Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Смолы олефиновые

    Если сырьем служат твердые горючие ископаемые, то автомобильные бензины получают из смол их коксования или полукоксования. Однако бензиновая фракция этих смол содержит большое количество-легко окисляющихся углеводородов и неуглеводородных примесей и в чистом виде не может использоваться в качестве товарного продукта или его компонента. Такую фракцию подвергают специальной очистке, например активированной глиной, серной кислотой и т. д. Именно так производят автомобильный бензин из горючих сланцев в Эстонской ССР. В сыром сланцевом бензине около 60% олефиновых углеводородов и много фенолов, нейтральных кислородсодержащих и сернистых соединений [65, 66]. [c.21]


    Существенное влияние на показатели процесса деасфальтизации гудронов с целью производства смазочных масел оказывает наличие в техническом пропане низко- и высокомолекулярных гомологов ряда метана (этана, бутана, пентана) и олефиновых углеводородов (пропилена, бутиленов). Обычно при деасфальтизации нефтяных остатков применяют пропан чистотой не менее 96%. При использовании пропана с повышенным содержанием этана, обладающего меньшими дисперсионными свойствами, роль дисперсионных сил пропана снижается. Это приводит к относительному увеличению межмолекулярного взаимодействия смол и углеводородов, в результате чего выход деасфальтизата снижается. Кроме того, присутствие этана в количествах, превышающих уста- [c.81]

    Если ароматические углеводороды во многих случаях удается селективно сохранить, то задача селективного гидрирования с сохранением олефиновых связей еще не решена Между тем возможность получения чистых высших а-олефинов, содержащихся в сланцевых смолах в большом количестве, представляет большой интерес для нефтехимии, например для синтеза поверхностноактивных веществ. Другой трудностью гидроочистки сланцевых продуктов является необходимость большой полноты удаления азота даже небольшое количество которого резко понижает эффективность каталитического крекинга очищенных продуктов Для очистки от азота требуется применение наиболее активных катализаторов или высоких температур [c.47]

    Олефиновые углеводороды восстанавливаются практически нацело, причем уже при 450 °С скорость гидрирования двойной связи очень велика. Так как непредельные углеводороды полукоксовой смолы не содержат значительных количеств циклоалкенов, гидрирование олефинов должно давать в основном парафины. Следовательно", фактически расщепление парафинов (с учетом вновь образовавшихся) проходит при 450 °С на 31,8%, а при 473 X на 56,1%. [c.168]

    Но при нагревании в тех же условиях крекинг-остатка, полученного в результате термического крекинга прямогонного сырья, в котором начальная деполимеризация смол и асфальтенов уже однажды происходила, наблюдается уменьшение количества асфальтенов при относительно небольшом снижении их молекулярного веса и выделяются дистилляты и газы. Как известно, при термическом крекинге, который является свободнорадикальным процессом, происходит образование олефиновых углеводородов и их производных с концевой двойной связью. При этом получается крекинг-остаток с повышенной, по сравнению с сырьем, реакционной способностью, деструкция его может происходить при более низких температурах, чем исходного сырья. [c.21]


    Реакции гидрогенолиза сернистых соединений характеризуются разрывом связи углерод — сера и насыщением водородом свободных валентных й олефиновых связей. Наряду с сернистыми соединениями при гидроочистке гидрируется значительное количество олефиновых углеводородов, смол, азотистых и кислородсодержащих соединений и разрушаются металлоорганические соединения. [c.35]

    Для получения компонента автобензина фракцию смолы, выкипающую до 180 °С, подвергают селективной гидроочистке с целью гидрирования диеновых углеводородов, склонных к осмолению. При этом стремятся не затрагивать олефиновые углеводороды, так как их гидрирование приведет к снижению октанового числа бензина. Гидрирование проводят в легких условиях при 2—3 МПа и 170 °С в жидкой фазе на никелевом катализаторе [14, с. 25] или 150 С на палладиевом катализаторе [15, с. 140] при объемной скорости подачи сырья до 5 ч . При таких низких температурах гидрирования органических сернистых соединений, содержащихся в бензине, не происходит и сероводород не образуется. Водород, применяемый для процесса, не должен содержать сернистых соединений. Содержание же окиси углерода не должно превышать 5 млн. , так как окись углерода может образовывать в этих условиях карбонил никеля. [c.18]

    Процесс легкого крекинга является разновидностью термического крекинга. Он увеличивает выход продуктов крекинга с повышенным содержанием углеводородов олефинового ряда (по сравнению с продуктами прямой перегонки на первой стадии дистилляции при атмосферном давлении). Общий диапазон точек кипения дистиллятов легкого крекинга ниже, чем исходной нефти, тогда как плотность легкой крекинг-смолы значительно выше, чем донных продуктов атмосферной фракционной разгонки. Дистил-ляционные нефтепродукты и остаточные мазуты перемешиваются и подвергаются прямому крекингу до фракций, соответствующих требованиям к качеству конечных продуктов — бензина и топливной нефти. [c.18]

    Топливные фракции, получаемые в термических процессах глубокой переработки нефти, характеризуются, как правило, высоким содержанием серы, олефиновых и ароматических углеводородов, низкой термоокислительной стабильностью, склонностью к образованию смол и осадков. Бензиновые дистилляты имеют к тому же невысокие октановые числа. Дизельные дистилляты как термических процессов, так и каталитического крекинга отличаются низким цетановым числом. Все это требует применения специальных технологий для существенного улуч-щения качества указанных продуктов. Учитывая жесткие требования к экологическим характеристикам как автобензинов, так и дизельных топлив, выдвинутые в последние годы, следует признать освоение таких технологий приоритетной задачей нефтеперерабатывающей промыщленности как за рубежом, так и в России. [c.340]

    По лабораторным данным в смоле содержится 56—60% ароматических углеводородов, из которых примерно 20% падает на бензол, 10—15% на олефиновые, 20—25% на диолефиновые и 1—7% на метано-нафтеновые углеводороды. [c.69]

    Олефиновые углеводороды в составе автомобильных бензинов могут приводить к образованию отложений смол во впускной системе двигателей. Кроме того, испарения олефинов, являющихся химически активными соединениями, в атмосферу способствуют образованию озона, а в продуктах сгорания присутствуют токсичные диены, поэтому содержание олефинов в бензинах высших категорий лимитируется. [c.4]

    Цвет нефтепродуктов является внешним, визуальным проявлением их химического состава, в частности, содержания в них смол и асфальтенов, обладающих сильными красящими свойствами. Кроме смол и асфальтенов цвет нефтепродуктам (особенно светлым) придают продукты окисления углеводородов и некоторые олефиновые углеводороды. Чем тяжелее по фрак- " ционному составу нефтепродукт, тем больше в его составе смол и асфальтенов и тем он темнее по цвету. Поэтому по цвету нефтепродукта судят о степени удаления из него смол и асфальтенов или продуктов окисления, и в тех случаях, когда наличие этих примесей для потребителя недопустимо, цвет является одним из показателей, нормируемых по ГОСТ. [c.136]

    Углеводородная часть смолы представлена следующими классами олефиновые углеводороды 40—45%, парафиновые 25—30% и ароматические 30—35%. [c.8]

    Подробное исследование фракций смолы показало следующее Во фракции до 200 °С было обнаружено малое количество н-па-рафиновых и н-олефиновых углеводородов, в других же фракциях С]з -f и-парафиновые и н-олефиновые углеводороды с двойными связями являлись основными компонентами. Во фракции 200— 315 °С найдено несколько алифатических углеводородов с изопре-новой группировкой. Среди углеводородов ie—С25 в более высоко-кипящих фракциях преобладали углеводороды с нечетным числом углеродных атомов над углеводородами с четным числом. [c.82]


    После предварительного подогрева в теплообменниках 1 сырье поступает в конвекционный змеевик печи, где нагревается до 450° С, и попадает в испаритель 2, где поддерживается давление не более 3 ат. В испарителе тяжелый жидкий остаток отделяется от паров и отводится в резервуар, а пары, пройдя каплеотбойник 3, поступают в. пирозмеевик печи 4 и нагреваются до заданной температуры. На выходе из печи продукты пиролиза подвергаются быстрому и значительному охлаждению для прекращения вторичных реакций уплотнения молекул олефиновых углеводородов. Затем охлажденная смесь поступает в гидравлик 8 (реакционная камера, расположенная между печью и гидравликом, который исключается из схемы, если процесс пи-юлиза направлен на получение ароматических углеводородов. Лары из гидравлика поступают в ректификационную колонну 5, с верхней части которой отводится газ пиролиза и легкое масло, а с нижней части смоляные остатки. Из средней части колонны 5 отбираются фракции зеленого масла, выкипающие в пределах 175—350° С. Зеленое масло применяется в качестве сырья при производстве сажи. Циркулирующая через гидравлик смола по мере утяжеления до плотности, равной 1,1, выводится из системы циркуляции, а остаток ее облегчается подкачкой смоляных остатков или дистиллята коксования гидрав-личной смолы. [c.160]

    Дальнейшее направление крекинга состоит, по-видпмому, в том, что сложные молекулы еще более усложняются до тех пор, пока реакция не заканчивается образованием смол и кокса, в то время как из нпзкомолекулярных обломков образуются простейшие ароматические и парафиновые или олефиновые углеводороды, которые находят в крекинг-продуктах. Что же касается кокса как конечного продукта разложения ароматики, то следует иметь в виду, что он ни в коей мере не является чистым углеродом обычно он содержит большое колпчество (50—80%) углерода, растворенного в сероуглероде [65]. [c.303]

    Гексан дал 18% ацетилена. Удалось даже достичь выхода ацетилена в 33%, однако эти опыты имеют слишком малые шансы на осуществление в промышленных масштабах. Бангерт я Пихяер пропускали ацетилен над силикагелем при 600—700° и получали снача.ча метан, водород и уголь, но затем под ката- литическим воздействием последнего также и жидкие олефиновые и ароматические углеводороды. Фишер, Петерс и Кох достигли превращения ацетилена в смолу на 40—7( % при 250° и над катализатором медь — железо. [c.420]

    Ресурсы толуола, добываемого из каменноугольной смолы, недостаточны для удовлетворения нун д производства взрыв--чатых веществ в военное время, то уже задолго до второй мировой войны в различных странах велпсь изыскания каталитических методов превращения в ароматические углеводороды олефиновых, нафтеновых и парафиновых углеводородов, ка1ч природной, так и синтетических нефтей. Если промышленностт, моторных топлив интересовали превращения углеводородов состава Сд—Сц,, то промышленность взрывчатых веществ интересовалась лишь толуолом и, следовательно, в первую очередь дегидрогенизацией чистого метилциклогексана нефтяного происхождения. [c.140]

    Возможность очистки глинами, флоридином (гумбрином) и другими адсорбентами основана на избирательном поглощении ими преимущественно смол, сернистых соединений и иных вредных иримесей. Эта полезная избирательная адсорбция сопровождается (особенно заметно при использовании в качестве сорбента флоридина или кавказских глин — гумбрина) реакциями полимеризации и конденсации диолефиновых и олефиновых углеводородов (выход полимеров обычно составляет [c.317]

    Автооксидация высших олефиновых, нафтиленовых и диеновых углеводородов, входящих в состав жидких фракций нефтепродуктов (крекинг-бензина и крекинг-керосина) и вызывающих образование смол, изучалась И. Д. Зелинским и П.П, Борисовым [24], С. С. Медведевым и др. [25], Кассар [26] и МП. др. [c.320]

    Для поппмеризации вольтализацией могут быть использованы керосиновые фракции как прямой гонки, так и гидро-генизатов смол. Кратковременную деструктивную гидрогенизацию или даже крекинг (в результате которых содержание олефиновых углеводородов не падало бы, а возрастало), комбинированные с последующей полимеризацией средних фракций на масла, следует решительно предпочесть методу получения масеп гидрогенизацией тяжелых дестиллатов и пека первичных смол. [c.438]

    Одним из продуктов крекинга является кокс. В тяжелом нефтяном сырье уже содержатся смолы и асфальтепы, дальнейшее преобразование которых при температуре крекинга приводит к образованию кокса. Олефиновые углеводороды, образующиеся при крекинге нефтяных фракций, реагируют с ароматическими углеводородами. В результате образуются продукты уплотнения, переходящие затем в кокс. [c.271]

    Вследствие меньшей прочности связей Саром — Салиф (70 ккал/моль) и Салиф — Салиф (71,0 ккзл/моль) ПО сравнению СО связью Саром — Саром (ЮЗ ккал/моль) при крекинге в первую очередь распадаются боковые и соединительные цепочки в молекулах смол и асфальтенов, в результате чего сложные молекулы расчленяются на структурные звенья, из которых в дальнейшем образуются новые продукты. Возможен также распад высокомолекулярных соединений в результате разрушения нафтеновых колец. Исчезновение алифатических цепочек в структуре составляющих остатка должно привести к его уплотнению. Одной из причин уплотнения молекул является уменьшение расстояния между атомными группировками. Так, по данным [190], это расстояние в алифатической цепи наибольшее—1,54 А, в олефиновой цепи и ароматическом кольце оно составляет соответственно только 1,34 и 1,39 А, [c.85]

    Процесс гидроочистки применяется для улучшения качества главным образом углеводородов и заключается в том, что углеводороды в присутствии катализатора обрабатывают водородом. После проведения гидроочистки может измениться запах и цвет продуктов, уменьшиться количество выделяюшихся смолистых веществ, повыситься стойкость при хранении, улучшиться топливные характеристики и т.п. Все это происходит в результате удаления связанных серы, азота и кислорода, олефиновых и диолефиновых углеводородов, а также гидрогенизации ароматических колец. Такой обработке подвергаются бензин, лигроин, топливо для реактивных двигателей, керосин, мазут, дизельное топливо, смазочные масла, сланцевые масла, угольные смолы, продукты, полученные из горючих сланцев и т.п. Особенно важно удалить серу из топлива с тем, чтобы предотвратить отравление воздуха образующейся при сго- [c.239]

    Пиробензол является продуктом пиролиза нефтяного сырья. Основное назначение процесса пиролиза — получение газообразных олефинов (этилена, пропилена, бутадиена и бутилена) для нефтехимического синтеза. Пиролизу могут подвергаться углеводородные газы, бензиновые и керосино-газойлевые фракции. Процесс пиролиза проводится на установках, основным агрегатом которых является трубчатая печь. Прямогонная бензиновая фракция, используемая в качестве сырья, нагревается в печи до 750°С, при пиролизе пропана его нагревают до 900°С. В результате термического разложения сырья образуются низкомолекулярные олефины, а также высокоароматизированные жидкие продукты — смола пиролиза и кокс. Количество смолы зависит от сырья, чем оно тяжелее, тем больше смолы. В случае пиролиза бензина или керосино-газойлевой фракции выход смолы составляет 20н-35% [9]. Смола пиролиза содержит много диеновых и олефиновых углеводородов и на 70+75% состоит из фракций, выкипаюших до 200°С. Переработка смолы пиролиза может осуществляться по топливному или химическому варианту. В первом случае смола разделяется на легкую (выкипающую до 180°С) и тяжелую части. Для получения пиробензола легкая часть гидрируется для удаления непредельных углеводородов, и из нее выделяется бензол. [c.39]

    При пропускании ацетилена над Си. Си.,0, СыО, СщС. 2 и другими катализаторами образуется твердый аморфный полимер, называемый купрвном (см. также стр. 352). Одновременно образуется купреновая смола—зеленоватая жидкость, состоящая из ароматических углеводородов с примесью олефиновых и парафиновых углеводородов. [c.603]

    Исходные дистиллятные топлива, как правило, являются истинным раствором углеводородов и примесей неуглеводородных соединений. При длительном хранении топлив вследствии автоокисления углеводородов и примесей образуются первичные продукты окисления (перекиси и гидроперекиси, затем - спирты, альдегиды, кетоны и др.). Эти продукты взаимодействуют между собой по механизму поликонденсации и полимеризации с образованием высокомолекулярных смол. Обычно при низкотемпературном окислении образующиеся продукты окисления растворимы в топливах, но являюггся исходным материалом для дальнейшего доокисления, уплотнения и формированием отложений в теплообменниках, на фильтрах, штоках и тарелках клапанов, форсунках двигателей. Низкую химическую стабильность имеют бензины термического крекинга, содержащие до 50% олефиновых углеводородов. [c.85]

    Первичная смола сложная жидкая смесь орг соед. темно-бурого цвета, содержащая парафиновые, олефиновые, нафтеновые и ароматич. углеводороды, фенолы, альдегиды, кетоны, карбоновые к-тьг, асфальтены, сераорг. в-ва и др. Плотн. 0,9-1,017 г/см выход 100-220 кг и более. Применяют для получения жидких топлив и смазочных масел, беизола и толуола, лаков, красителей, клеев, пластич. масс, [c.54]

    Облагораживание бензинов термического и термоконтактного крекинга методом каталитического риформинга. Другим вариантом облагораживания бензинов термоконтактных процессов со значительным улучшением моторных свойств является их катали-тичеакий риформинг на платиновом катализаторе. Платиновый катализатор легко теряет активность ири переработке сырья, содержащего небольшие количества серы, смол и олефиновых углеводородов Поэтому сырье необходимо подвергать предварительно гидроочистке до практически полного удаления примесей. [c.200]

    Наиболее часто используемый метод включает реакцию между хлористым алюминием и ароматическим субстратом, содержащим в боковой цепи галоген, гидроксил или олефиновый остаток в соответствующем положении. Реакции, приведенные в уравнениях (60) —(62), мол<но использовать для синтеза производных тетрагидронафталина, октагидрофенантрена и индана. Дегидрогенизация в первых двух случаях приводит далее к нафталинам и фенан-тренам. В последнем синтезе (уравнение 62) более удовлетворительные результаты были получены при использовании ионообменной смолы (Амберлит-15) [31] (вместо реагента Брадшера [32], серной кислоты или муравьиной кислоты)  [c.350]

    В отдельных случаях связывание субстрата с ионообменной смолой может быть следствием образования молекулярных я-комплексов. Скорость гидролиза пропилацетата монотонно снижается с увеличением содержания ионов серебра на сульфо-кислотной ионообменной смоле, а скорость гидролиза аллилаце-тата, напротив, проходит через максимум при увеличении концентрации ионов серебра на смоле. Двукратный выигрыш в скорости в случае гидролиза олефинового сложного эфира обусловлен увеличением его концентрации вблизи поверхности полимера. [c.332]

    Как следует из табл. 8.3, в смолах полукоксования бурых углей содержится меныие фенолов, чем в смолах, получаемых иэ каменньк углей. В легких погонах смолы (до 180 преобладают олефиновые и парафиновые углевод< ды, в более высоксжннящих - ароматические углевод< ды, имеющие алифатические заместители с разным числом углеводных втомов, присутствуют также алифатические кетоны. Содержание карбонатных кислот и азотистых оснований незначительно, не более 1-3% (см. (1,21). [c.205]

    Г азогенераторные смолы волжских слаРП1ев высокосерписты (5,8—7,6% 5), состоят в основном из ароматических углеводородов (50—56%) и нейтральных гетероатомных соединений (41 — 36%) при незначительном содержании кислых кислоролньгх соединений (фенолов и карбоновых кислот, 1,5—4,7%). Суммарное содержание парафиновых и олефиновых углеводородов составляет 4—5 % Лабораторный выход смолы на условную органическую массу (40—48%) значительно ниже, чем при полукоксовании сланца-кукерсита. [c.110]

    Продукты конденсации алкилениминов с эфирами ненасыщенных кислот используются при изготовлении или покрытии форм для отливки смол [278, 279], а продукты конденсации алкилениминов с ароматическими о-оксиальдегидами предложены [280, 281] в качестве дез активаторов металлических поверхностей, катализирующих окисление жиров, смазочных масел, каучуков, олефиновых дистиллятов, бензина и т. д. [c.226]

    Факторы, обусловливающие гетерогенный характер серной вулканизации каучуков общего назначения, в полной мере проявляют себя и при вулканизации их другими (несерными) вулканизующими системами. Действительно, больщинство вулканизующих агентов для диеновых и олефиновых каучуков является полярными веществами (например, галогенсодержащие соединения, аминные комплексы хлорборанов, азодикарбонамид и т. д.) и плохо растворяются в каучуке. Многие вулканизационные процессы активируются оксидами металлов (вулканизация галогенсодержащими соединениями, дисульфидами и т. д.), неорганическими солями (вулканизация смолами) и другими нерастворимыми в каучуке веществами кинетика процесса и характер возникающих вулканизационных структур зависят от природы оксидов, поверхности наполнителя и т. д. [c.268]


Смотреть страницы где упоминается термин Смолы олефиновые: [c.130]    [c.301]    [c.49]    [c.75]    [c.76]    [c.413]    [c.260]    [c.52]    [c.13]    [c.327]    [c.437]    [c.154]    [c.260]    [c.68]    [c.83]   
Химия и технология искусственных смол (1949) -- [ c.126 ]




ПОИСК







© 2025 chem21.info Реклама на сайте