Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрия с катионами IV группы

    При работе с радиоактивными изотопами роль адсорбционных процессов весьма велика вследствие соизмеримости количеств веществ, находящихся в растворе и способных адсорбироваться. Исследователь часто производит операции, при которых поведение изотопа полностью определяется адсорбционными эффектами и, если их не предусмотреть, возможны существенные ошибки. Без количественного учета адсорбционных явлений практически невозмож но правильно поставить ни одного исследования с радиоактивными изотопами. Предположим, что мы начали с самой обычной операции — переливания раствора радиоактивного натрия-24 без носителя из одного стеклянного стакана в другой. Если не принять мер предосторожности при такой операции, можно потерять почти весь изотоп. Потери будут тем больше, чем меньше концентрация натрия в исходном растворе и больше площадь стакана. Эти потери нетрудно объяснить. На поверхности стекла, представляющего собой силикат натрия, имеются группы — ОМа, способные к обмену, количество их составляет около 10 г/г. Если концентрация натрия-24 в растворе 1 мк/лы, то в 100 жл его имеется около 6-10 г натрия-24. При установлении адсорбционного равновесия радиоактивный изотоп должен распределиться между раствором и поверхностью стакана пропорционально содержанию ионов натрия на поверхности и в растворе, в результате почти весь натрий-24 из раствора перейдет на поверхность. Так же могут адсорбироваться и другие катионы или анионы. Большой адсорбционной способностью обладают резина, каучук, поэтому во избежание адсорбции не следует пользоваться резиновыми трубками, пробками и т. п. Наименьшую адсорбционную способность проявляют кварц, плексиглас, полиэтилен, тефлон. Работу с радиоактивными изотопами рекомендуется проводить в посуде из этих материалов. Адсорбции изотопов способствует также присутствие загрязнений или механических дефектов на поверхности. Для многих работ с изотопами необходимым условием получения надежных результатов является использование чистой, хорошо пропаренной посуды без механических дефектов. Присутствие в растворе веществ с хорошо развитой поверхностью, также приведет к заметному поглощению изотопов. [c.139]


    Катионы I аналитической группы образуют характерные соединения лишь с некоторыми специфическими реактивами. Чтобы изучить действие часто применяемых в анализе реактивов на ионы данной группы, следует сначала изучить действие этих реактивов на каждый из катионов группы. Представляет интерес проверить действие щелочей, карбонатов аммония, калия и натрия, гидрофосфата натрия, оксалата аммония, антимоната калия, гидротартрата натрия и гексанитрокобальтата (III) натрия на все катионы этой группы. [c.217]

    Элемент 3-го периода и 1А-группы Периодической системы, порядковый номер 11, относится к щелочным металлам. Электронная формула атома [,оМе]35, характерная степень окисления - -1. Имеет низкую электроотрицательность. Проявляет металлические (основные) свойства. Большинство солей натрия хорошо растворимы в воде. Натрий, катион натрия и его соединения окрашивают пламя газовой горелки в ярко-желтый цвет (качественное обнаружение). [c.107]

    Для более полного обессоливания применяют катиониты и аниониты — вещества, большинство которых представляет собой высокомолекулярные ионообменные смолы. Катиониты содержат активные группы с ионами Н+, Na+ и NH4+, способные в обмен на эти ионы поглощать ионы металлов (кальция, магния и др.). Аниониты содержат активные группы с ионами гидроксила 0Н , способные поглощать — обменивать ион 0Н на ионы С1-, SO4— и др. При фильтрации воды через слой катионита, а затем через анионит можно поглотить как катионы, так и анионы, содержащиеся в воде, т. е. обессолить ее. По мере ионообменного насыщения катионит и анионит необходимо регенерировать, т. е. восстанавливать их ионообменную способность, промывая для этого соответствующими растворами. Так, натрий — катионит регенерируется промыванием раствором поваренной соли. [c.21]

    Натрий передает свой электрон отрывающемуся от молекулы циклопентадиена протону, превращая его в атомарный водород, частично расходуемый на восстановление второй молекулы циклопентадиена в цикло-пентен. Натрий-катион оказывается электростатически связанным с анионом циклопентадиенила, в котором четыре электрона я-связей и электронная пара углерода, оставшаяся после отрыва протона, образуют обезличенный ароматический секстет. Пятичленный цикл образован теперь пятью равноправными СН-группами, и циклопентадиенил-анион может быть изображен так  [c.494]


    Механизм реакции. Согласно современным представлениям, реакция сложноэфирной конденсации протекает в три стадии (все стадии обратимы). На первой стадии алкоголят-ион, образовавшийся при взаимодействии следов спирта с натрием, отщепляет от метиленового компонента протон, причем образуется стабилизированный сопряжением с карбонильной группой мезомерный анион (78). Известно, что раствор натриевого производного такого типа не проводит электрический ток. Поэтому есть основания предполагать, что оно существует в виде тесной ионной пары, в которой катион металла координируется по месту с наибольшей электронной плотностью — атому кислорода. [c.230]

    Водород в группе ЫН, как и в индоле, обладает протонной подвижностью, поэтому изатин может образовывать соли щелочных металлов и серебра. Анионы этих солей представляют собой амбидентные нуклеофилы и в зависимости от природы катиона — металла (подобно диазотатам натрия и серебра см. разд. 6.2.2) могут замещать атом галогена в алкилгалогенидах по механизмам 5к2 (при М= Ыа) и 5м1 (при М = А ), [c.538]

    Отличительной чертой структуры ионообменных веществ является ион водорода или натрия в конце карбоксильной или спиртовой группы высокомолекулярного соединения, легко заменяемый катионом тяжелого металла. Такие ионообменные вещества называются катионитами. Имеется и другой класс ионообменных веществ — аниониты, в которых гидроксильные группы могут быть заменены анионами. [c.578]

    Действие едкого кали или натра. Катионы пятой аналитической группы образуют с растворами едких щелочей малорастворимые осадки гидроксидов и оксидов РЬ(ОН)г, А ОН, Ag20, Hg20. [c.91]

    Наименее прочно в структуре амфибола связаны кобальт и железо. Более половины ионов кобальта экстрагируется из амфибола при обработке его соляной кислотой. В этом случае экстрагируется также больше половины ионов натрия. Наиболее устойчив Na-Ni-амфибол менее четверти ионов Ni и небольшое число ионов натрия экстрагируются из этого амфибола. Кремнезем в фильтрате вообше не обнаружен. В амфиболах рихтеритового ряда экстрагируется до четверти катионов группы X а У, из синтетических же рихтеритов переходят в раствор все катионы равномерно. [c.136]

    Предложенный вариант щелочного спекания может предста лять интерес для разложения других минеральных продуктов, т< как катион иатрия способен замещать катионы группы А [Fe (И Мп (И), Са (II), А1 (III) и др.] в вольфраматах, танталониобата фосфатах, силикатах. Креме того, оксид натрия соединяется с бым оксидом, проявляющим в какой-то степени кислые свойси (гематит, касситерит, рутил и т. д.). Считают, что большиист) этих минералов будет реагировать с едким натром в приемлем для практики условиях, в частности при температуре от 300  [c.94]

    Наибольшее распространение в катализе получили катионные формы цеолитов, содержащие обменные катионы группы ПА и РЗЭ, а также декатионированные формы, получаемые путем замены катионов натрия в исходной Ма-форме на ионы аммония с последующей термообработкой при 300—500 °С. Часто используют катион-декатионированные формы цеолитов, где катионы N3+ заменены на МН4+-ионы и катионы двух- или трехвалентных метзллов. [c.42]

    Для отделения никеля от трех- и четырехвалентных катионов группы сульфида аммония можно рекомендовать методы, общие для отделения двух- и трехвалентных катионов этой группы. В большинстве случаев такие методы основаны на осаждении этих последних катионов в виде гидроокисей или основных солей при определенной концентрации ионов водорода в растворе, создаваемых аммиаком [73, 12101, пиридином [2341, ацетатом натрия [737, 857, 12451, бензоатом аммония [894], сукцинатом натрия [12451, карбонатом бария [731, карбонатом аммония 18721, гидразинкарбонатом [798], уротропином [865, 10731, Hg(NH2) l2 [11701. Недавно для этой цели Остроумов и Волков предложили коричную кислоту [236, 2371. [c.55]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]


    Применение ИГП обеспечивает высокую степень очистки по обесцвечиванию— на 98%, по ХПК — на 75%. Несмотря на снижение рНопт до 7,5, в очищенной воде наблюдаются только следы растворенного железа, в то время как для эффективного осаждения гидроксидов железа методом известкования необходимо обеспечивать pH > 8,5. Всему этому способствует наличие в ИГП активных катионных групп натрия и калия, которые за счет своей ионообменной способности позволяют дополнительно удалять из обработываемого раствора ионы железа. [c.51]

    После обработки полиакриламида или полиметилметакрил-амида гипохлоритом натрия амидные группы частично переводятся в карбоксильные и в еще меньшей степени — в аминогруппы В этом видоизмененном виде полиакриламиды становятся наиболее пригодными для светочувствительных копировальных слоев и для изготовления оригинальных типографских печатных форм, а также являются средством для осаждения лаков из анионных и катионных красителей. [c.37]

    Na -форму раствором щелочи или 5—10%-пым раствором хлорида натрия, а карбоксильные катиониты раствором гидроокиси натрия. Катионит в Ка -форме сильно набухает в воде в результате гидратации групп — OONa, поэтому при переводе карбоксильного катионита из Н -формы в Na -форму применяли раствор, содержащий, наряду с гидратом окиси натрия, хлорид натрия. [c.156]

    Группа А анионные децилсульфат натрия додецилсульфат натрия тетрадецилсульфат натрия катионные [c.89]

    Высокими флокулирующими свойствами обладают синтетические полимерные флокулянты, которые разделяют на три группы неионные, анионные и катионные. К первой группе относятся полиакриламид, иолиэтиленоксид, ноливинилпирролидон, поливиниловый спирт ко второй — полиакрилат натрия, полисти-ролсульфокислота, метас (полимер, синтезированный на основе метакриловой кислоты), гипан (гидролизованный полиакрило-нитрил) и др. к третьей — ВПК-101, ВПК-402-полидиметил- [c.94]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Катодные ингибиторы влияют на скорость катодной реакции коррозионного процесса. К ним относятся активные восстановители, связывающие кислород и уменьшающие его содержание в растворе ( например, сульфид натрия или гидрозин), защищающие вещества, уменьшапцие поверхность катода за счет образования пленок труднорастворимых соединений ( например, Са(НСО ) или п ЗОц ), а также вещества, затрудняющие катодную реакцию коррозии металла ( катионы тяжелых металлов, например, вИсмута и Мышьяка), Ингибиторы смешанного действия замедляют как анодцую, таи и катодную реакции процесса корроаии. К этой группе ингибиторов относятся полифосфаты и силикаты. [c.53]

    Гидроксид алюминия — ам-фотериое вещество, способное к адсорбции и обмену ионов из раствора. Активные группы в этом обмене — гидроксилы н протоны гидроксильных групп. Относительная сила и способ- ность к обмену с другими ионами зависит от рН среды, в которой образовался осадок гидроксида, и от pH раствора, в котором происходит взаимодействие с посторонними ионами. В щелочной среде (pH 9) преобладает адсорбция катионов, в кислой предпочтительно адсорбируются анионы поэтому при осаждении из раствора алюмината натрия, осадок, полученный в щелочной среде, содержит примесь натрия, а осажденный в кислой среде — хемосорбирует анион кислоты, взятой для осаждения. В изоэлектрической точке (точка нулевого заряда, pH л 9,0), адсорбция катионов и анионов. эквивалентна и осадок наименее загрязнен примесями. [c.70]

    Синтез всех цеолитов в натриевой форме заключается в осаждении щелочного алюмокремнегеля с последующей его кристаллизацией. Получение цеолитов различных групп обеспечивается разными условиями синтеза изменяется химический состав кристаллизуемой массы, параметры кристаллизации и катион, входящий в состав цеолита [69, 73]. Так, синтез низкокремнистых цеолитов проводят в сильно щелочной среде, а в качестве источника кремнезема используют силикат натрия. Для получения высококремнистых цеолитов применяют преимущественно более реакционноспособные, чем силикат натрия, золи или гидрогели кремневой кислоты, а синтез осуществляют в менее щелочной среде [74]. [c.71]

    Суммарное число кислотных центров цеолитов типа X и Y, найти которое можно различными методами [5], зависит от многих факторов и в первую очередь от обменного катиона, степени обмена, отнощения Si/Al в образце, услО Вий термической и термопаровой обработок. Например, для кальциевой обменной формы цеолита типа Y заметная концентрация протонных кислотных центров обнаруживается после достижения 50—60%-ной степени замещения катионов натрия [4]. Это связано с локализацией катионов Са + в начале обмена в местах 5ь где они не контактируют с молекулами воды. После их заполнения катионы Са + начинают занимать места в больших полостях цеолита, образуя за счет гидролиза гидратной воды ОН-группы. Наиболее высокую концентрацию кислотных центров имеют катион-декатиони-рованные цеолиты типа X и Y, содержащие двух- и трехвалентные обменные катионы [5]. [c.32]

    В промышленной практике для ионного обмена используется смесь редкоземельных элементов. Установлено [1, 2], что стабильная активность прямо пропорциональна содержанию лантана или неодима и обратно пропорциональна содержанию церия в цеолитном компоненте. На рис. 3.20 показана зависимость стабильной активности цеолитсодержащих катализаторов в крекинге керосино-газойлевой фракции при 450 °С от изменения отношения Ме Н в цеолите типа V (20% масс, на катализатор) для лантаноидов цериевой группы. Наблюдается закономерное изменение активности с ростом отнощения Ме Н в цеолите для всех лантаноидов за исключением образца с катионами церия, активность которого значительно ниже. Как следует из приведенных данных, для катализаторов с редкоземельными элементами для обеспечения высокой стабильной активности отношение Ме Н в цеолите должно составлять не менее 3 1. Степень замещения катионов натрия на катионы редкоземельных элементов, по данным [I], должна находиться в пределах 40—85%. [c.44]

    Сущность работы. Как уже указывалось, ПАВ можно разделить на две большие группы ионогенные и неионогенные. В предыдущей работе исследовано одно из неионогенных ПАВ — бутиловый спирт. Ионогенные вещества, в свою очередь, можно разделить на катионактивные и анионактивные в зависимости от того, катионы или анионы этого вещества понижают поверхностное натяжение раствора на границе раздела. В настоящей работе предлагается проделать те же операции и расчеты, что и в предыдущей работе, сравнить полученные результаты друг с другом и сделать из них выводы о различии между ионогенньши и неионогенными ПАВ. В качестве объекта исследования предлагается раствор олеата натрия — анионогенного ПАВ. [c.43]

    При электрохроматографировании катионов IV аналитической группы в виде иодидных комплексов в качестве электролита используют 2 М раствор иодида калия. Для того, чтобы на аноде не выделялся свободный иод, у анода вместо раствора иодида калия помещают насыщенный раствор оксалата натрия. Иодидные комплексы более устойчивы, чем хлоридные, и в данном случае все комплексные ионы движутся к аноду. [c.351]

    Набухание почв в значительной степени зависит от качественного и количественного состава высокодисперсных глинистых мине ралов. Почвы, содержащие больше минералов монтмориллонитовой группы, обладают и большей набухаемостью. Причем, в известной степени величина набухания зависит и от состава поглощенных катионов. Почвы, содержащие поглощенный натрий, набухают больше при прочих равных условиях, чем те же почвы, содержащие кальций. [c.34]


Смотреть страницы где упоминается термин Натрия с катионами IV группы: [c.41]    [c.104]    [c.104]    [c.543]    [c.84]    [c.100]    [c.14]    [c.176]    [c.223]    [c.99]    [c.176]    [c.67]    [c.311]    [c.365]    [c.27]    [c.233]    [c.402]    [c.235]   
Основы аналитической химии Книга 1 (1961) -- [ c.358 , c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Едкий натр действие на катионы I группы

Натрий катион

Натрия ацетат, действие на катионы III группы

Натрия группы

Натрия действие на катионы I группы

Натрия осаждение катионов III группы

Натрия реакции с катионами III группы

Первая аналитическая группа катионов (ионы калия, натрия, аммония и магния)

Первая аналитическая группа катионов. Калий, натрий, цезий, рубидий, литий, аммоний и магний



© 2025 chem21.info Реклама на сайте