Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Германий на неорганических вещества

    Сорбционная емкость анионообменных смол по отношению к германию должна быть велика в щелочных и в некоторых сильнокислых средах. Для сорбции германия из нейтральных и слабокислых растворов следует применять органические или неорганические вещества, образующие нерастворимые в этих условиях соединения германия. Как мы увидим в дальнейшем, имеющийся экспериментальный материал полностью подтверждает эти предположения. [c.264]


    На рис. 70 приведены отрезки таких спектров (сердечно благодарим проф. В. М. Гольдшмидта и его сотрудников М а н н к о п ффа и Петерса за предоставление их нам). Это спектры анализа топаза на германий. Концентрационные снимки сделаны с какими либо неорганическими веществами с добавкой определенных количеств германия. Выбор [c.136]

    Метод противоточной кристаллизации из расплава используется и для очистки неорганических веществ [195, 298—303]. В результате очистки в шнековой колонне элементной серы от углеродсодержащих примесей, концентрация которых в исходной сере составляла око.ао 10 мас.%, были получены образцы серы с содержанием этих примесей не более—10 мас.% [195]. Хорошие результаты получены при очистке методом противоточной кристаллизации некоторых хлоридов элементов П1—V групп (треххлористого бора, треххлористого галлия, четыреххлористого титана, четыреххлористого германия, треххлористого мышьяка) [161, 301—303] и аммиака [304]. [c.254]

    Полупроводниковыми свойствами могут обладать как кристаллические вещества, так и некоторые стекла. Полупроводниковые кристаллы могут состоять из частиц, связанных ковалентной связью (германий, кремний, карборунд и др.), т. е, обладать атомной кристаллической решеткой, В настоящее время эта группа полупроводниковых материалов привлекает наибольшее внимание. Однако полупроводниковыми свойствами могут обладать в определенных условиях также и многие кристаллы с ионной или молекулярной решеткой (неорганические и органические). [c.145]

    Понятие о чистоте вещества имеет принципиальное значение в современной неорганической химии. Абсолютно чистые вещества в природе не существуют, поскольку загрязнение примесями (образование ограниченных растворов) происходит самопроизвольно вследствие резкого возрастания энтропии . Поэтому нет абсолютно нерастворимых веществ и, следовательно, любое вещество загрязнено примесями. Даже в тех случаях, когда вещество очищено до очень высокой степени, абсолютное число атомов примеси в единице массы или объема все еще остается огромным. Так, в германии полупроводниковой чистоты 99,9999999% Ое содержание атомов примесей не превышает Ю ат. доли, %, т. е. один атом примеси приходится на миллиард атомов основного вещества. Тем не менее 1 см этого особо чистого германия содержит около 10 атомов примеси. Примеси коренным образом влияют на свойства вещества. Например, хорошо известная хрупкость и исключительная твердость металлического хрома, как выяснилось, является следствием наличия небольшого количества примесей, в основном кислорода. Хром, полученный в условиях глубокого вакуума, оказался мягким и пластичным. [c.46]


    Кристаллические решетки, в узлах которых находятся отдельные атомы, называются атомными. Атомы в таких решетках соединены между собой прочными ковалентными связями. Примером может служить алмаз — одна из модификаций углерода. Алмаз состоит из атомов углерода, каждый из которых связан с четырьмя соседними атомами. Координационное число углерода в алмазе 4. Структура алмаза показана на рис. 11.1. В решетке алмаза, как и в решетке хлорида натрия, молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. В неорганической химии известно большое число веществ с атомной кристаллической решеткой. Они имеют высокие температуры плавления (у алмаза свыше 3500°С), прочны и тверды, практически нерастворимы в жидкостях. Атомная кристаллическая решетка характерна для твердого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием. [c.79]

    Еще одно типичное отличие органических полупроводников от неорганических заключается в том, что число носителей зарядов в органических веществах часто значительно меньше их числа в германии. Так, у антрацена может быть всего 10 носителей в 1 см . Если принять, что эта небольшая концентрация носителей зарядов одинакова по всему кристаллу (что маловероятно), то глубина пространственно-заряженного слоя, вычисленная по формуле, используемой для германия, была бы значительно больше толщины любого реального кристалла следовательно, пространственно-заряженная область должна привести почти к выравниванию энергетических уровней вблизи поверхности. Но в таком случае было бы более правильно считать, что энергетические уровни от одной точки кристалла к другой меняются на большую часть кристалла заряд не оказывает влияния. [c.672]

    Химики должны неустанно и - как можно более полно исследовать свойства и реакции различных веществ. В ходе тысяч дипломных, диссертационных и других исследовательских работ изучается поведение элементов и соединений по отношению к различным реагентам. Реакции обнаружения почти всегда являются результатом длинного ряда опытов, в котором только один приносит счастливый результат. Полученные данные собраны в изданном на немецком языке Справочнике по неорганической химии Гме-лина. Доказательством разнообразия исследований служит тот факт, что такому малоизвестному элементу, как германий, посвящены в этом справочнике два тома. Первый, изданный в 1931 г., содержит 62 страницы убористого шрифта, а второй, дополнительный том, появившийся в 1958 г., — уже 576 страниц Трудно представить, сколько будет опубликовано материала о германии в 2000 г. [c.90]

    Самую большую и разнообразную группу составляют полупроводники, т. е. вещества со значениями электропроводности в интервале примерно от Ю" до 10 ом -см . К ним относятся многие простые тела (германий, кремний, бор, иод), сплавы (например, сплав цинка с сурьмой), различные неорганические соединения (окислы, сульфиды) и довольно большое число органических веществ (сложные ароматические соединения, белки, ряд синтетических полимеров). Однако особенности электрических свойств полупроводников не ограничиваются только величинами электропроводности. Одним из наиболее существенных отличий полупроводника от металла является характер зависимости электропроводности от температуры. В то время как сопротивле- [c.274]

    Наряду с классификациями элементов, прямо связанными с периодической системой (периоды, группы, подгруппы, ряды, блоки), исторически сложились еще иные, которые отражают те или иные существенные особенности соответствующих элементов, имеющие значение для рассматриваемой проблемы. Из числа этих классификаций для химического анализа имеет значение старейшее по происхождению деление элементов на металлы и неметаллы. Это деление первоначально основывалось и сейчас еще включает в себя состояние соответственных простых веществ при обычных условиях. В химическом отношении, что важно для аналитической химии, оно выражает тенденцию к образованию, по крайней мере в низших валентных состояниях, катионов (металлы) или анионов (неметаллы), причем речь идет как о простых анионах, так и о сложных (т. е. типа 8 - и МОг)-Для аналитической химии это деление издавна имеет колоссальное значение, так как катионы разделяют посредством ионных реакций с различными анионами (классический сероводородный метод качественного анализа, бессероводородные неорганические схемы анализа катионов), а анионы — соответственно с катионами. В последние десятилетия присоединились ионообменные методы разделения и методы разделения ионов с помощью электролиза. Кроме металлов и неметаллов, часто в последнее время различают еще полуметаллы, или иначе металлоиды (что не следует путать с устаревшим применением термина металлоид как синонима слова неметалл ). К ним относятся элементы, обладающие как в виде простых веществ, так и в соединениях промежуточными свойствами бор, кремний, германий, мышьяк, сурьма, теллур, астат. [c.15]


    Рассмотрпм, как была принята атомистическая теория Дальтона во Франции, Германии и России. В 1808 г. во Франции появился перевод книги Т. Томсона Система химии неорганических веществ с предисловием К. Бертолле. Нельзя согласиться с А. Вюрцем, что К. Бертолле в этом предисловии нападает весьма ожесточенно на атомистическую систему На самом деле К. Бертолле писал В этом сочинении находится элегантное изложение гениальной гипотезы Дальтона, с помощью которой он обтзясняет постоянные пропорции, наблюдаемые между элементами некоторых сложных тел... Эта гипотеза дает объяснение явлений, причина которых до сих пор оставалась непонятной но чем она привлекательнее, тем более нун но подвергнуть ее внимательному рассмотрению  [c.130]

    Известны следующие методы, основанные на равновесии этих типов выделение определяемых элементов Б виде летучи соединений с кислородом, например воды, диоксида углерода, серы в виде 802 или 50з) выделение элементов в виде летучих соединений с галогенами, например отгон]<а АзС1з, СгСЬ, ОеСи, 8ЬС1з и др. выделение элементов в виде летучих соединений с водородом, например АзНз и др. метод газовой хроматографии, в котором некоторые неорганические вещества переводят в газообразное состояние, например кремний, германий, мышьяк, олово, бериллий определяют в виде летучих гидридов после их отделения от многих элементов, не образующих летучих соединений с водородом. [c.27]

    Определение зольности производят в целях оценки содержания в горючем ископае юм неорганических веществ. В большинстве случаев зола рассматривается как вредная примесь. Однако зольные угли могут быть источником важных доя про. лшлснности алементов, например германия. [c.86]

    На первых порах синтетические материалы носили характер заменителей природных материалов. Впоследствии были разработаны методы синтеза принципиально новых типов высокомолеку-лярныт( соединений, мало похожих на природные, например соединений, совмещающих в себе свойства органических и неорганических веществ и содержащих наряду с углеродо>1 атомы кремния, алюминия, -штана, бора, германия и др. (элементорганические вы- oкoмoлeкyJIяpныe соединения). Создаются стеклопластики и углеродные волокна, не уступающие по прочности стали, и т. д. В результате успехов химии и физики высокомолекулярных соединений и усовершенствования технологии их производства, благодаря принципиальной возможности сочетать в одном веществе любые желаемые свойства синтетические высокомолекулярные соединения постепенно проникают во все области промышленности, где становятся совершенно незаменимыми конструкционными и антикоррозионными материалами. [c.6]

    Методы ХОП успешно применяют и для анализа неорганических веществ. В качестве примера рассмотрим методику определения германия в оксидах, рудах, сплавах [51]. Метод основан на образовании хлорида германия в результате реакции пробы с тетрахлоридом углерода при повышенной температуре и на последующем газохроматографическом анализе реакционной смеси в ампуле, разбиваемой в специальном устройстве перед колонкой. Для проведения реакции используют ампулу из боросиликатного стекла длиной 4 мм, внешним диаметром 6 мм и внутренним диаметром 4 мм. Навеску анализируемого образца вносят в ампулу, затем ампулу охлаждают сухим льдом, добавляют в нее тетрахлорид углерода, запаивают и нагревают при 575 °С в течение 15 мин для анализа окиси и сплава германия и в течение 30 мин для анализа германиевой руды. Разделение продуктов реакции проводят при 80 °С на стеклянной колонке 183 смХ4 мм, заполненной 20% силикона ПС-550 на целите 545. В качестве детектора используют высокочувствительный катарометр. На рис. 1-8 показана хроматограмма продуктов хлорирования германиевой руды. Отделение тетрахлорида германия от других продуктов хлорирования хорошее. Определяемый минимум составляет 10 г германия. Относительная ошибка составляет около 0,88%. [c.33]

    Чохральский [31] первым применил метод вытягивания для выращивания кристаллов легкоплавких металлов, таких, как олово, свинец, цинк. На фиг. 5.5,г показана схема типичной установки для такого вытягивания. В течение многих лет метод использовался для конгруэнтно плавящихся соединений всех классов, но, вероятно, наиболее широкое его применение лежит в области полупроводников. Тил и Литтл [32] первыми получили монокристаллы германия и кремния, и их работа явилась основой для получения полупроводниковых кристаллов этих веществ с высокими характеристиками для научных и технических целей. Метод вытягивания сегодня занимает важное место в промышленной технологии полупроводников. Нассау и Вэн Ютерт [33] применили метод вытягивания к неорганическим веществам, представляющим интерес как лазерные матрицы, и Нассау в ряде статей [34, 35] описывает способы выращивания и свойства aW02 Nd. Некоторые стороны метода рассмотрены в книге [8]. [c.192]

    Сорбции германия на неор>-анических веществах. Помимо органических сорбентов германия можно использовать неорганические вещества, образующие с германием нерастворимые соединения [764]. В качестве таких сорбентов были исследованы FeaOg, AlgOg и MgO, т. е. окислы элементов, дающих плохо растворимые германаты, а также для сопоставления были рассмотрены вещества (SiOj и СаСОд) , не образующие с германием подобных соединений (табл. 37). [c.268]

    В начале 900-х годов было обнаружено ускоряющее действие щелочных органических соединений. В 1906 г. Оэнслагер нашел, что анилин и другие амины ускоряют вулканизацию каучука серой, а в 1912 г. Гофман и Готтлоб получили в Германии патент на использование для ускорения вулканизации щелочных органических и неорганических веществ с константой ионизации равной или большей 10 . Впоследствии анилин применялся очень широко, несмотря на токсичность. В одно время с аминами были описаны продукты конденсации аминов и альдегидов. К числу разработанных в это время щелочных ускорителей относятся арилгуанидины и, в частности, дифенилгуанидин. Гуанидины широко использовались в качестве ускорителей в 1920-е годы. [c.159]

    ПО окончании института, Э. В. Брицке оставляют при Кафедре технологии неорганических веществ (руководимой тогда профессором М. Ф. Глазенапом) для подготовки к профессуре. С 1904 по 1906 г. он — в заграничной научной командировке, где знакомится с рядом исследовательских и учебных лабораторий и крупнейшими заводами в Бельгии, Швейцарии, Германии, Австрии и Италии. В 1906 г. Э. В. Брицке избирается доцентом по общему курсу технологии неорганических веществ и специальному курсу металлургии. В 1910 г. его избирают профессором Рижского политехнического института, где он читает лекции по металлургии, по технологии вяжущих и строительных материалов, неорганических веществ и минеральных удобрений. Э. В. Брицке первым создал специальный курс минеральных удобрений. В 1909 г. был напечатан его учебник Производство суперфосфата , сыгравший большую роль в подготовке специалистов и подъеме этой области технологии. [c.6]

    Приготовив искусственные смеси, можно определить калибровочные коэффициенты для получения количественного состава анализируемой смеси методом абсолютной калибровки. Метод абсолютной калибровки использован при газохроматографическом определении микропримесей неорганических веществ в хлоридах бора, галлия, кремния, германия и титана [37] при газохроматографическом анализе белого фосфора и некоторых хлоридов фосфора, причем относительная ошибка составляла Чг6% [63] при газохроматографическом анализе метилхлорсиланов [64—66] при газохроматографическом определении микропримесей хлорированных углеводородов в трихлориде бора [67]. Метод абсолютной калибровки применяли также при анализе гидридов бора [c.117]

    Разделение неорганических соединений. Разделение неорганических веществ путем экстракции является перспективным методом, хотя до последнего времени в этой области (исключая аналитическую химию) сделано очень мало. Растворимость уранилнитрата в эфире была отмечена Пели-го более 100 лет тому назад. Согласно сообщению митa на этом основывалось приготовление больших количеств уранилнитрата в военное время в соответствии с программой работ по атомной энергии. Согласно тому же источнику, экстракция является одним из четырех возможных способов отделения плутония от радиоактивного урана, и, как стало известно, в настоящее время такой процесс осуществлен в Англии . Экстракция использовалась Морганом и Девисом в 1937 г. для отделения гелия и германия от уносимой газами пыли . Другими потенциальными возможностями в этой области является разделение редких земель , а также циркония и гафния . Интересным примером процесса, включающего полностью неорганическую систему, является процесс очистки 50%-ной каустической соды путем экстракции 70— 95%-ным аммиаком, который удаляет большую часть находящегося в соде хлористого натрия.  [c.14]

    Это алмаз, германий, кремний, серое олово, представляющие собой кристаллические высокоупорядоченные неорганические сверхполимеры, или полимерные тела. Они, как правило, обладают выдающейся твердостью и плавятся при очень высокой температуре. Образование таких кристаллов из расплава, раствора или паров может рассматриваться как реакция полимеризации неорганических веществ, в результате которой (получаются атомные кристаллы, где мельчайшей единицей является атом. Рассуж1дая теоретически, бесконечное дробление такого кристалла должно привести к составляющим его атомам углерода, германия или кремния. Все эти атомы в кристаллах связаны ковалентными связями и образу- [c.14]

    Нами разработан газохроматографический анализ тетрахлоридов кремния и германия, трихлорида фосфора и трибромида бора на содержание примесей органических и неорганических веществ. Анализ проводился по методике, описанной в [1]. Осушка газа-носителя производилась путем фильтрации от кристаллов воды через фильтр из ткани Петрянова ФПП-0,5-25 [2]. Ввод образца в газохроматографическую колонку осуществлялся пз ампулы посредством вакуумной системы напуска, выполненной нз стекла и фторопласта либо через испаритель микрошприцем, приспособленным для агрессивных веществ. Объем пробы составлял 1 —10 мкл и для вакуумной системы 40— 200 мм рт. ст. при объеме дозы 1мл. Детекторами служили катарометр, ионизационно-пламенный детектор, электронозахватный детектор и термоионный детектор поверхностной ионизации. Основной компонент отводился помимо детектора переключением кранов или связывался с комплексообразователями в предварительной колонке. Для лучшего хроматографического разделения примесей были подобраны колонки, заполненные силиконами Е-301 или СКТФТ-50Х в количестве 10—20% на хроматоне К-АШ-НМ05. Идентификация примесей осуществлялась совместным применением газохроматографического и ИК-спектроскопи-ческого методов анализа. [c.66]

    В таблицах 1 и 2 представлены пределы обнаружения примесей летучих органических и неорганических веществ в теграхлоридах кремния и германия, трихлориде фосфора и трибромиде бора. Ионизацион-ио-пламекный детектор позволяет определять примеси на уровне 10- — [c.67]

    Разработан газохроматографический анализ тетрахлоридов кремния, германия, трихлорида фосфора и трибромида бора особой чистоты на содержание примесей органических и неорганических веществ. Идентификация примесей осуществлялась газохроматографическим ИК-спектроскопическ м методами. Проведено сравнение пределов обнаружения некоторых примесей с помощью детекторов электронозахват-ного и ионизационнопламенного. Табл. 2, Библ. 2 назв. [c.114]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    В этой книге рассмотрены такие реакции замещения, которые протекают при не слишком жестких условиях, например при обработке твердого вещества водными растворами при температурах, обычно не превышающих 100°. Реакции этого типа относятся, как правило, к ионообменным. Однако в некоторых случаях происходят более глубокие изменения, а именно изоморфное замещение, которое можно также рассматривать как одну из форм ионного обмена. Подобные явления часто наблюдаются среди алюмосиликатов, однако чтобы осуществить их, необходимо проводить кристаллизацию этих соединений из расплавов соответствующего состава например, S1 может обратимо замещаться на КА1 или NaAl [18]. Синтез описанных выше аналогов, содержащих галлий и германий, можно рассматривать в качестве примера, когда замещение вполне возможно с точки зрения структуры, но осуществить его обычными средствами нелегко. Однако различие между поведением такого рода и истинным ионным обменом довольно условное, так как подвижность даже самых простых катионов в неорганических ионооб-менниках может весьма значительно меняться, а в некоторых случаях может быть равной нулю (стр. 69). Подобным же образом в глинистых минералах наблюдаются такие случаи, когда диффундирующие ионы фиксируются в решетке, что препятствует дальнейшему обмену (стр. 32). Эта область еще мало изучена, и можно ожидать, что в будущем она вызовет значительный интерес. [c.26]

    Основными примесями в техническом тетрахлориде германия являются хлориды других элементов, хлорорганнческие и органические вещества. Из неорганических примесей в техническом тетрахлориде германия присутствуют хлористый водород, хлориды Fe, Al, As, В, Sb, Sn, Ga, Mo и др., из органических веществ — четыреххлористый углерод, хлороформ, дихлорметан, хлорэтан, 1,1- и 1,2-дихлорэтаны [104, с. 58 105, с. 51]. В техническом Ge l содержание хлористого водорода составляет несколько процентов, содержание неорганических и органических примесей находится иа уровне десятых и сотых долей процента. [c.191]

    Аммиачная селитра является единственным неорганическим нитратом, который уже са.м по себе обладает взрывчатыми свойствами, способен распадаться экзотермически с образованием лишь газообразных продуктов и с выделением больших количеств тепла. Значительная безопасность в обращении взрывчатых веществ, изготовленных из аммиачной селитры, давно уже сделала последнюю основным веществом важного класса бризантных взрывчатых веществ для горной промышленности. Очень низкая температура взрыва аммиачной селитры способствует ее применению для изготовления взрывчатых веществ, безопасных в отношении рудничного j-аза и угольной пыли (Wetfersprengsioffe). Эти взрывчатые вещества вполне безопасны в обращении и допускаются в Германии к железнодорожным перевозкам в обычных условиях в неограниченном количестве. Некоторые ограничения в применении обусловливаются ее большой гигроскопичностью, которая вызывает необходимость [c.542]

    Было бы, однако, неправильным полагать, что в других разделах химии, в частности в неорганической, нет новых больших открытий и достижений. Развитие атомной промышленности, переход к реактивным двигателям в авиаций, потребности ракетной техники вызвали ловы-шенный интерес к синтезу химически стойких материалов, хладагентов, керамических и металлокерамических частей, способных сохранять высокую прочность и другие физико-химические качества при высоких температурах. Это привлекло внимание химиков-неоргаников к исследованию огнеупоров, синтезу новых тугоплавких веществ. Широкое изучение таких видов высокоэнергети-ческого топлива, как гидразин, ряда соединений бора и его производных, также привело в последнее время к быстрому росту новых, весьма перопективных ветвей неорганической химии кремнийорганической, фтороргани-ческой и бороргаяической химии. Бурный рост радиотехники и радиоэлектроники способствовал развитию химии полупроводников. Причем современная электроника требует создания полупроводниковых материалов с такими свойствами, которыми не обладают классические полупроводниковые элементы, такие, как германий, кремний, селен. [c.116]

    Тетрахлорид германия реагирует со многими органическими веществами. В частности, он легко вступает в реакции Гриньяра, Вюртца — Фиттига и т. д. Им можно хлорировать неорганические соединения. Так, с окисью кальция он реагирует, образуя смеси хлорида и германата кальция [33]. [c.172]


Смотреть страницы где упоминается термин Германий на неорганических вещества: [c.212]    [c.11]    [c.4]    [c.306]    [c.311]    [c.333]    [c.26]    [c.30]    [c.296]    [c.306]    [c.303]    [c.94]    [c.287]    [c.287]   
Химия германия (1967) -- [ c.268 ]




ПОИСК





Смотрите так же термины и статьи:

неорганических веществ



© 2025 chem21.info Реклама на сайте