Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции полимеров поливинилацетата

    Реакции элементарных звеньев (реакции функциональных групп) —полимераналогичные превращения. Эти реакции протекают с изменением химического состава полимера, но без изменения его степени полимеризации. Полимераналогичные превращения позволяют превращать одни полимеры в другие, изменять их свойства и, следовательно, области применения полимеров, создавать их новые виды. Например, из природного полимера целлюлозы получают различные эфиры целлюлозы (нитраты, ацетаты, простые эфиры —см. с. 131 и 135). Другой пример — получение поливинилового спирта омылением поливинилацетата (см. с. 91). [c.60]


    Если в процессе химического превращения полимера реакция протекает Б различных направлениях или при однозначном направлении реакции не достигнута полнота превращения, полученные высокомолекулярные соединения являются сополимерами исходных и конечных или исходных, конечных и побочных продуктов реакции. Так, при неполном омылении поливинилацетата всегда получается сополимер винилацетата и винилового спирта сополимер получается также при неполном ацетилировании поливинилового спирта  [c.216]

    На заседании секции Химические превращения полимеров лекция на тему Некоторые принципы рассмотрения реакций в полимерных цепях была прочитана И. Сакурада (Япония). Им были рассмотрены работы по изучению влияния полимерного состояния вещества на реакционную способность функциональных групп и различия между скоростями некоторых реакций, протекающих в полимерах и аналогичных низкомолекулярных веществах. Эффект влияния соседних групп в цепи был продемонстрирован на ряде примеров, в частности на гидролизе сложных эфиров, акрилатов, эте-рификации поливинилового спирта и т. д. Было показано. что константа скорости реакции щелочного гидролиза поливинилацетата в 10—15 раз меньше соответствующей величины в случае этилацетата и аналогичных моделей. Сходное явление наблюдается и в ряду полиакрилатов. Уменьшение скоростей реакции щелочного гидролиза полимеров объясняется, по-видимому, стери- [c.8]

    Синтетические полимеры. К синтетическим полимерам, в обычных условиях не обладающим высокой эластичностью, относятся полиэтилен, поливинилхлорид, поливинилиденхлорид, поливинилацетат, полиметилакрилат, полиметилметакри-лат, полистирол и ряд других широко известных продуктов, идущих для изготовления изделий из пластмасс, плёнок и т. д. Эти вещества являются термопластичными, поскольку они могут размягчаться и формоваться при нагревании, К синтетическим полимерам относятся также термореактивные смолы, текучие в исходном состоянии и способные при нагревании в результате химических реакций необратимо отвердевать. К таким смолам следует отнести феноло-форм-альдегидные и мочевино-формальдегидные смолы, применяемые в технике уже несколько десятилетий [c.420]

    Химическая деструкция напоминает некоторые окислительно-восстановительные процессы, иногда сопровождающиеся промежуточным образованием свободных радикалов, и гидролитические реакции, протекающие под действием биологических факторов (природные ферментативные системы, микроорганизмы) при этом существенное значение имеют состав и физико-химическая структура полимерного материала. В то время как многие высокомолекулярные соединения (нитраты целлюлозы, поливинилацетат, казеин, натуральный и некоторые синтетические каучуки) подвергаются биологической коррозии, полиэтилен, полистирол, тефлон и ряд других полимеров устойчивы к ней. [c.626]


    Получение поливинилового спирта. Поливиниловый спирт получают омылением поливинилацетата в спиртовом растворе кислоты или щелочи в присутствии небольшого количества воды (0,4—0,8% от спирта). Боковые эфирные группы в полимере вступают в те же химические реакции, что и эфирные группы низкомолекулярных слож 1ых эфиров. При каталитическом воздействии кислоты (НС1) получается высокомолекулярный спирт и кислота  [c.134]

    Опыты Гесса с медноаммиачными комплексами целлюлозы свидетельствовали о высокой химической активности функциональных групп, обрамляющих основную цепь макромолекулы. Поскольку этим группам приписывалась решающая роль в создании прочных мицеллярных ассоциатов и в явлениях сольватации, было очевидно, что с изменением типа функциональных групп в данном полимере должны резко изменяться размер мицелл и относительная вязкость раствора полимера. Подобрав для химических превращений такие условия, которые исключали возможность деструкции макромолекул, Штаудингер провел замещение гидроксильных групп целлюлозы на ацетатные. Одновременно с этим в синтетическом поливинилацетате он гидролизом заменил ацетатные группы на гидроксильные и получил поливиниловый спирт, а затем гидроксильные группы поливинилового спирта заменил аце-тальными, получив поливинилацетат. Этот новый тип реакций, заключающихся в замене функциональных групп, обрамляющих основную цепь макромолекул, с сохранением длины макромолекул был им назван полимераналогичным превращением . В процессе полимераналогичных превращений длина макромолекулы (степень полимеризации) оставалась неизменной, несмотря на значительные изменения природы функциональных групп в ее звеньях. Это противоречило теории ассоциативного построения полимера из малых блоков. [c.16]

    Книга посвящена процессам деструкции (разрушения) полимеров—одному из важнейших разделов химии высокомолекулярных соединений, имеющему большое теоретическое и особенно практическое значение. Содержит шесть глав, в которых обстоятельно изложена классификация видов деструкции под действием физических и химических факторов рассмотрены процессы деполимеризации полиметилметакри-дата, полистирола, полиэтилена, политетрафторэтилена и других высокомолекулярных веществ, реакции деструкции цепей высокомолекулярных соединений—целлюлозы, сложных полиэфиров и поливинилацетата под влиянием различных деструктирующих агентов кроме того, в книге описаны процессы, вызываемые действием кислорода, серы н озона при воздействии их па различные полимеры. [c.4]

    В качестве примера рассмотрим текстильное волокно из акрилонитрила, покрытого тонкой полимерной пленкой, скажем, из поливинилацетата. Прививку пленки к волокну можно осуществить с помощью радиации, вызвав сшивание двух полимеров друг с другом (а также и каждого полимера в отдельности). Любая попытка осуществить графт-процесс в случае тех же двух полимеров с помощью обычных химических катализаторов (например, веществ, которые генерируют активные свободные радикалы) потребовала бы таких температур, при которых нарушится ориентация молекул в волокне, будут развиваться многочисленные побочные реакции и нельзя будет осуществлять эффективный контроль над процессом. [c.279]

    При протекании реакции роста цепи присоединение радикала к олефину всегда происходит таким образом, чтобы образовался наиболее устойчивый свободный радикал это подтверждено рядом исследований структуры полимеров химическими методами. Оказалось, например, что атомы хлора в поливинилхлориде расположены у атомов углерода, разделенных одним незамещенным атомом. Показано также, что поливинилацетат, полистирол, полиакрилаты и многие другие полимеры также обладают такой чередующейся структурой. Ниже приведены некоторые примеры установления строения виниловых полимеров. [c.69]

    Полимераналогачные превращения происходят в результате химических реакций, обычно функциональных групп, а иногда других реакционноспособных центров полимеров, приводящие к получению полиме-раналогов приблизительно с той же длиной макромолекул и прежним химическим строением основной их цепи. Эти реакции часто используют на практике для модификации свойств полимеров. В результате полимераналогичных превращений образуются новые функциональные боковые группы, сложные фуппировки в виде циклов и других структур, а также, наоборот, происходит раскрытие боковых циклических группировок. Очень часто невозможно достигнуть полного превращения исходного полимера в целевой продукт из-за сложности конверсии функциональных групп, являющихся частью всей макромолекулы, которые имеют сложное пространственное строение. Типичным примером полимераналогичных превращений с образованием новых функциональных фупп является получение поливинилового спирта из поливинилацетата [c.99]


    Все виниловые и винилиденовые полимеры образуются в результате полимеризации исходных виниловых мономеров. Единственным исключением в этом отношении был поливиниловый спирт, который не может образовываться из мономера, поскольку виниловый спирт не существует в свободном состоянии. Поэтому поливиниловый спирт получается лишь в результате омыления поливинилацетата или других сложных поливиниловых эфиров, т. е. в результате протекания полимераналогичных превращений. Это единственный случай для данной группы полимеров, когда получение полимера п его производных осуществляется на основе протекания химических реакций в исходном полимерном, а не низкомолекулярном веществе. Такое положение возникло потому, что виниловый спирт (СН2= СНОН) и ацетальдегид (СНд — СНО) представляют собой кето- и энольную формы химического соединения С2Н4О, из которых кетоформа, т. е. ацетальдегид, является устойчивой. Поэтому в реакциях, приводящих к образованию винилового спирта, неизменно получается или ацетальдегид, или окись этилена СН2— СН2 - [c.453]

    Химическая модификация полимеров позволяет не только изменять в широком интервале свойства синтезированных высокомолекулярных соединений, но и создавать такие полимеры, которые нельзя получить непосредственным синтезом из мономеров. Так, широко используемый в промышленности поливиниловый спирт не может быть синтезирован полимеризацией мономера, а получается путем омыления подивинилацетата. В результате этой реакции степень полимеризации продуктов превращения практически не отличается от степени полимеризации исходного полимера, а происходит лишь замена ацетатных групп на гидроксильные. Превращения полимеров такого типа, в результате которых происходит только замена одних функциональных групп в мономерных звеньях другими, носят название полимераналогичных превращений. Примерами подобных реакций помимо омыления поливинилацетата могут служить хлорирование полиэтилена и высших к-парафинов, гидролиз полиметилметакрилата. [c.295]

    Реакции звеньев полимерной цепи, в которых изменяется химический состав полимера, но практически остается неизменной степень полимеризации. Такие реакции называют полижраналогич-ными превращениями. Примерами таких реакций, которые используются в промышленности, могут служить получение поливинилового спирта из поливинилацетата, превращение целлюлозы в ее эфиры — нитроцеллюлозу, ацетилцеллюлозу и др.  [c.15]

    При нагревании таких полимеров, как поливинилхлорид, по-ливинилиденхлорид, полиакрилонитрил, поливинилацетат и других разрыва цепей главных валентностей не наблюдается, а происходит выделение различных продуктов, сопровождающееся обычно необратимыми химическими превращениями полимера. Так, нагревание поливинилхлорида и его производных сопровождается их дегидрохлорированием и образованием длинноцепочечных соединений с системой сопряженных связей, так называемых полиенов. При нагревании поливинилацетата выделяется уксусная кислота, при нагревании полиакрилонитрила выделяется незначительное количество ЫНз и НСМ, но в основном идут реакции внутримолекулярных перегруппировок, приводящие к образованию длинных цепей циклического строения. Эти же реакции могут протекать между цепями, вследствие чего в полимере возникает сетка. [c.12]

    СНХ — СНХ — СНг —) может теоретически обеспечить 100%-ный выход продуктов реакции. Таким образом, еще до обсуждения химических превращений полимеров возникает вопрос о том, как соединены звенья мономера в макромолекуле голова к хвосту , голова к голове или хвост к хвосту . Как правило, можно считать, что структуры типа голова к хвосту преобладают в большинстве виниловых полимеров, например поливинилхлориде, поливинилацетате, полиметакрилатах и полистироле. Образование таких структур происходит в результате присоединения цепи растущего полимера к метиленовой группе молекулы мономера, обеспечивающего образование стабильного свободного радикала. При полимеризации монбмеров, обладающих относительно малой активностью, возможно соединение звеньев по схеме голова к голове и хвост к хвосту . [c.79]

    Задолго до возникновения химии высокомолекулярных соединений как науки большое практическое значение имели процессы химической переработки полимеров, особенно природных (целлюлоза, белки, каучук). После того как в начале 30-х годов XX в. были разработаны методы синтеза полимеров, исследователи приступили к изучению химических превращений искусственных высокомолекулярных веществ. Если на первом этапе преследовалась только цель использования химических реакций для установления строения полимеров, то впоследствии продукты химической переработки этих веществ приобретают самостоятельное значение для производства пластических масс, лаков, синтетических волокон, ионитов и т. д. Сюда относятся хлорирование поливинилхлорида и каучука, гидролиз поливинилацетата в поливиниловый спирт, синтез из последнего поливинил-ацеталей, сульфирование, нитрование и хлорметилирование сополимеров стирола в производстве ионитов и т. д. [c.454]

    Как показали результаты изучения выхода гель-фракции (рис.1 и 2), при отверждении композидай ФФС с ПВАД химических связей между сетчатыми и линейными полимерами не образуется. Действительно, было установлено, что реакции между поливинилацетатом и ФФС в условиях отверждения (120°С) не происходит. Однако водопоглощение композиции резко снижается (по сравнению с немодифицирован-ной ПВАД и композициями с эпоксидными смолами) уже в [c.79]

    Получение водорастворимых полимеров из синтетических связано в основном с химическим изменением функциональных групп макромолекул при сохранении степени полимеризации исходного полимера. Такие реакции были названы Штау-дингером полимераналогичными превращениями [35]. Он показал, что такие реакции можно проводить с природными соединениями, например с целлюлозой, крахмалом, каучуком и с синтетическими — полистиролом, полиметилметакрнлатом, поливинилацетатом, а также с другими высокомолекулярными соединениями. [c.16]

    Методы рентгенографии начали использовать для исследования твердых остатков разложения наполненных полимеров и фазовых превращений наполнителей, происходящих при высоких температурах в процессе разложения полимеров [162, 163]. Так, в [162] методом рентгеновской фотоэлектронной спектроскопии исследовали химические изменения поверхности частиц ZrO при разложении наполненного им поливинилацетата. Полученные экспериментальные данные свидетельствуют об участии наполнителя в высокотемпературных реакциях, что приводит к изменениям стехиометрии частиц ZrOj в поверхностном слое. [c.119]

    Химическая характеристика высокомолекулярных соединений путем исследования продуктов деструкции основывается на особенностях строения полимеров. В некоторых случаях продукты распада определенного строения получаются уже при сухой перегонке, для многих полимеров деструкция протекает вплоть до образования мономеров. При облучении ультрафиолетовыми лучами и при размоле в шаровой мельнице также происходит деструкция полимеров, но большей частью только до низкомолекулярных полимеров (например, при размоле полистирола в шаровой мельнице происходит деструкция до степени полимеризации около 100). Направленная деструкция, сопровождающаяся разрывом определенных связей в макромолекуле, позволяет сделать конкретные выводы о строении полимера. Такая реакция имеет место при расщеплении озонидов каучука (см. стр. 81), а также при гидролитическом расщеплении полисахаридов (см. стр. 86, 87 и 91) и идентификации осколков макромолекул известными методами, используемыми для низкомолекулярных соединений. Исследования продуктов распада белков и нуклеиновых кислот также дали возможность сделать предварительные выводы о их строении и о строении структурных единиц (об анализе аминокислот см. стр. 97). О специфических методах ферментативного расщепления было уже упомянуто выше (см. стр. 92). Для установления строения поливинилового спирта, полученного из поливинилацетата, наряду с отсутствием янтарной кислоты в продуктах разложения (как показали Штаудингер и Штарк, см. стр. 107) решающим явился тот факт, что этот полимер не деструктируется или очень незначительно деструктируется такими реагентами, как йодная кислота, расщепляющая 1,2-гликоли (Мар-вел и Деноон). [c.182]


Смотреть страницы где упоминается термин Химические реакции полимеров поливинилацетата: [c.254]    [c.294]    [c.304]    [c.112]    [c.350]    [c.559]    [c.345]   
Основы химии полимеров (1974) -- [ c.572 , c.573 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилацетат

Полимеры химическая

Реакции полимеров



© 2025 chem21.info Реклама на сайте