Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт отделение от других катионов

    Не утратили практического значения классические методы, основанные на различной растворимости сульфидов или гидроокисей. металлов, хотя эти. методы пригодны главным образом для группового разделения. Кобальт находится в И1 аналитической группе катионов. Осаждение с сероводородом в кислой среде позволяет отделять катионы IV и V групп от кобальта. Сульфид аммония применяется для отделения кобальта совместно с другими катионами П1 группы от щелочных и щелочно-зе.мельных. металлов. Воз.можны также разделения внутри П1 группы, если тщательно регулировать кислотность раствора в процессе осаждения. Известны, например, методы осаждения цинка сероводородом в присутствии кобальта в слабокислом растворе, отделения кобальта от марганца и др. Сероводородный метод был усовершенствован Остроумовым, который предложил осаждать сульфиды кобальта (и никеля) из пиридиновых растворов это дает возможность достигнуть более четкого разделения и получить сульфиды в виде хорошо отфильтровываемых плотных кристаллических осадков. [c.60]


    Оксихинолин реагирует с катионами многих других металлов. Способы титриметрического определения кобальта с использованием 8-оксихинолина и отделения кобальта от других элементов указаны на стр. 77 и 131. [c.100]

    Аналогичный принцип разделения металлов на анионите применяется для анализа более сложных смесей, например полиметаллических руд. Из 9 н. соляной кислоты на анионите поглощается не только кобальт, но и медь, железо, цинк и другие катионы, причем достигается отделение от металлов, которые не образуют хлоридных комплексов, как алюминий, никель, марганец, и др. Металлы, поглощенные на анионите, можно вымыть разбавленной соляной кислотой и далее определять обычными методами. [c.76]

    При недостаточной концентрации НС1 в растворе полнота осаждения сульфида мышьяка не достигается, если же концентрация НС1 в растворе слишком высокая, то сульфиды и сернистые соединения, образованные другими ионами IV и V аналитических групп, не выпадают в осадок. При сильном разбавлении раствора, которое следует за осаждением мышьяка из концентрированного солянокислого раствора, в осадок могут выпасть хлорокиси сурьмы и висмута, а также может произойти соосаждение сульфидов цинка, никеля и кобальта (см. гл. VU, И). Чтобы избежать ошибок, осаждение следует проводить так, как указано для анализа смеси ионов IV и V групп, а для разбавления применять воду, насыщенную сероводородом. Хотя сильное разбавление и может повести к частичной потере цинка и других катионов, все же при этом достигается полнота осаждения сульфидов всех ионов IV и V аналитических групп, а в растворе остается достаточное количество ионов цинка, которые легко обнаружить в фильтрате, получаемом после отделения осадка сульфидов. Однако не следует забывать, что чрезмерное разбавление неминуемо приводит к образованию коллоидов и возникновению связанных с этим осложнений в дальнейшем ходе анализа. [c.436]

    Какой пробой можно удостовериться, что фильтрат после отделения сульфидов никеля и кобальта не содержит заметных количеств других катионов HI группы  [c.60]

    Причиной нерастворимости NiS и oS в разбавленной НС является постепенное превращение их при стоянии в соприкосновении с раствором в другие, менее растворимые модификации. Отношение NiS и oS к H I используется в ходе анализа для отделения ионов Ni++ и Со++ от других катионов III группы. Для этого выпавший при действии (NH ),S осадок сульфидов II] группы после получасового стояния (во время которого происходит указанное выше превращение сульфидов никеля и кобальта) отфильтровывают, про.мывают и обрабатывают на холоду разбавленной НС1. При это.м все сульфиды, кро.ме NiS и oS, растворяются. Последние же можно растворить при нагревании в смеси H I с Н Оз ( смесь Комаровского )  [c.129]


    Однако, по нашим наблюдениям, метод выделения гидроокиси галлия посредством аммиака имеет большие недостатки во-первых, ввиду значительной растворимости гидроокиси галлия в избытке аммиака необходимо очень тщательно регулировать прибавление его к раствору во-вторых, сравнительно медленная дегидратация гидроокиси галлия и переход ее в более бедную водой плотную форму вызывает повышенную адсорбционную способность ее в отношении других катионов, присутствующих в растворе, хотя и не осаждающихся в отдельности при данных условиях в-третьих, в отношении отделения галлия от ряда других металлов, как, например, марганец, кобальт, никель, медь, цинк, кадмий, метод осаждения аммиаком не дает хороших результатов из-за явления адсорбции и частичного образования галлатов указанных металлов, которыми всегда загрязняется гидроокись галлия при выделении ее в их присутствии. [c.47]

    Чувствительность обнаружения невелика, около 0,4 мг кобальта [38]. Нитрит калия применяется в большинстве случаев для отделения кобальта от мешающих элементов (см. стр. 68). Рекомендовано также заменять катион калия ионами других металлов, например таллия [305, 670] или цезия [867]. Для микрокристаллоскопического обнаружения кобальта пригоден также нитрокобальтиат уротропина [161] последняя реакция была рекомендована для обнаружения кобальта в почвах [127]. [c.56]

    Аналогичная методика описана и для отделения кобальта н катионов других двухвалентных металлов от галлия и индия [248], от титана, циркония и тория [247]. Во всех этих случаях практически не наблюдается соосаждение двухвалентных металлов с гидроокисями высоковалентных. металлов. [c.72]

    Адсорбционная хроматография. Как адсорбент применяется окись алюминия, иногда целлюлоза. Главное внимание обращалось на разработку. методов отделения кобальта от никеля, меди, железа, урана, молибдена, марганца, ванадия, хрома и некоторых других элементов. Характеристика предложенных методов приведена в табл. 17. Хроматографирование на окиси алюминия применяется для качественного анализа катионов метод основан на различной сорбируемости окисью алюминия [c.78]

    Разработан метод [582] титрования кобальта раствором едкого натра в присутствии тимолфталеина. Метод применим после отделения кобальта от катионов других металлов. [c.132]

    Концентрация в расплаве и, следовательно, условия отделения ряда летучих компонентов определяются окислительно-восстано-вительными условиями. Важная роль при этом принадлежит водороду, создающему сильный восстановительный потенциал как на поверхности, так и в объеме жидкой фазы. Коэффициент диффузии водорода в расплаве значительно выше, чем других ионов. Растворение водорода уменьшает кислотность расплава по сравнению с воздушной средой свободные ионы кислорода, связываясь с протонами, выносятся из расплава в виде паров воды. Полученные в водороде кристаллы фторфлогопита почти не содержат изоморфных примесей железа и других переходных металлов, которые образуют самостоятельные фазы чистого железа, кобальта и т. д. Азот также снижает кислотность расплава, приводя к появлению катионов понижен ой степени окисления, непосредственно [c.13]

    Определение молибдена. При содержании его более 1,5% рекомендуется хроматографический метод. Отделение молибдена от железа и других компонентов основано на различной адсорбируемости на сульфоугле катионов молибдена и железа в сильнокислой среде. Адсорбируемость железа, кобальта, никеля, хрома, марганца и титана сильно уменьшается при увеличении кислотности раствора в то время, как молибден сильно адсорбируется даже в 1 н. растворе соляной КИСЛОТЫ. [c.329]

    Хотя большой сдвиг потенциала катода в отрицательную область действительно гарантирует количественное выделение меди, однако, бесконтрольное изменение потенциала нежелательно в тех случаях, когда возникает необходимость отделения меди от других элементов. Любые катионы металлов, присутствующие в сернокислом растворе, даже при частичном их выделении при потенциале более положительном, чем —0,44 В относительно НВЭ, будут отлагаться на катоде вместе с медью. Так, определению меди(II) мешают висмут(III), сурьма(III), олово(П) и кобальт(П) ниже приведены соответствующие им полуреакции и стандартные потенциалы  [c.416]

    Действие сульфида аммония. (N1 4)28 применяется в качественном анализе для отделения катионов III группы от катионов других групп. С катионами железа, никеля, кобальта, цинка в марганца (NH4> jS образует сульфиды [c.177]

    Осаждение катионов П1 группы в виде сульфидов и гидроокисей. При осаждении сульфидов и гидроокисей элементов П1 аналитической группы раствором (N1 4)28 (как и в других случаях осаждения в химическом анализе) осадок иногда не выпадает или образуются осадки, которые при их отделении и промывании проходят через плотные бумажные фильтры. Это явление объясняется образованием коллоидных растворов гидроокисей алюминия и хрома и сульфидов никеля, кобальта, железа, цинка и марганца. Для предупреждения образования коллоидных растворов при выделении сульфидов и гидроокисей катионов П1 аналитической группы рекомендуется придерживаться определенных правил. Осаждение сульфидов следует вести при нагревании из слабокислых растворов, содержащих хлорид аммония, свежеприготовленным раствором (NH4)2S. Перед окончанием осаждения прибавляют раствор аммиака до pH=9. [c.285]


    Примечание 2. При пользовании 2 н. раствором соляной кислоты четкого отделения N iS и oS от остальных катионов третьей группы не происходит, так как, с одной стороны, сульфиды никеля и кобальта немного растворимы в разбавленной НС1, поэтому небольшие количества ионов этих металлов переходят в раствор, особенно в присутствии больших количеств железа или цинка. С другой стороны, некоторые растворимые в разбавленной H i сульфиды. [c.414]

    Разделение сероводородом и сульфидом аммония. Отделение катионов IV и V групп от кобальта сероводородом 83]. В сильнокислых растворах (pH 1) сероводород осаждает катионы IV и V групп в виде. малораствори.мых сульфидов. Таким путе.м отделяют. медь, серебро, ртуть, свинец, висмут, кад-.мий, рутений, родий, палладий, осмий,. мышьяк, золото, платину, олово, сурьму, иридий, гер.маний, селен, теллур, молибден, таллий, индий, галлий, ванадий и вольфрам от кобальта и других катионов III группы. Однако в присутствии четырехвалентного олова часть кобальта увлекается осадком сульфида олова. Соосаждение предотвращается при пропускании сероводорода в нагретый до 60 " С раствор в I соляной кислоте и акролеин в концентрации 0,5 мл на 100 мл раствора 715]. [c.62]

    Отделение кобальта и других катионов III группы от катионов II и I групп сульфидом аммония. Детальное описание методики осаждения можно найти в руководствах по неорганиче-ско.му анализу [S3]. Если необходи.мо отделить кобальт не только от катионов И и I групп, но также и от катионов П1 группы, осаждаемых сульфидом аммония в виде гидроокисей (титан и др.), то кобальт осаждают сульфидом аммония из слабощелочного раствора, содержащего винную кислоту. [c.64]

    Соединения роданида кобальта с органическими аминами. Методы отделения и фотометрического определения кобальта в виде соединении тетрароданида кобальта с крупными органическими катионами описаны на стр. 156. Экстракция кобальта заствором трибутилфосфата нз 10 У раствора соляной кислоты 407] позволяет выделить микрограммовые количества кобальта из металлического никеля. Трибутилфосфат рекомендуется для отделения урана от кобальта и других элементов [1383]. Экстракция легкоплавкими ароматическими аминами (а-нафтиламин и др.) из растворов иодидов и бромидов позволяет отделить кобальт от меди [187]. [c.74]

    Титрование этилендиаминтетрауксусной кислотой с применением специфических индикаторов. Точку эквивалентности при титровании устанавливают по появлению или исчезновению синей или голубой окраски роданидного комплекса кобальта [1300, 1301, 1394]. Для отделения кобальта от других элементов осаждают его в виде акридинроданидного тройного соединений [1460]. Осадок растворяют в ацетоне и титруют кобальт раствором комплексона III до исчезновения синего окрашивания. Предложено [1395] осаждать кобальт в виде гексанитрокобальтиата калия и натрия, растворять осадок в концентрированной соляной кислоте и титровать ионы кобальта в ацетатном растворе комплексона III в присутствии роданида и ацетона. Вместо ацетона можно пользоваться амиловым спиртом [1299], причем синий роданидный экстракт кобальта в амиловом спирте может служить индикатором при определении ряда других катионов, образующих с комплексоном III более прочные комплексы, чем кобальт (кальций, свинец, торий и др.). Индикатором может служить также хлороформный раствор синего соединения кобальта с роданидом и трифенилметиларсонием [536]. К анализируемому раствору, содержащему от 2 до 2 мг Со, прибавляют 25 мл 0,01 N раствора комплексона III, 1 М раствор гидроокиси аммония до щелочной реакции по лакмусу, вводят 10 мл хлороформа, 2 мл аммиачного буферного раствора с рн 9,3, 5 мл 50%-ного раствора роданида калия, 3 мл 1%-ного раствора хлористого трифенилметиларсония и оттитровывают избыток раствора комплексона III стандартным раствором сульфата кобальта до появления синего окрашивания хлороформного слоя. Метод рекомендуется применять для опре- [c.124]

    Концентрирование и отделение серебра другими органическими реагентами. Краситель дитио-р-изоиндиго был рекомендован [412] в качестве соосади-теля следов серебра и некоторых других металлов для выделения микрограммовых количеств серебра, золота, меди, кобальта и цинка достаточно 4 мг реагента. Было найдено, что 4-меркапторезор-цин образует комплексы с ионами серебра и многих других катионов, что может быть использовано для растворения гидроокисей зтих элементов [679]. Для предварительного концентрирования следов элементов описан метод ионной флотации [243]. [c.148]

    Сульфиды других катионов III аналитической группы при таком pH растворимы. Однако, ведя разделение катионов, нужно учитывать, что при выпадении цинка в осадок в виде сульфида в растворе накапливаются ионы Н+, в результате чего активность, их значительно возрастает и pH раствора может стать меньше 1,5. При такой кислотности раствора осаждение ионов цинка уже неполное. Для снижения активности ионов водорода и подг держания приблизительно постоянной величины pH раствора,, из которого осаждают сульфид цинка, при отделении его от других катионов III группы добавляют формиатную смесь, поддерживающую активность ионов водорода на уровне, близком-к рН=2. Отделить ионы Zn+" от o++hNi++ б присутствии ацетатного буфера нельзя, так как pH ацетатного буфера может колебаться в зависимости от изменения концентраций компонентов буферной смеси в пределах от 3,8 до 5,8. В таких условиях сульфиды кобальта и никеля выпадут в осадок, так как oS осаждается при рН=2,9, а NiS—при рН=3,7. [c.166]

    Группа сульфида аммония. Зейлер и Зейлер [2] использовали смешанный растворитель ацетон — концентрированная соляная кислота—ацетонилацетон (100 1 0,5) для разделения железа, цинка, кобальта, марганца, хрома, никеля и алюминия на слоях из специально очищенного силикагеля. Для обнаружения пятен хроматограммы подвергали воздействию газообразного аммиака, а затем опрыскивали раствором 0,5 г 8-оксихинолина в 100 мл 60 %-ного спирта и после этого наблюдали в УФ-свете. Расположение пятен после разделения смеси зависело от состава этой смеси (рис. 33.1). Эти же авторы [32] отделили иС + от смеси ионов Fe +, Си +, Со , Ni + Сг +, АР+ и Th +, использовав сложный растворитель, содержащий 50 мл этилацетата, 50 мл насыщенного водой эфира и 2 мл три-н-бутилфосфата. При проведении указанного разделения проба наносилась в виде раствора в 4,7 н. азотной кислоте. В результате взаимодействия пробы с элюирующим растворителем происходило образование комплекса уранилнитрата с три-н-бу-тилфосфатом, который легко перемещался в элюирующем растворителе, тогда как другие катионы оставались на старте или около него. После опрыскивания 0,25 % -ным этанольным раствором пиридилазонафтола удавалось обнаружить 1 мкг урана. Ион галлия Ga + был отделен от стократного избытка иона алюминия при элюировании 100 мл ацетона, содержащего 0,5 мл концентрированной соляной кислоты. Для обнаружения галлия необходимо опрыскивание 0,5 %-ным раствором 8-оксихинолина в 60 %-ном этаноле. После опрыскивания пластинку подвергали действию концентрированного аммиака и затем наблюдали под ультрафиолетэвым облучением. Лезинганг-Бух- [c.484]

    На первой стадии при обжиге арсеиид-сульфидного сырья кобальт переходит в окисел (с примесью окислов других металлов), а мышьяк и серу отгоняют в форме АззОз и ЗОг. Затем следует обработка смеси окислов соляной кислотой, чтобы перевести кобальт и сопутствующие металлы в раствор в виде хлоридов. Для отделения железа через раствор пропускают С1з (переход Ре (П)->Ре (1П)), а затем нейтрализуют его карбонатом Са. В результате выпадает осадок гидроокиси железа (П1), а также его основных хлоридов. На следующей стадии процесса происходит повышение pH и селективное (избирательное) окисление белильной известью Со (И) (но не N1 (П)) до трехвалентного состояния. При этом iNi + и другие двухзарядные катионы остаются в растворе, а кобальт образует осадок малорастворимой гидроокиси Со(ОН)з  [c.137]

    Для многих разделений в качестве селективного элюента металлических ионов применяется этилендиаминтетраацетат. Для этих разделений очень важен правильный выбор величины pH (рис. 10.23) поэтому их рекомендуется проводить в буферных средах [28]. Простейший метод разделения состоит в селективном поглощении. Выбирают такое значение pH, при котором один из металлов или группа металлов существует в виде комплексов с ЭДТА, а другие металлы остаются в виде простых катионов [5, 35, 36]. Типичные примеры — поглощение серебра из растворов, содержащих кобальт или медь [35, 48, 116 ], и отделение цинка от алюминия и титана [32]. [c.365]

    Катионообменные методы разделения элементов, рассматриваемых в данном разделе, мало разработаны. В связи со склонностью катионов этих элементов к гидролизу разделение их удобнее выполнять в средах с высокой кислотностью или в присутствии эффективных комплексообразующих реагентов. В качестве примера можно привести отделение сурьмы (III) от олова (II) с помощью 0,4%-ной винной кислоты, подкисленной соляной кислотой до pH 1. Сурьма легко элюируется смесью кислот, тогда как олово удерживается катионитом [21 ]. Пятивалентная сурьма также может быть отделена от железа (III), меди (II), кобальта (II) и кадмия в виннокислой среде, однако в этом случае для удержания сурьмы в растворе требуется большой избыток винной кислоты. Олово (как двух-, так и четырехвалентное) остается при этом в вытекающем растворе [20]. Способность олова и сурьмы образовывать устойчивые хлорокохлшлексы использована С. М. Анисимовым с сотрудниками [1 ] для отделения олова и сурьмы от других металлов. [c.381]

    IV группы, имеющих меньшие произведения растворимости) легко растворяются в разбавленных кислотах. Исключение представляют лишь сульфиды никеля и кобальта, которые (на холоду) практически не растворимы в разбавленных НС1 и H2SO4. Несмотря "на это, ионы Со++ и Ni++ не осаждаются HjS в кислой среде (например, при рН<2). Причина этого кажущегося противоречия заключается в существовании у NiS и oS нескольких аллотропических видоизменений, обладающих различной растворимостью. В первый момент при осаждении образуются всегда наиболее растворимые NiS и oS i, произведения растворимости которых равны соответственно 3-10 2 и Т Соответственно же этим величинам произведений растворимости данные видоизменения сульфидов хорошо растворяются в кислотах и не осаждаются HjS в кислой среде. Однако при стоянии в соприкосновении с раствором они постепенно превращаются в другие NiS (ПР=2-10 ) и 0S3 (ПР=2-1( 27). их растворимость в НС1 утрачивается (см. табл. 13, стр. 201). Иногда этим пользуются для отделения катионов Ni++ и Со++ от остальных катионов [c.283]

    При компл0ксонометрическом методе определения больших количеств висмута в материалах, содержащих титан, необходимо предварительное отделение висмута от основы. Ранее нами было найдено, что диэтилдитиокарбаминат (ДДК) может быть использован в качестве рабочего раствора для объемного определения висмута, свинца, кадмия и цинка [1]. Было изучено влияние pH, концентрации органического растворителя, мешающее влияние ряда катионов и анионов на определение висмута предлагаемым методом. Титан, цирконий, торий, ниобий и тантал не мешают прямому определению висмута. Не мешают тысячекратные количества щелочных и щелочноземельных элементов, алюминия, бора, цинка, марганца, бериллия, р. з. э., кобальта стократные количества кадмия, свинца, ванадия, хрома, никеля и других. Мешают определению медь, ртуть и золото. Точность метода 0,25% относительных. [c.174]

    Отделение малых количеств галлия от сопутствующих элементов при полярографическом определении его в отходах полиметаллических руд, бокситах и других материалах можно проводить методом ионообменной хроматографии, используя последовательно анионный и катионный обмен. При пропускании сильносолянокислого (6 н. по НС1) анализируемого раствора через колонку, заполненную сильно основным анионитом АВ-17 в С1"-форме, элементы, не образующие хлоридных анионных комплексов (алюминий, хром, никель, кобальт и др.), не сорбируются, а остальные элементы остаются на колонке. При последующем промывании анионита 4 н. соляной кислотой удается отделить большую часть меди и индия, в то время как галлий полностью остается на анионите вместе с оловом, свинцом, кадмием, цинком и другими элементами, образующими хлоридные комплексы. [c.272]

    Ре ", Zn , N1 +, Со " " и другие, при определенных pH раствора образуют с 8-оксихинолином хорошо фильтрующиеся кристаллические осадки, при растворении которых в кислотах (например, соляной кислоте) выделяются стехиометрическне количества 8-оксихинолина. Последний, естественно, легко можно титровать электрогенерированным бромом [566—569]. Если принять во внимание, что 1 ммоль двухвалентного металла в осадке оксихинолината требует 8 мэкв брома, а 1 ммоль трехвалентного металла—12 мэкв брома, то открываются широкие возможности определения милли- и микрограммовых количеств различных катионов, образующих внутрикомплекс-ные соединения с указанным реагентом. Такой способ сводится к осаждению катиона избытком 8-оксихинолина, растворению отмытого от свободного реагента осадка в кислоте и последующему кулонометрическому титрованию выделившегося реагента электрогенерированным бромом. Можно применять также стандартный раствор 8-оксихинолина и титровать остаточный реагент после отделения осадка. Описанными способами определяют микро- и ультрамикроколичества кобальта [570] и ниобия [571], а также алюминий в хромате калия, сурьме [467], селене [572], ацетате натрия и вольфрамовой присадке [573] и бериллий в металлическом галлии [574]. [c.68]


Смотреть страницы где упоминается термин Кобальт отделение от других катионов: [c.62]    [c.10]    [c.447]    [c.424]    [c.201]    [c.532]    [c.52]    [c.69]    [c.314]    [c.532]   
Основы аналитической химии Книга 1 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кобальт отделение



© 2025 chem21.info Реклама на сайте