Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты качество

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]


    Жирные кислоты каталитическим процессом превращают в кетоны, которые каталитически восстанавливают, как указано выше. Низкомолекулярные жирные кислоты в кетоны целесообразно превращать в паровой фазе над катализатором на основе окиси тория. Для превращения же высокомолекулярных кислот, как миристиновая, пальмитиновая или стеариновая, целесообразно использовать метод получения кетонов по Грюну в присутствии железа в качестве катализатора. При этом достигаются хорошие выходы кетона, содержащего 2п—1 углеродных атома п — число углеродных атомов в исходной кислоте), и карбонильная группа всегда находится точно в середине цепи молекулы. Если же проводить реакцию кетонизации, исходя из карбоновых кислот, содержащих четное и нечетное числа атомов углерода, то образуются кетоны с несимметрично расположенной карбонильной группой  [c.61]

    Процесс проводят практически до полного окисления всех исходных углеводородов под давлением 10—20 ат и при 95—175° в зависимости от исходного сырья и желаемого продукта окисления. Кислород воздуха расходуется при этом почти нацело. В качестве катализаторов пользуются солями металлов жирных кислот или высокомолекулярными спиртами и кетонами от предыдущих операций. Продукты окисления омыляют и перерабатывают, как обычно. Недавно Кирк и Нельсон установили [106], что окисленный нефтяной парафин представляет втадающуюся по свойствам основу для смазок. Они окисляли парафин при 135 воздухом в присутствии смеси стеарата цинка и пиролюзита до кислотного числа 70—90 и соответственно до числа омыления 140— 180. Перед омылением добавляли определенное количество жира или насыщенных жирных кислот. Особенные преимущества дает применение натрового или литиевого мыла [107]. Почти половина оксидата состоит из кислот, а другая половина из спиртов и кетонов [108]. [c.476]

    На заводах в качестве сырья для получения синтетических жирных кислот используются твердые парафины с температурой плавления 52—54° С. Окисление парафина осуществляется кислородом воздуха при температуре 105—120° С в присутствии катализатора [74]. В качестве катализатора применяется перманганат калия в количестве 0,2% от веса исходного парафина. Процесс окисления периодический. Единовременная загрузка окислительной колонны — 30 т смеси свежего и возвратного парафина, [c.149]


    Серная кислота как реагент для очистки нефтяных фракций применялась непрерывно с 1852 г, В этом процессе образуются органические сульфонаты они были выделены, но получили промышленное нрименение лишь спустя много лет благодаря двум обстоятельствам. Во-первых, пробудился интерес к возможности полезного применения органических сульфонатов вообш,о, а затем введение в употребление сульфированного касторового масла ( турецкое красное масло ) в тек стильной промышленности в 1875 г. и открытое Твитчелом в 1900 г. каталитическое действие сульфокислот нри гидролизе ншров с образованием жирных кислот и глицерина. Во-вторых, развитие в России производства минеральных белых масел, потребовавшего применения более жесткой кислотной обработки, чем практиковавшаяся до тех пор для легкой очистки естественно, что при этом получились большие количества сульфонатов как побочных продуктов сульфирования. Вскоре было выяснено, что эти сульфокислоты бывают главным образом двух типов растворимые в масле ( красные кислоты ) и не растворимые в масле или растворимые в воде ( зеленые кислоты ). Несколько лет спустя эти продукты начали находить промышленное нрименение как реагенты Твитчелла и как ингредиенты в композициях в процессах обработки кожи и эмульсируемых ( растворимых ) масел. Оба направления продолжали развиваться так быстро, что к началу второй мировой войны спрос на эти продукты, получавшиеся в качестве побочных продуктов, начал превосходить предложение их. Это особенно справедливо в отношенип растворимого в масле типа сульфонатов, применяемых в эмульсионных маслах, в металлообрабатывающей промышленности, в противокоррозийных композициях и как добавки к смазкам для быстроходных двигателей. [c.535]

    Процесс совместного производства синтетических жирных кислот и натрийалкилсульфатов методом непрерывного окисления жидких парафинов. Сущность данного метода заключается в непрерывном окислении жидких парафинов в присутствии катализатора — нафтената марганца. Для обеспечения максимального выхода спиртов процесс ведется при относительно низкой температуре и ограниченном времени пребывания (а вместе с тем и глубины окисления) исходных парафинов в зоне реакции. Для понижения скорости окисления спиртов в качестве окисляющего агента используется азотокислородная смесь с содержанием кислорода 4—5%. В выбранном режиме окисления получаемые высшие жирные спирты представлены смесью первичных и вторичных спиртов. Однако в отличие от процесса прямого окисления парафиновых углеводородов в присутствии борной кислоты менее жесткие условия окисления рассматриваемого варианта обеспечивают более благоприятный состав смеси спиртов, в которой содержание первичных спиртов составляет 45—50%. [c.172]

    При сопоставлении технико-экономических показателей различных методов производства высших жирных спиртов необходимо учитывать, что получаемые спирты резко отличаются друг от друга по своему качеству. Поэтому данные табл. 56 носят справочный характер и не могут служить основой для выбора наиболее рационального способа получения высших спиртов. При гидрировании эфиров жирных кислот, а также в процессе прямого гидрирования жирных кислот образуются первичные спирты нормаль- [c.184]

    Непосредственное сопоставление технико-экономических показателей производства синтетических жирных кислот затруднительно, так как на действующих заводах используются различные методы калькулирования себестоимости кислот. На Шебекинском комбинате определяется средняя себестоимость суммарных кислот, т. е. затраты на производство делятся на общий выпуск кислот всех фракций. Существенный недостаток данного метода распределения затрат заключается в том, что различные по своему качеству и потребительской ценности кислоты оцениваются по равной стоимости. Так, па Шебекинском комбинате с трудом реализуется не более 50% кубовых кислот, а себестоимость их по принятой методике распределения затрат равна себестоимости дефицитных мыловаренных кислот Сю— ao- [c.151]

    До тех пор, пока использование парафинов для синтеза химических продуктов было ограниченным, потребность в них не превышала 70—80 тыс. т в год. Основная масса парафинов использовалась в производстве солидолов, смазочных материалов, в бумажной, спичечной, электротехнической, пищевой и других отраслях промышленности. Позднее парафины во все возрастающем объеме начали использовать в качестве сырья для выработки ряда синтетических про ктов. Первым таким продуктом явились синтетические жирные кислоты. Их производство было организовано на Шебекинском комбинате в 1953 г. Позднее были сданы в эксплуатацию новые крупные мощности по выработке СЖК. [c.138]


    Особый интерес представляет парафин в качестве исходного сырья для химической переработки с получением хлорпроизводных жирных кислот, смазочных масел, присадок для снижения температуры застывания масел (депрессоров) и т. д. [c.45]

    Поэтому процесс прямого гидрирования жирных кислот на стационарном катализаторе представляет большой практический интерес. На протяжении ряда лет процесс прямого гидрирования кислот на стационарном катализаторе изучался во ВНИИНефтехиме [95]. К настоящему времени накоплен значительный экспериментальный материал, который позволяет рекомендовать этот процесс для промышленного внедрения. В качестве сырья рекомендованы синтетические жирные кислоты фракции — ie. Весьма существенное влияние на процесс гидрирования оказывает фракционный состав исходных кислот. Наличие в сырье повышенных количеств низкомолекулярных кислот увеличивает коррозию аппаратуры высокого давления, а высокомолекулярные кислоты С20 и выше приводят к быстрой дезактивации катализатора. [c.180]

    Как уже указывалось выше, в мировой практике основным сырьем для получения высших жирных спиртов являются растительные и животные жиры. Исключение составляет установка в ГДР, на которой высшие спирты получают путем гидрирования бутиловых эфиров синтетических жирных кислот, и недавно введенная в эксплуатацию фирмой Континенталь ойл К° (США) установка, на которой в качестве сырья используются алюминий-оргапические соединения, полученные из этилена по реакции Циглера. В ряде стран (США, Япония) имеются относительно небольшие мош ности по производству тридецилового спирта методом оксосинтеза на основе тетрамеров пропилена. [c.138]

    Триэтиленгликолъ. Трпэтиленгликоль представляет собой бесцветную, легко растворимую в воде, вязкую жидкость. Он применяется в качестве тормозной жидкости, для осушки газов, особенно природного нефтяного газа [261, и служит для дезинфекции воздуха в больницах, театрах, концертных залах и т. п., так как уже в малых концентрациях обладает сильным стерилизующим действием [27]. Эфиры триэтиленгликоля и монокарбоно-вых кислот являются превосходными пластификаторами. Известны 2-этил-масляный эфир триэтиленгликоля под названием флексол ЗОН и смесь эфиров триэтиленгликоля и смеси жирных кислот с 6—10 атомами С из кокосового масла под названием пластификатора ЗС. На рис. 114 приведены основные направления использования триэтиленгликоля. [c.190]

    Основным потребителем неочищенного парафина может явиться процесс крекинга, при котором чистота исходного парафина не оказывает решающего влияния на качество конечных продуктов. Некоторое количество неочищенного парафина может быть использовано в производстве спичек, определенных типов смазочных веществ и других продуктов. Другой важной характеристикой парафинов является их фракционный состав. Особое значение имеет этот показатель для парафинов, используемых в производстве СЖК. Согласно техническим условиям, для производства синтетических жирных кислот должен использоваться парафин, выкипающий в пределах 320—450° С.- [c.140]

    Выбор между схемами 4 и 5 определяется требованиями к качеству товарных жирных кислот, качество которых жестко нормировано по двум показателям массовой доле смоляных кнслот н неомыляемых веществ. При отборе жирно-кислотной фракции из низа третьей колонны, как это предусмотрено схемой 5, в этом целевом продукте концентрируются смоляные кислоты, приходящие с исходной смесью в колонну, а также труднолетучие неомыляемые вещества, в том числе ангидриды кислот. Кроме того, в продуктах содержится некоторое остаточное количество легколетучих неомыляемых веществ, основная часть которых отбирается с легким маслом из верха той же колонны. Попытки снижения массовой доли смоляных кислот в жирно-кислотной фракции за счет интенсификации разделения во второй колонне путем увеличения высоты колонны, флегмового числа, подвода теплоты в испаритель неизбежно приводят к усилению термической деструкции компонентов в этой колонне. При этом наряду с уменьшением доли смоляных кислот в питании третьей колонны возрастает доля неомыляемых веществ, что отрицательно сказывается на качестве жирных кислот. Следовательно, качество талловых жирных кислот, получаемых по схеме 5, не стабильно и нет возможности управлять им. Это положение можно несколько исправить, если отбирать жирно-кислотную фракцию через боковой отбор в паровой фазе, а с кубовым продуктом третьей колонны выводить труднолетучие неомыляемые вещества. Разделение по схеме 5 вызывает минимальные потери карбоновых кислот вследствие термического разложения. Менее стойкие смоляные кислоты полностью выводятся по этой схеме так же, как в схеме 2 из второй колонны, т. е. раньше, чем в других схемах. [c.117]

    При получении синтетических жирных кислот в. качестве от-.ходов производства образуются низкомолекулярные водорастворимые кислоты i—С4 и сульфат натрия. На действующих заводах эти продукты пока не утилизируются. В настоящее время выполнены проектные работы и ведется строительство установок по утилизации кислот i—С4 и сульфата натрия. Ввод в эксплуатацию этих установок позволит не только улучшить технико-эко-номические показатели производства синтетических жирных кислот, но и в значительной степени решить проблему очистки сточных вод. [c.151]

    Существенное влияние на срок службы катализатора и состав спиртов, получаемых в процессе прямого гидрирования. СШК, оказывает качество исходных кислот. В составе выпускаемых ныне синтетических жирных кислот содержание углеводородов достигает 2,5—3,5%, т. е. половины того предельного содержания их, которое допустимо временными техническими условиями на спирты. Таким образом, количество углеводородов, образующихся непосредственно в процессе гидрирования, не должно превышать [c.183]

    Присутствие в мыле солей низкомолекулярных жирных кислот, не обладающих, моющими или пенообразующими свойствами, сильно ухудшает качество мыла. Кроме того, эти соли обладают неприятным запахом. [c.460]

    Этим самым предотвращают разрушение катализатора жирными кислотами и коррозию аппаратуры. В качестве катализатора применяют медно-цинковый контакт и работают при 260° и 200 ат давления водорода. [c.471]

    Однако величина затрат на суммарные кислоты С5— jo и выше не характеризует достаточно полно качество работы каждого предприятия. Товарной продукцией заводов СЖК являются йе суммарные кислоты, а их узкие фракции. Узкие товарные фракции синтетических жирных кислот по своим потребительским свойствам и назначению далеко не равноценны друг другу, поэтому для характеристики работы заводов СЖК помимо общего выхода суммарных кислот необходимо учитывать состав этих кислот. Влияние состава кислот на результаты хозяйственной деятельности предприятий можно проследить по данным изменения суммы дохода от реализации товарной продукции. Так как в отличие от себестоимости отпускные цены на СЖК дифференцированы в зависимости от потребительской ценности кислот, то всякое изменение в составе кислот приводит к изменению суммы, полученной при реализации товарных кислот. [c.153]

    В состав консистентных смазок, загущенных мылами, в качестве омыляемого компонента вводят жирные кислоты и щелочи для омыления кислот. В смазку, загущенную твердыми углеводородами, также вводят щелочь для нейтрализации содержащихся в ней органических кислот. [c.176]

    В нефтехимической промышленности в качестве вспомогательных материалов применяются минеральные и синтетические жирные кислоты, щелочи и высокоароматические вязкие масла. [c.285]

    В качестве ингибиторов коррозии в агрессивных пластовых водах используют реагенты ИКБ-4В-—смесь оксиэтнлалкил-нмидазолинов на основе кубовых остатков сиитетич-еских жирных кислот фракции С20 и выше, а также реагенты И-1В и КИ-1, Север-1. Эти реагенты обеспечивают защитный эффект 60—75%, а Север-1 —до 98% и более. [c.207]

    Здесь отражены только те потребители, для которых возможность и целесообразность использования синтетических кислот уже доказана на практике. В будущем круг потребителей синтетических жирных кислот может существенно расшириться, особенно при улучшении качества кислот и организации производства их более узких фракций. [c.149]

    В качестве присадок для снижения трения и износа применяют масла и жиры растительные и животные, высокомолекулярные жирные кислоты и их эфиры органические соединения, содержащие серу, фосфор или хлор соединения металлов (свинцовые мыла, окислы и сернистые соединения молибдена и др.) [c.201]

    В нефтехимической технологии сравнительно немного процессов синтеза с получением целевых продуктов (продуктов потребления), использующих в качестве сырья газовые или нефтяные фракции (смеси углеводородов). Среди них — некоторые процессы производства моющих веществ типа алкиларилсульфонатов из крекинговых бензинов, эмульгаторов из керосина или газойля, жирных кислот окислением смеси твердых или жидких парафинов, нафтеновых мыл из керосиновых и масляных фракций, крезолов из бензиновых фракций (крекинга) и т. д. [c.46]

    В качестве смачивающих, пенообразующих и эмульгирующих веществ, или в виде продуктов оксиэтилирования, как всиомогатольиые материалы в текстильной промышленности. Смесп жирных кислот, содержащихся в головном погоне, с высокомолекулярными /кирными кислотами с большим успехом применяют в производстве смазочных материалов. Вопрос о применении определенных фракций жирных кислот для производства мыл выходит за пределы собственно нефтехимии. [c.165]

    Натриевые соли можно применять в качестве химикалиев для текстильной промышленности, подобно медиаланам , которые представляют собой продукты взаимодействия аминокарбоновых кислот (особенно гликоколла) с хлоридами высокомолекулярных жирных кислот, имеющих формулу НООС — СНг — NH — СО — К (К — остаток олеиновой кислоты). [c.423]

    Шебекинском комбинате кубовый остаток направляется в термическую печь цеха СЖК для извлечения и облагораживания кислот. На каждую тонну высших спиртов получается свыше 200 кг смеси жирных кислот, из которых более половины представлено кислотами мыловаренной фракции. По качественной характеристике кислоты, выделенные из кубового остатка, значительно уступают кислотам, полученным по обычным схемам окисления парафинов до синтетических жирных кислот. Согласно опубликованным данным, кислоты кубового остатка после термической обработки и отгонки неомыляемых имели следующие показатели кислотное число 213, эфирное число 4,5, йодное число 39,3, карбонильное число 43,5 и содержали 9,6% неомыляемых [86]. Таким образом, раздельная переработка кубового остатка не обеспечивает производство синтетических кислот, соответствующих действующим техническим условиям. Кубовый остаток может быть переработан только совместно с омыленным продуктом цеха СЖК, хотя и в этом случае качество товарных кислот, естественно, несколько понизится. [c.165]

    Данные по варианту совместного получения жирных кислот и натрийалкилсульфатов не приводятся, так как по этой схеме выделение спиртов в чистом виде не предусматривается. Поскольку в процессах гидрирования синтетических жирных кислот в спирты в качестве сырья могут быть использованы и жидкие, и твердые парафины, то показатели себестоимости и удельных капиталовложений приводятся в двух вариантах для случая получения кислот из твердых парафинов и для случая получения кислот из жидких парафинов. [c.184]

    Кислоты, представляющие наибольший промышленный интерес, содер-я атся в керосиновых и газойлевых фракциях нефтей. Молекулярный вес их лежит в пределах 180—350. Их свинцовые, кобальтовые и марганцевые соли хорошо растворимы в маслах и применяются в качестве агентов, ускоряющих сушку лаков. Нафтенат медп применяется для консервации древесины, нафтенаты кальция и алюминия — в качестве присадок к смазочным маслам. Нафтеновые кислоты с 14—30 атомами С в молекуле во многих отношениях ведут себя подобно жирным кислотам с прямой ценью [7]. [c.275]

    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    Важным показателем моющего действия мыла является показатель его пено обр азую щей способности, который характеризуется объемом пены, получающейся при взбалтывании определенного количества 0,5%-ного мыльного раствора (в пересчете на жирные кислоты). Качество мыла тем выше, чем больще оно может дать пены. Объем пены от 100 мл 0,5%-ного мыльного раствора твердого хозяйственного мыла в воде жесткостью 15° при температуре 45° не должен быть менее 250 см . [c.334]

    Физические свойства нефтяных масел, такие как способность растворять воскообразный налет на поверхности листьев и телах насекомых, создают возможность для использования масел в качестве базовых компонентов более активных инсектофунгисидов [159]. Присадками могут служить многие вещества — от жирных кислот и мыл, облегчающих расныливание масла, до физиологически весьма активных соединений, таких как пиретрум, никотин, ротенон, ДДТ, тиоцианаты, метоксихлор, хлордан, линдан и т. д. [c.568]

    Для изготовления водных и смазочно-охлаждающих жидкостей целесообразно использовать выделяемые из окисленного парафина технические жирные кислоты. Качество окисленного и омыленного петролатума приведено в табл. 8. [c.95]

    Присутствие в натрийалкилсульфатах углеводородов отрицательно сказывается на качественной характеристике синтетических моющих средств. Однако следует учитывать, что при сушке моющих композиций основная масса углеводородов удаляется вместе с летучими компонентами. Поэтому в товарном продукте содержание углеводородов обычно не превышает 2—3% в расчете на алкилсульфаты. Опыт химической промышленности ГДР убедительно показывает, что наличие такого количества углеводородов практически не влияет на качество получаемых моющих средств. Таким образом, в случае производства натрийалкилсульфатов на базе спиртов, получаемых в процессе гидрирования жирных кислот, отпадает необходимость в стадии экстракции непросульфировавшихся соединений. [c.187]

    По этим причинам за рубежом процесс прямого гидрирования кислот осуществлен только с применением суспендированного катализатора. В частности, фирма Синова с 1953 г. эксплуатирует в г. Тулузе (Франция) установку мощностью 6000 т в год жирных спиртов, на которой в качестве сырья наряду с нейтральными жирами периодически используются и жирные кислоты [81]. [c.179]

    Существенное влияние на величину себестоимости синтетических жирных кислот оказывает качество поступающего на окисление парафина и, в частности, его фракционный состав. Выше указывалось, что на всех действующих заводах в качестве сырья для получения синтетических кислот используются парафины, выки-шющие в основном в пределах 320—450° С. Этим условиям удовлетворяет парафин, вырабатываемый грозненскими и дрогобыч-скими нефтеперерабатывающими заводами, а также среднеплавкий парафин фракции 350—420° С, полученный в качестве побочного продукта масляного производства на восточных НПЗ. [c.154]

    Окись этилена вступает в реакцию со спиртами, в результате чего получаются гидроксиэфиры, применяемые в качестве растворителей. Окись этилена может также вступать в реакцию и с различными аминами нрп взаимодействии с аммиаком, например, образуются MOHO-, ди- и триэтаноламины носледние образуют эфиры с жирными кислотами, которые применяются в качестве эмульгаторов. [c.580]

    Нитроироизводные низших парафинов бесцветны, не вызвают коррозии металлов и находят применение в качестве растворителей или же промежуточных продуктов для многих синтезов. Так, при обработке этих нитроироизводных неорганическими кислотами и водой образуются жирные кислоты и гидроксиламиновые соли взаимодействие тех же нитропроизводных приводит к получению динитроуглеводородов. [c.584]

    В процессе эмульгирования мономеров в растворе анионоактивного эмульгатора образуются эмульсии прямого типа масло — вода. Длительное время в качестве эмульгатора применялась натриевая соль дибутилнафталинсульфокислоты, известная под названием некаль, с добавкой небольших количеств мыл жирных кислот. Однако отсутствие возможности организовать биохимическую очистку сточных вод в связи с токсичным действием некаля на микроорганизмы привело к необходимости применения других эмульгаторов. Из них наибольшее значение приобрели мыла карбоновых кислот — канифольные и жирнокислотные эмульгаторы, применяемые в смеси или индивидуально. Замена некаля этими эмульгаторами, помимо решения проблемы биохимической очистки сточных вод, позволила одновременно улучшить качество бутадиен-стирольных каучуков. [c.244]


Смотреть страницы где упоминается термин Жирные кислоты качество: [c.121]    [c.166]    [c.455]    [c.581]    [c.165]    [c.185]    [c.189]    [c.82]    [c.140]    [c.264]   
Синтетические жирные кислоты (1965) -- [ c.14 , c.37 , c.47 , c.62 , c.63 , c.96 , c.104 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние состава исходного сырья на качество получаемых синтетических жирных кислот

Качество жирных кислот, получаемых при непрерывном и периодическом процессах окисления



© 2024 chem21.info Реклама на сайте