Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия конкурирующие

    Рассмотрим открытую безградиентную систему, состоящую из катализатора и компонентов реакционной смеси, за счет реакций с которыми состав катализатора может изменяться (назовем их реакциями катализатора). Для конкретности рассматривается реакция газов на твердых катализаторах [78]. Предположим, что в системе возможно протекание конкурирующих реакций катализатора, в результате которых может происходить переход активного состояния поверхности катализатора К в термодинамически устойчивое ЛГт и последующая регенерация активного состояния К. Термодинамически устойчивое состояние отвечает химическому равновесию для подсистемы — катализатор. В данном случае возможно протекание трех типов реакций реакция катализатора (дезактивация) [c.301]


    Таким образом, зная константы равновесия конкурирующих мономолекулярных реакций, можно рассчитать количественное соотношение продуктов распада. При этом используются формулы, аналогичные формулам расчета скорости мономолекулярных реакций, когда давление системы стремится к нулю  [c.8]

    Здесь конкурируют ноны NH n связывающие гидроксид ионы в недиссоциированные молекулы. В результате и эта реакци доходит пе до конца, а до состояния равновесия  [c.256]

    Давление, как и температура, может оказывать значительное влияние на протекание реакций. Общие указания о направлении изменения равновесия системы с изменением давления даются принципом Ле-Шателье увеличение давления способствует протеканию процессов, связанных с уменьшением объема, и наоборот. Поэтому для процессов синтеза аммиака, метанола и высших спиртов, а таклсе для гидрирования высокие давления являются благоприятными факторами. Наоборот, для процессов, связанных с увеличением объема (дегидрирование, распады аммиака или метанола на компоненты), давления оказывают отрицательное действие. При конкурирующих реакциях, связанных с уменьшением объема, давления наиболее благоприятны для реакции, идущей с максимальным уменьшением объема. [c.44]

    Из уравнения (4.19) видно, что в той области, где можно использовать это выр ение (при Pmr / m 50), при постоянной равновесной концентрации экстракционного реагента в органической фазе между Ig м и pH раствора существует линейная зависимость при неизменном состоянии сопряженных равновесий в водной фазе. В этой области повышение pH на единицу увеличивает коэффициент распределения в 10" раз для /г-зарядного катиона металла, образующего экстрагируемый комплекс состава MR . Если при изменении pH раствора состояние равновесий конкурирующего комплексообразования изменяется и оказывает существенное влияние на условную константу экстракции Кех, то линейная зависимость будет наблюдаться только в координатах Ig = / (pH). [c.73]

    Изменения температуры могут также влиять на положения равновесий конкурирующих реакций. [c.204]

    Из уравнения (4.45) следует, что при Од, < Д оу при постоянной равновесной концентрации экстракционного реагента в органической фазе между lg и pH раствора существует линейная зависимость при неизменном состоянии побочных равновесий и ионной силы в водной фазе. Если при изменении pH раствора состояние равновесий конкурирующего комплексообразования изменяется и оказывает существенное влияние на условную константу экстракции К экс, то линейная зависимость будет наблюдаться только в координатах lg = / (pH). [c.123]


    Необходимо отметить, что во всех исследованных тройных системах при малом суммарном содержании спиртов температурный коэффициент имеет отрицательное значение. Из этого следует, что здесь наиболее характерным является сдвиг равновесия конкурирующих влияний в пользу водного поведения . [c.206]

    Согласно этой теории кислота — протонсодержащее вещество НА, являющееся донором своего протона основание — вещество Е, акцептирующее протон, отданный кислотой. В общем случае реагент-кислота НА и реагент-основание Е, а также продукт-основание А" и продукт-кислота НЕ конкурируют между собой за обладание протоном, что приводит обратимую кислотно-основную реакцию к состоянию протолитического равновесия. Поэтому в системе присутствуют четыре вещества двух сопряженных пар кислота — основание НА/А и НЕ /Е. Вещества, проявляющие кислотные или основные свойства, называют протолитами. [c.120]

    Известны и другие примеры равновесий, включающие конкурирующие реакции более высокого порядка, чем второй, но их трудно обрабатывать в общем виде, так как получаемые кубические дифференциальные уравнения не имеют простого решения. [c.35]

    При этом зависимость к от Н" указывает на существование двух конкурирующих переходных состояний, из которых одно содержит на два протона больше. Предполагается, что в реакции быстро устанавливается равновесие  [c.509]

    Скорость установления ионного равновесия зависит от гидродинамического режима, концентрации химических соединений в стоках, структуры зерна ионита. На обменную емкость ионообменных материалов оказывает влияние абсолютная концентрация катионов и анионов, конкурирующих за места в ионите. [c.487]

    Ион Еодорода может, таким образом, связаться в молекулу уксусной кислоты или в молекулу воды. Ионы СНзСОО- и ОН как бы конкурируют друг с другом в связывании иона водорода. Поэтому в данном случае реакция нейтрализации доходит ие до конца, а до состояния равновесия  [c.255]

    Мембраны в общем случае следует рассматривать как распределенные системы, кинетическая модель которых описывается дифференциальными уравнениями (1.26) или (1.27). В таких системах вдали от равновесия возмущения, являясь функцией времени и координаты, могут развиваться, конкурируя со стабилизирующими их диссипативными эффектами, обусловленными нелинейностью химических реакций. Анализ устойчивости подобных систем методом линеаризации достаточно сложен. В частности, для однородных в пространстве, но периодических во времени распределений концентраций в одномерной системе с одной переменной х получено следующее решение [4] для возмущения  [c.37]

    Эмульсии образуются в результате двух конкурирующих процессов дробления и коалесценции (укрупнения) капель дисперсной фазы. В зависимости от соотношения скоростей этих процессов эмульсия может становиться либо все более мелкодисперсной, либо будет укрупняться. При равенстве скоростей дробления и коалесценции капель эмульсия будет находиться в состоянии динамического равновесия. [c.7]

    Из рассмотрения факторов, влияющих на равновесие при адсорбции, следует, что десорбции будут способствовать повышение температуры адсорбента, понижение давления над адсорбентом и наличие в фазе над адсорбентом конкурирующего (вытесняющего) вещества. [c.387]

    Для характеристики изменения свойств в ряду галогенов и их кислородных соединений помимо констант равновесия. можно использовать также величины окислительно-восстановительных потенциалов (табл. В.26). Эти данные позволяют определить, в каких условиях и при каких pH данная группа будет окисляться или восстанавливаться, т. е. какие из конкурирующих реакций в действительности пойдут. [c.506]

    Протекание аналитической реакции в растворе часто осложняется конкурирующими реакциями, в которые вступает один или несколько участников основного процесса. Это могут быть реакции взаимодействия катиона с компонентом буферного раствора, аниона слабой кислоты с протоном и т. д. В этом случае для расчета равновесий в растворе удобно использовать так называемые условные константы равновесия, которые относятся к фиксированной концентрации какого-либо компонента или компонентов раствора, например к постоянному значению pH. Условные константы равновесия связаны с концентрационными, или термодинамическими, простыми соотношениями. Практическое применение условных констант равновесия будет рассмотрено позднее. [c.27]

    Здесь конкурируют ионы КН и Нз О , связывающие гидроксид-ионы в не-диссоциированные молекулы. В результате и эта реакция доходит не до конца, а до состояния равновесия  [c.252]

    Присутствие в числе исходных веществ малорастворимого электролита (MnS), при образовании которого связываются ионы, обусловливает протекание реакции влево. С другой стороны, при образовании слабого электролита (H2S) также связываются ионы S , что способствует протеканию реакции вправо. Таким образом, ионы участвуют в двух конкурирующих процессах, приводящих к установлению двух равновесий  [c.253]


    Рассмотрение конкурирующих реакций и расчет равновесий сводятся к выяснению следующих моментов а) какая реакция [c.83]

    В случае реакций комплексообразования степень маскирования можно характеризовать снижением условной константы равновесия. Так, предложено считать, что мешающий компонент полностью замаскирован, если 1д/С 2. С другой стороны, количественное протекание реакции можно ожидать, если g/ 7. В случае конкурирующих реакций комплексообразования степень протекания реакций маскирования можно оценить коэффициентами избирательности (КИ) и маскирования (КМ)  [c.121]

    Некоторые другие понятия, используемые при описании комплексообразования в растворах. Кроме констант устойчивости и нестойкости, коэффициентов конкурирующих реакций при описании равновесии комплексообразования достаточно широко используют такие понятия, как функция закомплексованности F(L), функция распределения а,, функция образования п. [c.197]

    Из тетраэдрического промежуточного продукта I [схемы (Г.7.33) или (Г.7.34)] может, конечно, отщепляться и НВ, что приводит к обратной реакции. Превращения карбоксильных про изводных являются типичными равновесными реакциями. Положение равновесия зависит от скоростей обеих конкурирующих реакций, И—>-1 и П-—>"111 [схема (Г.7.37)]  [c.74]

    В случае прямого титрования других катионов наблюдается такое же изменение окраски при достижении конечной точки, в то время как при обратном титровании наблюдается противоположное изменение окраски раствора. Следует заметить, что на успешное обнаружение конечной точки титрования накладывают ограничение константы равновесия конкурирующих реакций. В случае прямого титрования цинка(II) устойчивость комплексов цинка с эриохром черным Т должна быть меньше, чем кохмплексов цинка с ЭДТА, но больше устойчивости любого аммиачного комплекса цинка в данном растворе. [c.200]

    Когаа в растворе протекают конкурирующие с реакцией осаждения реак ции, гетерогенное равновесие характеризуется константой Ко (условное произведение растворимости)  [c.11]

    Записанное уравнение действительно является уравнением реакции нервого порядка, но видно, что константа скорости ко — сложная по структуре константа, равная 2кзку/(к2 + 2/сз). Как и следовало ожидать, для этих конкурирующих стадий к > к , так что ко 2кзку/к2 = 2кзКу представляет собой произведение бимолекулярно константы скорости и константы равновесия. [c.354]

    Когда будут введены в строй новые разделительные заводы на Ближнем Востоке, СНГ можно будет использовать вместо дистиллята при производстве аммиака в этом районе, а также в Европе и Японии. Удельный расход природного газа составляет примерно 932 м т аммония. Следовательно, для обеспечения типового завода мощностью до 1000 т/сут аммония потребуется 238 тыс. т бутана в год. Синтетические газы для производства метанола, которые получаются по методу Фищера—Тропща или методу окисления спиртов, отличаются по своему составу от тех, которые используются для синтеза аммиака. При производстве метанола смесь, состоящая из 1 объема СО и 2 объемов Нг, проходит над поверхностью катализатора (активированной окиси цинка) при температуре 350 °С и давлении 25,33—35,46 МПа. Разработанные компаниями ИСИ и Лурги новые катализаторы позволили снизить рабочее давление до 5066—12 160 кПа. Процессы, происходящие как при высоком, так и при низком давлении, базируются на равновесии реакций и нуждаются в многократной рециркуляции непрореагировавщих газов. Наиболее употребительным сырьем для производства метанола являются дистиллят и природный газ, однако с ними могут конкурировать и СНГ, если их имеется достаточное количество и доступны цены. Синтетические углеводороды, получаемые по методу Фишера—Тропша из СНГ, можно использовать для получения парафинов с прямой цепью при экзотермической реакции и давлении около 1013 кПа, что дает возможность избежать применения железного и кобальтового катализаторов. Если соотношение СО и Нз увеличивается, то конечной стадией процесса являются олефины с преобладанием двойных связей. Для синтеза окисленных спиртов требуется газ с соотношением СО и Нг, равным 1 1. При давлении 10,13— 20,26 МПа в присутствии кобальтового катализатора этот газ конвертирует олефины в альдегиды К— H = H2 - 0 -Hг- R— —СНг—СНг—СНО. [c.244]

    Возбужденная молекула 2-нафтола является более сильной кислотой, чем невозбужденная, потому диссоциация возбужденной молекулы успещно конкурирует с флуоресценцией и безызлучательными процессами деградации энергии электронного возбуж-деиия. Это приводит к тому, что в спектре флуоресценции 2- аф-тола даже в кислых растворах отчетливо видны две полосы. Более коротковолновая полоса соответствует флуоресценции недиосо-циированного 2-нафтола, более длинноволновая — флуоресценции 2-нафтолят-аниона, образовавшегося при диссоциации возбужден-иой молекулы 2-нафтола. Увеличение концентрации ионов водорода в растворе подавляет диссоциацию возбужденного 2-нафтола. В спектрах флуоресценции это проявляется как увеличение интенсивности флуоресценции недиссоциированного 2-иафтола и уменьшении интенсивности флуоресценции 2-нафтолят-аниона. Количественная обработка таких спектров при различных концентрациях иона водорода в растворе позволяет вычислить константу равновесия протолитической диссоциации возбужденного [c.77]

    Коэффициент распределения является наиболее распространенной характеристикой экстракционных процессов, особенно в условиях конкурирующих равновесий в водной фазе. Эта характеристика, зависящая от условий проведения экстракции и взаимосвязанная с константами распределения и экстракции, позволяет получить объективную количественную информацию в реальных условиях анализа. Во многих случаях коэффициенты распределения определяют экспериментально, однако при определенных условиях их можно прогнозировать и теоретически. Для этого необходимо знать состав экстрагирующихся соеди- [c.203]

    Все эти процессы являются равновеснымр и з висяшими от температуры. Совокупность равновесий в конечном итоге определяет интенсивность наблюдаемой линии. РавновЛие процессов испарения (I) и диссоциации (П) в наибольшей мере подвержено влиянию конкурирующих химических реакций. Особенно заметным становится мешающее влияние анионов, образующих труднолетучие и малодиссоциирующие соединения (фосфаты, силикаты, бораты и т. д.) и тем самым снижающих интенсивность линий. В противоположную сторону смещает равновесия [возбуждения и ионизации (П1 и IV) присутствие легко ионизируемых катионов. По закону действующих масс для процесса ионизации (IV) пробы, содержащей натрий. [c.185]

    Уравнение (393) описывает зависимость состояния равновесия от давления набухания я (которое, в свою очередь, зависит от степени сшитости ионита), разности объемов конкурирующих гидратированных ионов и от электростатических взаимодействий, происходящих в растворе и в ионите. Значения я и vм—VN можно рассчитать, измеряя давление набухания и объем набухшего ионита, а коэффициенты активности — из полуэм-пирических зависимостей. [c.247]

    Наряду с основным в растворе может оказаться еще несколько лигандов, введенных, например, как компоненты буферной смеси. В таких системах возникают конкурирующие равновесия или происходит образование компл ексов с разнородными лигандами, что также приходится учитывать. Необходимость учета большого числа равновесий в растворе значительно усложняет математический аппарат и обычно требует применения ЭВМ. [c.75]

    Совместное влияние концентрации одноименных ионов и ионной силы раствора на растворимость иллюстрирует рис. 3.1, на котором представлено влияние концентрации N32804 на растворимость РЬ504. Кривая б отражает уменьшение растворимости в соответствии с уравнением (3.3.1) без учета ионной силы. Кривая а построена с учетом ионной силы. Из рисунка следует, что первоначальное уменьшение растворимости во втором случае (а) меньше, чем в первом б). При высоких концентрациях N32804 растворимость вновь возрастает. Далее, если по крайней мере один ион малорастворимого соединения А Вп участвует в каком-либо другом равновесии, то это оказывает влияние на растворимость. Оно становится заметным тогда, когда константа этого равновесия К. приближается к произведению растворимости Кь- Особое внимание следует обращать а это в том случае, когда /С<С При этом Ь 1//С, и поэтому растворимость пропорциональна концентрации второго партнера конкурирующего равновесия. Такими конкурирующими реакциями могут быть комплексообразование, процессы окисления — восстановления, кислотно-основного взаимодействия, обменные процессы при осаждения или ионный обмен. В практике чаще всего встречаются реакции [c.58]

    На равновесие реакций комплексообразования часто влияет концентрация ионов водорода. Кроме того, могут происходить конкурирующие реакции, когда в анализируемом растворе наряду с определяемым элементом присутствуют другие компоненты. В значительной степени подобные явления наблюдают в случае малоустойчивых и потому неудобных для аналитических целей комплексов, какими, например, являются тиоцианатный комплекс Ре(1 II), тетрамминат Си(П) и многие другие. Концентрация таких малоустойчивых комплексов заметно изменяется уже при добавлении нейтральных солей (КН4С1). Поэтому при разработке методик фотометрического определения металлов следует непременно оценивать возможное влияние подобных конкурирующих реакций (гл. 3.1). [c.248]


Смотреть страницы где упоминается термин Равновесия конкурирующие: [c.239]    [c.315]    [c.57]    [c.62]    [c.280]    [c.200]    [c.108]    [c.102]    [c.67]    [c.76]   
Аналитическая химия Часть 1 (1989) -- [ c.75 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние конкурирующих равновесий протонирования и комплексообразования на растворимость осадков

Конкурирующие равновесия, влияние

Конкурирующие равновесия, влияние растворимость осадков

Конкурирующие равновесия, влияние электродный потенциал

Растворимость, зависимость от ионной силы конкурирующих равновесий



© 2025 chem21.info Реклама на сайте