Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прядение волокон синтетических

    Перлон и обладает на.много более низкой температурой плавления (183 ), что ограничивает возможность его использования в текстильной промышленности. Очень узкий интервал плавления перлона и обусловлен более низкой степенью полидисперсности. Прядение перлона У сильно затруднено по сравнению с прядением других синтетических волокон. Температура его размягчения и, следовательно, очень близка к температуре его плавления, поэтому расплав имеет очень жидкую консистенцию. При ориентировании волокна перлона и следует принимать специальные меры предосторожности, предотвращающие кристаллизацию, причем его плотность увеличивается с 1,18 до 1,21. [c.132]


    Процесс полимеризации капролактама может осуществляться и непрерывно. Полученную ленту дробят на рубильных машинах в крошку (7—8 мм). Затем экстрагируют горячей умягченной водой (95—98°С) непрореагировавший мономер и другие низкомолекулярные соединения. После отжима и сушки крошка расплавляется при 260—270°С и при помощи дозирующего насосика определенными порциями под давлением приблизительно 6 МПа подается через фильтр в фильеру. Струйки расплава из фильеры попадают в высокую шахту, где они обдуваются холодным воздухом, застывают, и образовавшиеся волокна наматываются на бобину. Полученное волокно подвергают вытяжке, крутке, промывке, сушке, перемотке с одновременным замасливанием. Скорость прядения капрона и других синтетических волокон до 1500 м/мин, т.е. много выше, чем вискозного (75—100 м/мин). [c.213]

    Высушенный хлорированный продукт применяют для получения синтетического волокна (хлорин — СССР и волокно РС — ГДР). Для этого готовят 25—34%-ный раствор перхлорвинила в ацетоне, который продавливают через фильеры. Нити, выходящие из фильер (точнее — струйки вязкого раствора), превращают в прочные хлориновые волокна пропусканием их через слабый водный раствор ацетона или через нагретый воздух. В первом случае растворитель удаляется, переходя в воду (мокрый способ прядения), во втором случае он удаляется в результате испарения (сухой способ прядения). В промышленном масштабе хлорин получают мокрым способом. [c.142]

    Полиамиды применяются прежде всего для производства синтетического волокна [53]. Вследствие нерастворимости незамещенных полиамидов в обычных растворителях прядение ведется сухим методом из расплавов (в атмосфере азота) с последующей [c.311]

    ПАВ необходимы в текстильной промышленности на многих стадиях производства — от получения сырого волокна до конечного изделия. В процессе подготовки к прядению природные волокна промываются от природных масел и загрязнений. Как правило, синтетические волокна не требуют подобной промывки, однако в них имеются масла, используемые при прядении для смазки. Эти масла удаляются дальнейшей промывкой (перед окраской или печатью). Все средства, используемые для промывки, включают в себя ПАВ, которые содержатся также в получаемых тканях (они придают им мягкость и антистатические свойства). [c.107]

    Струйки расплава из фильеры попадают в высокую шахту, где они обдуваются холодным воздухом, застывают и образовавшиеся волокна наматываются на бобину. Полученное волокно подвергают вытяжке в 3,5—5 раз, крутке, промывке, сушке, перемотке с одновременным замасливанием. Скорость прядения капрона и других синтетических волокон до 1500 m muh, т. е. много выше, чем вискозного. [c.566]


    В результате наложения эффектов упругости и вязкости возникает так называемая вязкоупругость. Кроме того, можно привести еще один пример типичных полимерных материалов, а именно волокон, в которых даже в нерастянутом состоянии имеются кристаллические участки. Совершенно очевидно, что как в природных, так и в синтетических волокнах в процессе прядения, а также в одновременно протекающем процессе вытяжки образуются кристаллические области. Следовательно, говоря о полимерных веществах в целом, можно с уверенностью утверждать, что хотя структура реальных высокомолекулярных соединений не является такой же простой, как рассмотренные нами модели, однако они обладают тем преимуществом, что учитывают цепное строение макромолекул. [c.35]

    В текстильной промышленности в качестве загустителей печатных красок и в процессах отделки волокон и тканей применяются природные коллоиды, продукты переработки природных веществ и искусственные вещества. Для разбавления и улучшения качества моющих средств при изготовлении нх, наряду с поверхностно-активными веществами, применяются и вещества, не обладающие поверхностно-активными свойствами. Для проклеивания материала (шлихта) в процессе подготовки пряжи к прядению и ткачеству применяются как природные коллоиды, например крахмал или клей, так и полусинтетические вещества, например продукты этерификации крахмала и целлюлозы, и синтетические вещества, например поливиниловые спирты, соли полиакриловой кислоты. Масла, например льняное, наносят на ткань (или волокно) в растворе органических растворителей или в виде эмульсии. [c.511]

    Итак, первой стадией процесса получения искусственного и синтетического волокна любого вида является приготовление прядильной массы полимера— его расплава, раствора или раствора его производного. Вторая стадия процесса — прядение — заключается в формовании из прядильной массы волокна. Прядение производится путем вытягивания с большой скоростью весьма тонких струек прядильного раствора или расплава. В процессе прядения линейные макромолекулы В" той или иной мере располагаются вдоль оси вытягиваемых, струй, т. е. ориентируются вдоль оси волокна, подобно бревнам, сплавляемом по быстрой реке. Последней стадией формования волокна является отвердевание образовавшихся элементарных волокон с сохранением ориентации макромолекул. Часто для повышения степени ориентации волокна, т. е. для достижения большей параллельности расположения макромолекул вдоль оси волокна, прибегают к последующей вытяжке полностью или частично отвердевшего волокна. [c.422]

    Прядильные машины. В зависимости от типа и назначения волокна, а также от способа прядения конструкции прядильных машин весьма различны. Однако все они обладают одними, и теми же рабочими элементами, так как основы процесса прядения всех искусственных и синтетических волокон одинаковы. [c.424]

    Отделка искусственных и синтетических волокон. Кроме основных процессов — приготовления прядильной массы и прядения,— технология искусственного волокна включает ряд вспомогательных операций. [c.425]

    Изучение тонкой структуры материалов позволяет решать важные практические задачи. Так, получение сверхпрочного искусственного волокна, прочных синтетических волокон в значительной степени стало возможным благодаря теоретическим работам ученых в области молекулярной ориентации прядильных растворов и расплавов в процессе их вытяжки при прядении. [c.18]

    После выдерживания в этом растворе волокна в течение 1 часа при 40—50° оно приобретает способность окрашиваться кислотно-шерстяными красителями. Таким образом, процесс оживления можно проводить или в прядильной ванне, или после завершения прядения. Было предложено распространить этот процесс на ацетилцеллюлозу и другие синтетические волокна. [c.136]

    При мокром прядении вытяжка происходит непосредственно по выходе нити из фильеры, когда нить еще находится в состоянии геля (вытяжка при прядении). Достигаемые при этом степень ориентации и упрочнение волокна не так велики, как при последующей вытяжке готовой нити. Вискозная нить может подвергаться вытяжке только в горячей воде такая вытяжка применяется и для кордной шелковой нити (горячая вытяжка). Для целлю-лозных нитей достаточна кратность вытяжки 1 1,8. Для достижения оптимальных механических свойств синтетические волокна приходится подвергать значительно большей вытяжке (например, [c.417]

    Волокно капрон является наиболее распространенным из всех видов синтетических волокон. Его получают путем прядения из расплава поликапролактама. Поликапролактам получают полимеризацией капролактама при 250—260 °С. Реакция идет ступенчато. Вначале при взаимодействии капролактама с водой образуется аминокапроновая кислота [c.219]

    Синтетическое волокно, получаемое путем прядения из растворов. [c.76]

    До недавнего времени полиакрилонитрил применяли главным образом для производства синтетического волокна (орлона). При переработке полимера в полиакрилонитрильное волокно возникают многочисленные трудности, в особенности на стадиях прядения и крашения. В последние годы полиакрилонитрил в чистом виде для этих целей используют реже. Большей частью приготовляют сополимеры, основным компонентом которых является акрилонитрил [8]. Формование акрилонитрильного волокна пз растворов осуществляют по сухому или мокрому способу прядения. Сущность получения волокна из прядильного раствора заключается в том, что из струйки полиакрилонитрильного раствора, продавливаемого через фильеру, образуется нить полимера, а растворитель диффундирует в нагретый воздух или в жидкость. Метод формования волокна из расплава пригоден лишь для сополимера акрилонитрила с изобутиленом. [c.87]


    Предопределяемая условиями прядения синтетического волокна относительно небольшая их активная поверхность, а также гидрофобность большинства синтетических волокон не позволяют получать бумаги хорошего качества традиционными методами мокрого формования листа [2J. [c.173]

    Трудно поддаются идентификации синтетические волокна, с более или менее гладкой или же профилированной поверхностью (в процессе прядения применяли специальный тип фильер). Поперечные сечения таких волокон имеют одинаковую круглую или овальную форму. [c.35]

    Производство карбоцепных волокон способом литья под давлением. Прядение волокна совиден, получаемого из сополимера винилхлорида и винилиденхлорида, принципиально отличается от способов прядения других синтетических волокон. Этот сополимер не растворяется ни в одном доступном растворителе и не плавится с образованием жидкотекучей массы. При температуре около 160—170° он только переходит в пластическое состояние. Из этой пластичной массы и формуют волокно, причем для этого приходится прилагать весьма большие механические усилия. [c.443]

    Этиленгликоль имеет исключительно разнообразные области применения в химической, автомобильной, авиационной, электротехнической, текстильной, нефтегазовой и других отраслях промышленности. Одним из важных свойств этиленгликоля является его способность сильно понижать температуру замерзания воды. Благодаря этому свойству он нашел широкое применение в производстве низкозамерзающих жидкостей —антифризов. Сложные эфиры этиленгликоля применяют в качестве пластификаторов, смол, клеев, лаков. Этиленгликоль используют для приготовления ряда лекарственных препаратов, при экстракции различных веществ и их очистке, в производстве гербицидов и поверхностно-активных веществ. Этиленгликоль и терефталевая кислота — исходные вещества в производстве полиэтиленте-рефталата, из расплава которого прядением получают синтетическое волокно —лавсан. Это одна из самых перспективных и значительных по объему областей применения этиленгликоля. [c.224]

    Одним из важнейших показателей, характеризующих выпускные формы красителей, является степень дисперсности частиц. При этом следует иметь в виду, что требования к степени дисперсности красителя зависят от области применения и технологии крашения. Так, дисперсные красители и кубовые красители в форме порошков для крашения вискозы в массе (марка В) должны иметь наивысшую степень дисперсности (размер частиц менее 2 мкм) —первые потому, что предназначены для крашения гидрофобных синтетических волокон, диффузия в глубь которых затруднена для частиц большего размера, вторые, чтобы не забивались отверстия фильеры в процессе прядения волокна. Высокую степень дисперсности (размер частиц не более 5 мкм) должны иметь кубовые красители в форме порошков для суспензионного крашения (марки Д), так как обеспечить равномерное прокрашивание материала суспензией, состоящей из более крупных частиц, трудно. В то же время для кубовых красителей в форме паст для печати, которые дол.жны иметь размер частиц не более 5 мкм, нежелательна более высокая степень дисперсности, так как это может привести к браку при печатании узоров на тканях (пробивание гравюры). Нет необходимости в чрезмерно высокой степени дисперсности и в случае кубовых красителей в форме порошков для крашения, поскольку при гладком крашении краситель переводится в раствор соли лейкосоединения ( куб ) или в тонкодисперсную суспензию свободного лейкосоединения ( лейкокис-лоту ). [c.556]

    Волокна [119]. Почти 30 лет прошло со времени предложения Эй-хенгрюиа (1904 г.) о прядении волокна из ацетата целлюлозы до того, как производство ацетатного волокна настолько развилось технически и экономически, что заняло значительное место в производстве искусственных волокон. В настоящее время ацетатное волокно по своим свойствам занимает промежуточное положение между гндратцеллюлозными и синтетическими волокнами. Большая доля производства искусственных волокон отводится ацетатному волокну в США, где оно не уступает вискозному. В Германии ацетатное волокно не получило широкого распространения, однако в последнее время, ввиду появившейся возможности прядения из триацетата с очень большой вытяжкой, интерес к нему возрос. [c.296]

    Один из рекомендуемых режимов [9-120] — нагрев от 200 до 300 С со скоростью 0,5 /мин и окисление в сухом воздухе при 300 С в течение 1 ч. Зависимости отношения Н/С от О/С (диаграммы ван-Кревелена) показывают, что все точки в интервале 200-300 С в основном укладываются в прямую линию (рис. 9-63). Это свидетельствует об идентичности реакций в указанном интервале температур. При 400 С содержание кислорода в пеке прибавляется быстрее, чем удаляется водород. Окислительная дегидрогенизация в начальной стадии окисления приводит к образованию в основном карбонильных групп, инициирующих сшивание молекул пека. Длительное время окисления значительно удорожает процесс. Экстракция мезофазного волокна в бензоле по аналогии с технологией прядения в тетрагидрофуране некоторых синтетических волокон способствует ускорению окончания окислительных процессов [9-112]. Экстракция не обязательно должна проходить по всему сечению волокна. Уже после растворения поверхностных слоев размягчения волокна можно избежать или предотвратить его при значительно сокращенном времени окисления. В некоторых случаях экстракция может вы- [c.611]

    Прочность синтетических волокон в отличие от природных значительно (в несколько раз) повышается при холодной вытяжке этих волокон после образования их прядением из расплава. Холодная вытяжка способствует дополнительной ориентации макромолекул в направлении вытяжки и увеличению степени кристалличности полимера. При этом длина волокна увеличивается на 400—600%. Ориентированное волокно или пленка имеют прочность на разрыв 3000—4000 кг1см , а неориентированное 500— 700 кг/см [10]. [c.670]

    Важнейшей областью применения акрилонитрила является промышленность синтетических волокон, в которой резко обострилась конкуренция между различными фирмами. Процессы производства волокон различаются главныл образом некоторым модифицированием полимеров для улучшения их накрашиваемости и методами прядения. В последнее время разработан новый тип синтетического волокна, относящегося к этой же группе и получаемого на основе цианвинилидена [73]. Особенно хорошими свойствами, по-видимому, обладают сополимеры винилацетата и цианвинилидена. Циан-винилиден можно получать различными способами, но наиболее выгодным, очевидно, является взаимодействие цианистого водорода с кетеном  [c.229]

    Однако интерес к природным полимерам как сырью для выработки текстиля резко снизился в связи с быстрым развитием органического синтеза. Так, в 1935 г. Каротерс [18] получил первое полностью синтетическое промышленное волокно из полиамида— нейлон. Лишь спустя 20 лет Бойер [14] вновь предпринял попытки филирования белков с целью изготовления белковых пищевых продуктов. Суть работы заключалась в приготовлении волокнистой массы, способной заменить мясо в рационах питания. Метод влажного филирования белков, разработанный Бойером, лежит в основе современных технологий влажного прядения белковых волокон. Однако известен ряд модификаций, которые относятся к составу обрабатываемых продуктов или к совершенствованию некоторых этапов технологического процесса. В первую очередь Вестин и Курамото [94] отработали систему непрерывного производства растворов филирования. [c.533]

    Полиакрилонитрил. Радикальную полимеризацию акрилонитрила проводят методами осадительной полимеризации в воде или в растворах К,Ы-диметилформамида с персульфатом калия в качестве инициатора. Из растворов в Ы,Ы-диметилформамиде или диметилсульфоксиде удается формировать полиакрилонитрильное волокно (вольприла) после формирования волокна растворитель удаляют промыванием водой (мокрый метод прядения) или высушиванием горячим воздухом (метод сухого прядения). Полиакрилонитрильное волокно (нитрон) на сегодня является синтетическим волокном, наиболее напоминающим шерсть оно обладает высокой способностью впитывать влагу, отличается устойчивостью к действию света и атмосферы. [c.724]

    Синтетическое волокно лавсан (дакрон в США, терилен в Англии) получается прядением из расплава полиэтилентерефталата —гетеро-цепного Сложного полиэфира терефталевой кислоты и этиленгликоля [167, с. 117]. Получение полиэтилентерефталата и его переработка в волокна и пленки является одной из самых перспективных и значительных по объему областей применения этиленгликоля. Это объясняется тем, что полиэфирные волокна обладают [c.105]

    Поликонденсацией терефталевой кислоты (лучше — диэфира) с этиленгликолем получают полиэтилентерефталат (см главу ХУП) Прядением из расплава и растяжением при 70 °С из полиэтилентерефталата получают синтетическое волокно (лавсан, терилен, дакрон и др ) [c.660]

    Формование волокна является самой ответственной операцией и заключается в том, что прядильная масса подается в фильеру (нитеобразователь), имеющую большое число мель-чайш 1х отверстий в донышке (до 25 ООО, диаметром от 0,04 мм и выше). Выдавленные через отверстия фильеры тонкие струйки раствора попадают в осадительную ванну, где в результате химических реакций происходит осаждение или выпадение полимера из раствора, т. е. идет отвердение струек и из каждой струйки образуется элементарное волокно. Это способ мокрого прядения из раствора, по которому получается Ёискозное и медноаммиачное волокно. Если затвердевание идет в токе теплого воздуха, который испаряет легко кипящий растворитель, возвращаемый затем обратно в производство, то такой способ называется сухим прядением из раствора. Таким образом вырабатываются ацетатное волокно и некоторые типы синтетических волокон. Но затвердевание может идти и в токе холодного воздуха — способ сухого прядения из расплава (капрон, анид). Таким образом, способ отверждения зависит от типа прядильной массы. [c.558]

    Технология получения синтетического полипропиленового волокна в Советском Союзе разработана во Всесоюзном научно-исследовательском институте волокон. Волокно формуется из расплава при помощи шнековой машины. Гранулированный пслимер из бункера поступает в цилиндр шнека, плавится и поступает на прядение. Расплавленный полимер продавливается через нитеобразователь и наматывается на бобину. Полипропиленовое волокно имеет плотность 0,92, поэтому изделия из него не тонут, волокно может быть использовано для изготовления канатов, сетей, фильтровальных, электроизоляционных тканей, декоративных и облицовочных материалов, особенно для обивки сидений автомобилей, а также для изготовления трикотажа и различных тканей. [c.222]

    Поливинилхлорид перерабатывается в синтетические волокна, которые выпускаются под различными наименованиями [533], мокрым [534—537] и сухим [240] методами прядения. В качестве растворителей для приготовления прядильных растворов, кроме обычно использующихся тетрагидрофурана и смеси сероуглерода с ацетоном, рекомендуется применять смеси алифатических или циклических кетонов с циклическими эфирами 537] или смесь диацетонового спирта с кетонами [536]. Смесь ацетона с сероуглеродом Сиба и Хасимато [240] предлагают заменять смесью ацетона с бензолом. В смеси ацетона с бензолом состава 1,5 1 полимер набухает, а при 35° образуется вязкий раствор, который после фильтрования подается для прядения. Из прозрачного раствора волокно прядется в шахте (темп. 110°) со скоростью 100 м1мин. [c.387]

    Синтетические волокна из поливинилиденхлоридных материалов готовятся обычными методами, в том числе прядением из расплава [1051, 1052]. Сомерс [1053] описывает получение волокна зефран прядением из раствора смеси сополимеров винилиденхлорида с акрилонитрилом (75% винилиденхлорида) и бутадиена с акрилонитрилом (45% акрилонитрила) в ацетоне. Волокно формуется из 20%-ного раствора в воду при 50°. В осадительной ванне производится предварительная вытяжка. Окончательная вытяжка производится в горячей воде или водяном паре при 120°. Получается эластичное волокно с разрывной прочностью 3—5 г денье при удлинении 10—18%. [c.400]

    Поливинилхлорид перерабатывается в синтетические волокна мокрым 8->оо1 и сухим 1003 методами прядения, а также прядением из расплава юо4-1оо9  [c.505]

    Волокна. Волокна, выпускаемые промышленностью, можно подразделить на две группы природные (натуральные) и химические. К натуральным волокнам относятся хлопок, шерсть, лен, шелк и др. Химические волокна в свою очередь подразделяются на искусственные, вырабатываемые из целлюлозы (вискозное, ацетатное и медноаммиачное) и белков (казеиновое, зеино-вое), и синтетические, вырабатываемые из синтетических полимеров. Искусственные волокна формуют из растворов природных полимеров и их производных, а синтетические — из растворов и расплавов синтетических нолимеров. Прядение химических волокон осуществляется способом экструзии — выдавливанием полимера, переведенного в жидкое состояние, через фильеру с мельчайшими отверстиями. Некоторые полимеры, применяемые в виде волокон (найлон, ацетат целлюлозы), в равной степени могут служить и пластиками. Термин волокно носит условный характер. Отнесение вещества к классу волокон в основном зависит от его формы (соотношения длины и диаметра). Согласно общепринятой точке зрения длина волокна должна быть примерно в 100 раз больше диаметра. [c.69]

    Синтетические волокна под микроскопом снаружи очень похожи на описанные выше иолусинтетическне , но на срезе они выглядят иначе (см. рисунок). Их нити, если они изготовлены прядением из расплава, могут иметь своеобразное поперечное сечение, а в последнее время встречаются даже полые нити. Волокна этой группы можио различить, прежде всего, по поведению в пламени, а также при сухой перегонке (нагревание в пробирке). [c.195]

    Кроме хлористого винила, при сополимеризации с хлористым винилиденом используются и другие мономеры. Хорошо известны, например, сополимеры с нитрилом акриловой кислоты, отличающиеся ценными техническими свойствами, в частности растворимостью в ацетоне такие сополимеры могут быть использованьг для получения синтетических волокон. Сополимеры с бутадиеном являются каучукоподобными материалами, свойства которых, в зависимости от состава, изменяются в широких пределах. Известны и другие сополимеры. Так, например, сополимер хлористого винилидена (92,5%) и этилакрилата (7,5%) был опробован в качестве материала для получения теплостойкого волокна прядением из 25%-ного раствора в тетрагидрофуране. Определенный интерес представляют тройные сополимеры. В частности, смола, приготовленная из хлористого винилидена, метилакрилата и нитрила акриловой кислоты, предложена в качестве пленкообразующей основы, не требующей пластифицирования при переработке. Путем сополимеризации трех мономеров в Германии изготовлялась смола для получения моноволокна (нитей и щетины) формованием при высокой температуре. [c.44]

    Нитроцеллюлозное волокно, первое синтетическое волокно, было получено в 1884 г., в настоящее время оно не имеет применения. Оно получалось при выпаривании спиртовоэфирного раствора нитрата целлюлозы с последующим денитрованием волокна с помощью раствора сульфида аммония. Волокно Бемберга представляет собой продукт осаждения целлюлозы, растворенной в аммиачном растворе гидрата окиси меди (реактиве Швейцера). В качестве коагулирующих агентов с успехом применяются вода, щелочная глюкоза и слабая серная кислота. Применяемая техника прядения с вытягиванием состоит в том, что пластическое волокно, выходящее из фильеры с относительно большими отверстиями, вытягивается так, ЧТО становится более длинным и более тонким. В процессе получения вискозы алкали-целлюлоза (I), получающаяся при действии раствора щелочи (концентрации, необходимой для мерсеризации) на отбельную сульфитную массу, разрушается и обрабатывается сероуглеродом с образованием желатинообразного окрашенного в оранжевый цвет ксантогената целлюлозы (II). Полученный коллоидный раствор вискозы в разбавленной щелочи в процессе созревания или старения претерпевает сложные реакции, при которых соотношение между углеводом и серой возрастает, как в (III) и в (IV) [c.299]

    В текстильной промышленности полиэтиленимин используется главным образом в качестве вспомогательного агента при крашении. Способность полиэтиленимина, в особенности, алкилированного по азоту, совмещаться с полиолефинами позволяет решить проблему крашения полипропиленовых волокон простым введением 2—5% полимерного амина перед прядением [255]. Использование полиэтиленимина в качестве инициатора полимеризации ь-капролактама [256] дает блок-сополимерный полиамид с лучшей, чем у найлона-6, окрашиваемостью, повышенной кристалличностью и устойчивостью к кипящей воде. Точно так же полиуретановое волокно, полученное поликонденсацией в присутствии небольшой добавки этиленимина [257], обладает лучшей окрашиваемостью и светостойкостью. Обработка пералкилированным полиэтиленимином [116] повышает прочность всех видов крашения и закрепляет на волокне пигменты и окись алюминия [258]. Соли полиэтиленимина и некоторые его производные используются [259] для обработки синтетических волокон и изделий из них с целью предотвращения аккумулирования ими электростатических зарядов. Адсорбция [c.189]


Смотреть страницы где упоминается термин Прядение волокон синтетических: [c.182]    [c.461]    [c.209]    [c.301]    [c.55]    [c.570]    [c.133]   
Общая химическая технология органических веществ (1955) -- [ c.422 , c.443 , c.446 ]




ПОИСК





Смотрите так же термины и статьи:

Прядение волокон

Синтетические волокна



© 2024 chem21.info Реклама на сайте