Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны положительные

    Эффект экранирования заряда ядра обусловлен наличием в атоме между данным электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют связь его с ядром. Понятно, что экранирование возрастает с увеличением числа внутренних электронных слоев. [c.30]


    Условно к проводникам второго рода можно отнести ионизированный газ - плазму. В общем случае в плазме встречаются три компоненты свободные электроны, положительные ионы и нейтральные атомы (или молекулы) [22]. Разноименные электрические заряды в плазме обеспечивают ее квазинейтральность. Одной из характеристик плазмы является так называемый дебаевский радиус, см  [c.36]

    Эффект экранирования, уже упоминавшийся выше (см. разд. 1.5) состоит в уменьшении воздействия на электрон положительного заряда ядра, что обусловлено наличием между рассматриваемым- электроном и ядром других электронов. Этот эффект может быть количественно учтен введением постоянной экранирования. Представление об экранировании — это формальный способ учета взаимного отталкивания электронов. Очевидно, что экранирование возрастает с увеличением числа электронных слоев, окружающих ядро. [c.42]

    Есть основания утверждать, что, поскольку гетероатом является донором двух р-электронов, положительный конец диполя находится на нем, а диеновая часть молекулы обогащается электронами. Это является одной из причин большей реакционной способности (по сравнению с бензолом) фурана, пиррола и тиофена в реакциях электрофильного замещения. Кроме того, так как у всех пятичленных ароматических гетероциклов энергия сопряжения меньше, чем у бензола, образование ими а-комплексов с электрофильными реагентами происходит легче. [c.510]

    Источником отрицательного заряда в пламени являются главным образом свободные электроны. Положительно заря- [c.115]

    Раздел физической химии, посвященный изучению химических реакций под действием излучений большой энергии, называют радиационной химией. К числу частиц, вызывающих химические реакции, относятся нейтроны, электроны, положительно и отрицательно заряженные ионы и кванты энергии более 50 эв (рентгеновские и улучи) . Химические реакции, протекающие под действием излучений большой энергии, получили название радиолиза. [c.257]

    Остановимся на реакционной способности металлов, которую вы только что исследовали. Главное различие между металлами и неметаллами в том, что атомы металлов легче теряют электроны внешних электронных оболочек. При определенных условиях эти внешние электроны могут переходить на другие атомы или ионы. В лабораторной работе, например, каждый атом магния (Mg) передал два электрона положительно заряженному иону цинка (2п2+)  [c.131]


    В конце XIX и начале XX вв. появились экспериментальные доказательства сложной структуры атома фотоэффект — явление, когда при освещении металлов с их поверхности испускаются носители электрического заряда (см. разд. 2.2.3) катодные лучи — поток отрицательно заряженных частиц — электронов в вакуумированной трубке, содержащей катод и анод рентгеновские лучи — электромагнитное излучение, подобное видимому свету, но с гораздо более высокой частотой, испускаемое веществами при сильном воздействии на них катодных лучей радиоактивность — явление самопроизвольного превращения одного химического элемента в другой, сопровождающееся испусканием электронов, положительно заряженных частиц, других элементарных частиц и рентгеновского излучения. Таким образом было установлено, что атомы состоят [c.37]

    Поэтому плазмой считают динамическую систему беспрерывно перемещающихся атомов, электронов, положительных ионов, атомных ядер с протеканием процессов ионизации и рекомбинации атомов и ионов. [c.165]

    ПОЗИТРОН — элементарная частица, античастица по отношению к электрону (положительный электрон). Обозначается символом е+. Впервые П. открыт К. Андерсоном в космических лучах в 1932 г. [c.195]

    На кривой энергии ионизации наряду с резко выраженными экстремальными точками наблюдаются слабовыраженные максимумы и минимумы. Наличие их можно объяснить с помощью двух представлений об экранировании заряда ядра и о проникновении электронов к ядру. Эффект экранирования заряда ядра обусловлен наличием в атоме между электроном и ядром других электронов, которые ослабляют воздействие на этот электрон положительного заряда ядра. Эффект проникновения электронов к ядру обусловлен тем, что все электроны могут находиться в определенные моменты времени в области, близкой к ядру. Внешние электроны также проникают к ядру через слои внутренних электронов. Эффект проникновения увеличивает прочность связи внешних электронов с ядром. [c.228]

    Так как атомы электрически нейтральны, они должны содержать кроме электронов положительно заряженную часть, которая была в дальнейшем названа ядром. В науке возникла проблема строения атома, актуальность которой не снижается и в наши дни. [c.48]

    Плазма — частично или полностью ионизированный газ, в котором концентрации пространственных зарядов, созданных положительно и отрицательно заряженными частицами, одинаковы или почти одинаковы. Частично ионизированный газ называют плазмой в том случае, если концентрация электрически заряженных частиц в нем достаточно велика и пространственный заряд оказывает существенное влияние на движение заряженных частиц. Плазма, состоящая только из электронов, положительно заряженных ионов и атомов какого-либо элемента, [c.246]

    Из данных видно, что сродство к первому электрону положительно, т. е. процесс присоединения сопровождается выделением большого количества энергии. Наибольшим сродством к электрону обладает атом С1. Присоединение второго, третьего и т. д. электрона к отрицательно заряженному иону требует уже значительных затрат энергии на преодоление возникающего между ними отталкивания и, следовательно, происходит с большим трудом. Обратные соотношения наблюдаются при ионизации. Так как в атомах наибольшей энергией обладают внешние электроны, то они отрываются легче других. Поэтому говорят об энергии ионизации 1, 2, 3-го и т. д. электронов, подразумевая под энергией ионизации энергию, необходимую для отрыва электрона от нейтрального атома. [c.19]

    Многоатомные молекулы передают электрон положительным ионам аргона, образовавшимся под ионизирующим действием излучения, а последние рекомбинируют на катоде. Возбуждение многоатомных молекул гасится при их разложении без выделения фотонов, и вторичные лавины не образуются. Это позволяет уменьшить сопротивление в цепи счетчика и время восстановления счетчика до 10 сек. Такие счетчики называются самогасящимися. [c.336]

    Сродство нейтрального атома серы к одному электрону положительно (-f48 ккал/г-атом), к двум электронам — отрицательно (—80 ккал/г-атом). Аналогичные значения для атома кислорода составляют около +34 и —156 ккал/г-атом. Такое их снижение обусловлено, по-видимому, более высокой плотностью отрицательного заряда на поверхности атома кислорода (ср. VII 4 доп. 14). С точки зрения представлений Косселя, большая затрата энергии на переходы Э -f- 2е = [c.319]

    Перечисленные выше реакции осуществляются по одному из двух механизмов. Высокая электроотрицательность атома галогена обусловливает поляризацию связи С—X в алкилгалогениде, в результате чего на атоме углерода возникает частичный положительный заряд. Нуклеофил, обладающий свободной парой электронов, может отдать электроны положительно заряженному углеродному атому. Однако поскольку атом углерода ограничен максимальной ковалентностью 4, то любое предоставление [c.63]

    Эффект экранирования заключается в уменьшении воздействия на данный электрон положительного заряда ядра из-за наличия между ним и ядром других электронов. Экранирование растет с увеличением числа электронных слоев в атомах и уменьшает притяжение внешних электронов к атомному ядру. Экранированию противоположен эффект проникновения, обусловленный тем, что, согласно квантовой механике, электрон может находиться в любой точке атомного пространства. Поэтому во внутренних областях атома, близких к ядру, вероятность нахождения даже внешних электронов достигает конечной величины. [c.65]


    Правило отбора по спину (А8 = 0), казалось бы, должно быть универсальным, так как не учитывает симметричность рассматриваемой молекулы. Однако запрещенные по спину переходы часто наблюдаются на практике. Это правило отбора также основано на предположении о независимости волновых функций, а точнее, независимости спиновой и пространственной составляющих электронной волновой функции. Воздействие на электрон магнитного поля, возникающего при смешении относительно него (электрона) положительно заряженных ядер, приводит к смешиванию спиновой и орбитальной компонент, т. е. к спин-орбитальному взаимодействию. Таким образом, представление о чисто спиновых состояниях необходимо модифицировать, вводя обмен спинового момента с орбитальным. Например, состояние, формально описываемое как синг-летное, может в действительности иметь некоторые признаки триплетного, тогда как формальный триплет обладает некоторыми характеристиками синглета. Тогда переходы между синглетами и триплетами можно рассматривать как переходы между чисто синглетными и триплетными компонентами смешанных состояний. Поскольку спин-орбитальное взаимодействие связано с движением ядер, его величина резко возрастает с увеличением заряда ядра ( 2" ). Таким образом, в случае тяжелых ядер запрещенные по спину переходы проявляются сильнее. Хорошим примером является резонансное излучение ртути. (Термин резонансное излучение относится к испусканию при переходе с первого возбужденного состояния в основное резонансное поглощение и повторное излучение также могут наблюдаться в этом случае.) Основное состояние ртути — это 5о, а первый возбужденный синглет — Рь Переходы [c.41]

    Уравнения энергии определяются степенью перекрывания орбит. Положительному знаку при суммировании собственных функций орбит отвечает большое перекрывание и они обладают более низкой энергией. Однако в случае р-электронов положительному знаку будет отвечать нечетная функция, так как га)х+ (Гв)х меняет знак при отражении в центре симметрии. В соответствии с этим расположение орбит по энергиям характеризуется следующим образом  [c.614]

    Атом в целом электрически нейтрален. Поскольку число протонов равно числу электронов, положительные [c.81]

    Напротив, атомы кислорода присоединяют электроны экзотермически, причем выгодность этого процесса возрастает Б последовательности увеличения ионизационного потенциала. Атом неона имеет завершенную электронную оболочку и потому сродство его к электрону положительно. Присоединение более чем одного электрона, т. е. образование многозарядных ионов, является эндотермич-иым процессом, например (эВ)  [c.223]

    Эффект экранирования заключается в уменьшении воздействия на данный электрон положительного заряда ядра из-за наличия между ним и ядром других электронов. Экранирование растет с увеличением числа электронных слоев в атомах и уменьшает притяжение внешних электронов к атомному ядру. Экранированию противоположен эффект проникновения, обусловленный тем, что, согласно квантовой механике, электрон может находиться в любой точке атомного [c.49]

    Электролиз проводят в специальных устройствах — электролизерах или электролитических ваннах (рис. 10.8). В раствор или расплав электролита погружают два токопроводящих электрода, которые соединяют с источником электрического тока. Под действием источника тока на одном из электродов создается избыток электронов (отрицательный электрод, обозначается знаком — ), на другом — недостаток электронов (положительный электрод, обозначается знаком + ). В электрическом поле ионы, имеющиеся в растворе или расплаве в результате диссоциации электролита, приобретают направленное движение катионы перемещаются к отрицательному электроду, анионы — к положительному. [c.210]

    Электрическая дуга, или дуговой разряд, — один из видов электрических разрядов в газе или парах. Газовая среда, обычно не проводящая тока, приобретает проводимость, если в ней, помимо нейтральных, появляются свободные заряженные частицы — электроны, положительные и отрицательные ионы, которые и обусловливают прохождение в газе токов, если в нем существует электрическое поле. [c.18]

    У эфирного атома кислорода имеются две пары свободных электронов положительно заряженный ион водорода соляной кислоты, лишенный электрона, может воспользоваться свободной парой электронов кислорода, образуя непрочный оксониевый положительно заряженный ион  [c.179]

    Отрицательное значение Е означает экзотермический процесс - выделение энергии при присоединении электрона положительное значение означает эндотермический процесс (поглощение энергии). [c.41]

    Существенные изменения претерпевает вещество при нагревании до температур порядка тысяч и миллионов градусов. В этих условиях оно переходит в ионизированный газ — плазму. В общем случае плазма — это смесь беспрерывно перемещающихся атомов, электронов, положительных ионов и даже атомных ядер. Плазма с температурой порядка 10—100 тыс. градусов называется "холодной", с температурой порядка миллиона градусов — "горячей". В последнем случае нейтральные атомы в плазме существовать не могут, и она состоит из смеси электронов, ионов и атомных ядер. Плазма в ц ом электронейтральна, но обладает электронной и ионной проводимостью. [c.150]

    Масс-спектрометрия. При облучении паров органических соединений в глубоком вакууме пучком электронов образуются положительно и отрицательно заряженные частицы — ионы. Самая крупная из образующихся при этом частиц — молекулярный ион — получается в результате потери молекулой одного электрона (положительный молекулярный ион) или в результате присоединения к молекуле одного электрона (отрицательный молекулярный ион). Одновременно под действием электронного удара молекулы исследуемых соединений распадаются на фрагменты, образуя большое число осколочных ионов. Как величина молекулярного иона, так величина и число образующихся осколочных ионов различны для разных соединений, но всегда одинаковы для одного и того же вещества. Таким образом, возникает возможность в специальных приборах — масс-спектрометрах отличать одно органическое соединение от другого и определять содержание отдельных соедине-ний в сложных смесях. [c.129]

    Суи1естиенные изменения претерпевает вещество при нагревании до температур порядка тысяч и миллионов градусов. В этих условиях оно переходит в ионизированный газ — плазму. В общем случае плазма — это смесь беспрерывно перемещающихся атомов, электронов, положительных ионов и даже атомных ядер. Плазма с температурой порядка 10—100 тыс. градусов называется холодной , с [c.123]

    Пентафторид тантала ТаРз представляет собой твердое вещество белого цвета (т. пл. 97°С). Кислотные свойства этого фторида объясняются координационной ненасыщенностью крупного атома металла, окруженного лишь десятью электронами. Положительный заряд на атоме тантала также увеличен из-за присутствия пяти крайне электроотрицательных атомов фтора. Вследствие этого тантал способен пр исоединять анион какой-либо бренстедовской кислоты, например НР, и генерировать протон, обладающий достаточной активностью для (протонирования слабоосновного растворителя — фтористого водорода  [c.149]

    Эти упрощенные теоретические рассуждения можно перенести на реальные молекулы, что позволяет создать некоторые модельные представления об электронно-каталитических реакциях на поверхности. Для примера можно рассмотреть оЬщий случай поверхностного превращения молекулы АВ, состоящей из двух атомов или двух групп атомов [61]. Встреча такой молекулы со свободным электроном или свободной дыркой приводит к деформации или диссоциации молекулы на радикалы А я В (рис. 40). В результате диссоциации один из радикалов (например, радикал А) адсорбируется и связывается с поверхностью прочной двуэлектроннон связью за счет собственного электрона и электрона положительной валентности или путем захвата электрона от дырки. Вторей продукт диссоциации, обладая ненасыщенной валентностью, уходит в газовую фазу или адсорбируется слабой связью (рис. 39,/). [c.162]

    Из приведенного на стр. 393 уравнения реакции видно, что при восстановлении бромата происходит присоединение шести электронов. Положительно заряженный пятивалентный бром в молекуле бромата восстанавливается до отрицательно заряженного бромид-иона. При титровании восстановителей реагирует свободный бром. Из уравнения реакции, видно, что 1 грамм-молекула бромата приводит к образованию 6 грамм-атомов брома. Таким образом, в обоих случаях грамм-эквивалент KBrO равен шестой части молекулярного веса, т. е. 27,836 г. В 1 тг 0,1 н. раствора содержится 2,7836 г бромноватокислого калия. [c.398]

    Электрод, на поверхности которого происходит процесс восстановления, называют катодом. Поскольку восстанавливаются положительно заряженные ионы (именно они способны принять электрон), положительно заряженные ионьуюлучили название катионов. [c.166]

    Эффект экранирования (см. также разд. 1.5.1) состоит в уменьшении воздействия на электрон положительного заряда ядра из-за наличия между рассматриваемым электроном и ядром других электронов. Этот э( ект может быть количественно учтен введением постоянной экранирования. Представление об экранировании - это формальный способ учета взаимного оттал- [c.45]

    Эффект экранирования состоит в еслаблении воздействия на данный электрон положительного заряда ядра из-за присутствия между ними других электронов. В связи с этим электрон взаимодействует не с 2, а Zэфф (2эфф<2). Эффективный заряд ядра по Слейтеру равен  [c.70]

    Ионный тип связи возможен только мс жду атомами, которые резко отличаются по свойствам. Например, элементы I и II групп периодической системы (металлы) непосредственно соединяются с элементами VI и VII групп (неметаллами). Резкое отличие в свойствах элементов приводит к тому, что атом металла полностью теряет свои валентные электроны, а атом неметалла присоединяет их. Образовавшиеся в результате такого перераспределения электронов положительно и отрицательно заряженные ионы удерживаются в молекулах (в парообразном состоянии) и в кристаллической решетке силами электростатического притяжения. Такая связь и называется ионной. В качестве примеров веществ с ионной связью можно назвать MgS, Na l, AI2O3 и т. д. Образование подобных соединений происходит в соответствии с правилом об устойчивости восьми- или двухэлектронных оболочек. [c.75]

    Например, при прохождении тока через расплав хлорида магния катионы магния под действием приложенного электрического поля движутся к отрицательному электроду, а при соприкосновении с ним взаимодействуют с приходящими к этому электроду по внешней иепи электронами и восстанавливаются + 2е = Mg. Анионы хлора перемещаются в электрическом поле в противоположном направлении. Отдавая электроны положительному электроду, они окисляются. При этом первичным процессом является собственно электрохимическая стадия — окисление ионов хлора 2С1" == 2С1 + 2е, а вторичным — образоваяие молекулы из двух атомов хлора 2С1 = С12- [c.123]

    Углерод и кремний не образуюг отрицательно заряженных ионов, вследствие малого сродства их атомов к электрону. Положительные ионы не образуются из-за большой энергии ионизации атомов. Характерной особенностью углерода и кремния, вследствие одинаково выраженной тенденции к потере и приобретению электронов, является их способность взаимодействовать со многими элементами, образуя неполярные соединения с ковалентными связями. В соединениях углероду и кремнию свойственны степени окисления +4 и -4, углерод проявляет и степень окисления +2. При химических реакциях они проявляют слабые восстановительные (в реакциях с окислителями) и окислительные (в реакциях с восстановителями) свойства  [c.62]

    Галогениды серебра обладают эффектом фотопроводимости. Считается, что освещение галогенида серебра перебрасывает фотоэлектроны из валентной зоны в зону проводимости галогенида (см. разд. 8.9.2). Механизм образования свободного серебра в этом случае включает миграцию фотоэлектронов и внедренных ионов серебра в избранные точки на зерне, а затем появление свободных атомов серебра в результате соединения ионов и электронов. Образовавшиеся таким образом свободные атомы серебра действуют как эффективные ловушки возникающих впоследствии фотоэлектронов, и новые ионы серебра превращаются в нейтральные атомы вблизи того места, где появился первый атом. Поэтому крупицы серебра растут в отдельных исходных точках. Остающиеся после отрыва электронов положительно заряженные дырки могут обладать некоторой подвижностью и диффундировать к поверхности галогенидосеребряных зерен, выделяя свободный галоген. На рис. 8.14 показан механизм образования изображения, базирующийся на представлениях Гёрни и Мотта. Альтернативная схема, предложенная Митчеллом, предполагает первоначальный захват электрона ионом Дg+ с последующей адсорбцией Ag+ на растущей крупице серебра для захвата возникающих позже электронов. В обоих случаях основные процессы аналогичны. Стадии до образования крупицы из двух атомов обратимы, что согласуется с экспериментальным фактом стабильности скрытого изображения лишь при формировании агрегатов из более чем двух атомов (см. выше). [c.247]

    Энергия данного уровня уменьшается при переходе от одного атома к другому, что связано с возрастанием заряда ядра, с одной стороны, и с взаимным влиянием электронов, с другой стороны. Чем больше заряд ядра и чем меньше главное квантовое число, тем энергетический уровень электрона ниже и тем прочнее электрон связан с ядром. При наличии других электронов в атоме возникает эффект экранирования, состоящий в уменьшении воздействия на электрон положительного заряда ядра, что объясняется присутствием других злектронов меоюду рассматриваемым электроном и ядром. [c.74]

    Гипотеза Григоровича. По мнению В. К. Григоровича, расположение атомов в твердых и жидких простых веществах определяется, в основном, их электронным строением [8]. В металлической решетке, где внешние электроны положительных ионов сильно возбуждены вследствие возмущающего действия соседних атомов, сравнительно небольшой прирост температуры может быть достаточным для наступления перекрытия и обменного взаимодействия внешних р оболочек ионов, не перекрывающихся при низких температурах ([8], стр. 202). Так, например, объемноцентрированная кубическая структура натрия, область существования которой простирается от 30 К до температуры плавления, по Григоровичу, может быть объяснена с помощью следующих соображений. Из экспериментальных данных (об оптических свойствах, эффекте Холла и т. д.) известно, что натрий в твердом и жидком состоянии имеет один электрон проводимости на атом. Это означает, что его валентный электрон с Зз уровня переходит в электронный газ. Атомы натрия в конденсированном состоянии имеют внешнюю 25 2р оболочку. Взаимодействие ионов с электронным газом приводит к сближению и перекрыванию р-орбиталей внешних р оболочек ионов, в результате чего возникают обменные / вухэлектронные о-связи, направленные по трем осям прямоугольных координат. Образование шести связей каждым атомом со своими соседями приводит к простой кубической ячейке со свободным объемом в центре, который может быть заполнен таким же ионом. Так, из двух простых кубических под-решеток, энергетически невыгодных, а потому редко реализующихся в металлах, образуется ОЦК структура, одна из трех типичных металлических структур. Гипотеза Григоровича иллюстрируется рис. 43. Точно так же обосновывается возникновение ОЦК структур и у других щелочных металлов. Для лития, ионы которого имеют 15 оболочку, возникновение ОЦК структуры связывается с предположением о переходе 8 электронов на р уровни. [c.175]

    Атом имеет сложное строение (см. 23). Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Положительный заряд ядра, равный порядковому номеру элемента, является важнейшей характеристикой атома (см. 25). Он служит отличительным признаком различных видов атомов, что позволяет дать более полное определение элемента химический элемент — это вид атомов с одинаковым положительным зарядо.и ядра. [c.13]


Смотреть страницы где упоминается термин Электроны положительные: [c.151]    [c.280]    [c.166]    [c.142]    [c.249]   
Строение неорганических веществ (1948) -- [ c.35 ]




ПОИСК







© 2025 chem21.info Реклама на сайте