанона вновь ставят водяную баню и смесь нагревают до кипения. Затем содержимое колбы выливают в вытяжном шкафу в фарфоровую чашку и упаривают раствор наполовину. По охлаждении глутаровую кислоту отфильтровывают и упаривание раствора повторяют еще дважды. В последней порции кислота окрашена в желтоватый цвет однако эту окраску можно уничтожить, промыв вещество разбавленной соляной кислотой. Неочищенная глутаровая кислота — белого цвета вес ее 50—55 г (80—85%) т. пл. 92—94°. Если в результате недостаточного контроля температуры образовалось некоторое количество янтарной кислоты, то она выделяется в первой порции. Удобнее собирать маточные растворы от нескольких опытов и обрабатывать их в отдельности таким путем удается получить глутаровой кислоты в каждом опыте на 2—3 г больше. Если желают получить более чистый продукт, его перекристаллизовывают из бензола. Кислота, полученная по указанной выше прописи, содержит следы азотной кислоты однако она вполне пригодна для превращения в ее ангидрид. При отсутствии катализатора получаемый выход на 10% меньше (Ч. Ф. X. Аллен и Болл, частное сообщение). [c.174]

    Для отделения урана раствор подкисляют соляной или азотной кислотой и кипятят для удаления СО2. Если раствор содержит уран (IV), то подкисляют азотной кислотой, обеспечивающей окисление урана (IV) до урана (VI). На каждые 100 мл раствора прибавляют по 5—10 г нитрата или хлорида аммония, вносят бумажную массу и при перемешивании постепенно добавляют разбавленный раствор гидроокиси аммония (1 4) до появления сильного запаха аммиака, нагревают до кипения и кипятят в течение не менее 5 мин. для получения легкофильтрующегося осадка. После отстаивания осадок отфильтровывают из горячего раствора и промывают 2%-ным раствором нитрата аммония, подщелоченным небольшим количеством гидроокиси аммония. [c.263]

    Выделение молибдена р-нафтохинолином разработано применительно к анализу сталей, ферромолибдена (101, 363]. Навеску стали растворяют в разбавленной серной кислоте, а навеску ферромолибдена — в смеси соляной ч азотной кислот, производят окисление азотной кислотой, раствор вымаривают до паров Н2 04. По растворении сухого остатка отфильтровывают кремневую и вольфрамовую кислоты. Отделяют железо избытком щелочи. Из аликвотной части фильтрата осаждают шестивалентный молибден р-нафтохинолином из слабосернокислого раствора (по лакмусу). Отфильтрованный и промытый осадок осторожно озоляют в муфеле при 400—450°С до МоОз. Метод дает удовлетворительные результаты. [c.158]

    Влияние кислотности раствора. При изучении каталитического действия растворов соляной, серной, азотной, фосфорной,муравьиной, уксусной, янтарной и щавелевой кислот на окисление иона двухвалентного железа молекулярным кислородом (для ГеЗОц) было нaf цeнo, что щавелевая и о-фосфорная кислоты образуют осадок В растворе РеЗО и тормозят процесс окисления,что связано с понижением онцентрация Ре " " в растворе [ 43].Соляная,серная,азотная и муравьиная кислоты Я небольших концентрациях оказывают депрессивное действие.Уксусная янтарная кислоты несколько ускоряют реакцию,а щавелевая и фосфорная кислоты являются очень активными катализаторами окисления,значительно увеличивая скорость реакции [44]. [c.19]

    Установив связь темы Подгруппа азота с темами Галогены и Подгруппа кислорода , базируясь на теоретической концепции о сущности процесса диссоциации, объяснить, почему растворы соляной и сероводородной кислот имеют кислую реакцию, а аммиака — щелочную. Это создает условия для последующего обобщения сведений о летучих водородных соединениях элементов разных групп периодической системы. Постановка проблемного вопроса о том, до какой максимальной положительной степени окисления может окисляться атом азота в составе аммиака, позволит осуществить перспективную внут-рипредметную связь с материалом об азотной кислоте. [c.56]

    В минералах, рудах и концентратах фосфор находится в виде ортофосфатов. Для разложения навесок этих материалов можно применять как окисляющие, так и неокисляющие кислоты. При разложении металлов, сплавов и полупроводниковых соединений, содержащих фосфор в виде фосфидов (РедР, СигР и др.) или твердых растворов, с целью предотвращения образования летучего фосфористого водорода применяют лишь окисляющие кислоты или их смеси азотную, смесь азотной и соляной кислот, соляную кислоту, насыщенную бромом и др. Однако часть фосфора после разложения металла или сплава в окисляющих кислотах находится в виде соединений низших степеней окисления Для полного их окисления до ортофосфорной кислоты в качестве окислителя чаще всего применяют перманганат калия или хлорную кислоту, нагретую до выделения ее паров. Применение в качестве окислителя персульфата аммония приводит к неполному окислению соединений фосфора. Соединения фосфора низших степеней окисления переводят в ортофосфаты также нагреванием при 120—130° С навески анализируемого материала, переведенного в нитраты. [c.26]

    Существуют аналогичные процессы пачучения водных растворов растворением гранулированного железа в соляной кислоте с последующим окислением двухвалентного хлорида железа хлором или азотной кислотой в присутствии соляной кислоты. [c.128]

    Окисление серы смесью соляной и азотной кислот до H2SO4 (4] не может быть использовано из-за большой длительности процесса. [c.291]

    Определение цинка в смешанных и окисленных цинковых рудах (метод видоизмененный Н. И. Солнцевым и Э. М. Таль ). Навеску руды 0,25 г помещают в коническую колбу емкостью 100 мл и смачивают водой. Прибавляют 5 мл соляной кислоты (пл. 1,19 sj M ) и упаривают до влажных солей приливают 3 мл азотной кислоты (пл. 1,4 г/см ) и вновь упаривают до влажных солей. Добавляют 4—5 мл серной кислоты (1 1) и упаривают до влажных солей. По охлаждении добавляют 15—20 мл воды и кипятят до растворения сульфатов. Фильтруют через фильтр средней плотности в стакан емкостью 250 мл, осадок на фильтре промывают пять—семь раз 0,5%-ным раствором серной кислоты, причем общий объем фильтрата и промывных вод не должен превышать 40—45 мл. Вводят 4 г кристаллической лимонной кислоты и после растворения кислоты нейтрализуют раствор 25%-ным аммиаком, избегая его избытка, до pH 8 (по фенолфталеину до первого появления розового окрашивания). После этого титруют, как указано выше. [c.347]

    Исследовано фотохимическое окисление плутония(П1) в растворах соляной, азотной, серной и хлорной кислот [78]. При облучении светом ртутно-кварцевой лампы ПРК-7 раствора, содержащего 0,96 мг мл плутония(П1) в 3 М азотной кислоте, окисление происходит до плуто-ния(1У) и частично до плутония(У1). Для полного окисления плутония(П1) достаточно облучать раствор 0,5 ч. При дальнейшем увеличении времени облучения возрастает содержание плутония(У1) в растворе, однако плу-тоний(1У) окисляется до плутония(У1) значительно медленнее, чем плутоний(П1) до плутония(1У). После облучения раствора в течение 3 ч образуется 0,53 лгг/жл плутония(1У) и 0,43 мг/мл плутония(У1). При меньших концентрациях плутоний(П1) быстро окисляется до плу-тония(1У), который затем сравнительно медленно окисляется до плутония(У1). Если облучать раствор, содержащий только плутопий(1У), то он постепенно окисляется до плутония(У1) (рис. 18). [c.93]

    Разложение медных, руд и минералов не вызывает затруднений и может быть проведено обработкой минеральными кислотами. Лучше обрабатывать сперва соляной кислотой для растворения окисленных минералов и затем прибавлять азотную кислоту для растворения сульфидных минералов. При наличии в пробе силикатов и других нерастворимых веш еств может потребоваться обработка остатка фтористоводородной кислотой или сплавление его с карбонато1и натрия или пиросульфатом калия. [c.282]

    После фильтрования через стеклянный пористый фильтр № 4 и промывания 0,3 н. НС1, насыщенной сероводородом, осадок растворяли на фильтре в горячей HNO3, и раствор фильтровали через тот же фильтр для отделения от осадка элементарной серы. К фильтрату добавляли немного концентрированной соляной кислоты. Затем трехкратно упаривали с дымящей азотной кислотой (уд. вес 1,49). Осадок взмучивали в 6 н. HNO3 и центрифугировали. Промытый той же кислотой осадок метасурьмяной кислоты растворяли при нагревании в 6 н. соляной кислоте. Раствор охлаждали, для окисления сурьмы добавляли раствор перманганата калия и трижды экстрагировали диэтиловым эфиром, насыщенным 6 н. соляной кислотой. Объединенную эфирную фракцию промывали 5—10 мл 6 н. соляной кислоты, насыщенной эфиром. Затем эфир удаляли нагреванием. [c.62]


Смотреть страницы где упоминается термин Соляная кислота и азотная кислота, окисление: [c.262]    [c.543]    [c.169]    [c.169]    [c.13]    [c.1121]    [c.124]    [c.408]    [c.408]    [c.17]    [c.286]   
Качественный химический анализ (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота азотная соляная

Кислота соляная

Соляная кислота кислоты



© 2025 chem21.info Реклама на сайте