Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение диэлектрической проницаемости

    Емкость конденсатора, заполненного жидкостью, измеряли автоматическим мостом переменного тока Р-589. Во всех случаях наблюдали следующее распределение диэлектрических проницаемостей (по убыванию) раствор металлопорфириновых комплексов, извлеченных из асфальтенов раствор асфальтенов раствор асфальтенов, лишенных порфиринов. Сравнение величины Ае/С асфальтенов (рис. 14) с этой же величиной самых полярных фракций смол, изученных автором [169], показывает, что полярность асфальтенов гораздо выше. Этим можно объяснить высокую меж-фазную активность асфальтенов. [c.34]


    Режимы прессования — температура и давление — оказывают существенное влияние на распределение диэлектрической проницаемости по площади образца, так как поскольку температура и давление прессования оказывают влияние на распределение и ориентацию волокна, а также на пропитку стеклянных нитей связующим, то и диэлектрические свойства материала будут зависеть от режимов прессования. [c.162]

    Комплексная диэлектрическая проницаемость е связана с функцией распределения времен релаксации Р(7) соотношением /46/ [c.123]

    На рис. 3.6 показано распределение диэлектрической проницаемости по длине образца при разных температурах прессования. Из рисунка видно, что е распределена неравномерно. Максимальная неравномерность наблюдается при температуре прессования 145°С. Очевидно, существует оптимальная температура, при которой распределение диэлектрической проницаемости по длине образца будет равномерным. Характер дефектограмм, полученных с этих образцов, указывает на различие диэлектрических свойств в центре и по краям образца. [c.162]

    Неравномерные темные и светлые участки характерны для случая, когда в образце имеются диэлектрические неоднородности. Распределение диэлектрической проницаемости неравномерно по [c.162]

    На рис. 3.7 приведено распределение диэлектрической проницаемости по длине образца при разных давлениях прессования. И здесь, так же как в случае различных температур, наблюдается неравномерное распределение е по длине образца меньшее значение в центре, большее — у края. [c.163]

Рис. 3.6. Распределение диэлектрической проницаемости по длине образцов, изготовленных при различных температурах прессования. Рис. 3.6. Распределение диэлектрической проницаемости по длине образцов, изготовленных при <a href="/info/133412">различных температурах</a> прессования.
    В практике неразрушающего контроля часто возникает необходимость количественной оценки поступающей информации о дефектах или параметрах исследуемого материала или изделия. При дефектоскопии достаточно вал<ным является определение геометрических размеров и глубины залегания выявляемых дефектов. В толщинометрии при отображении определенной площади контролируемого изделия равнотолщинные участки будут окрашены своим определенным цветом. В этом случае возникает необходимость количественной оценки измеряемой толщины и выделения областей с одинаковой толщиной. Такая же задача возникает при исследовании диэлектрических характеристик материала (е, tgб) в процессе изготовления изделия. Зная связь диэлектрических характеристик со структурными параметрами материала, технолог может получить ценную информацию о материале или изделии в процессе его изготовления и в случае необходимости изменить параметры технологического процесса. Например, при изготовлении изделий из стеклопластика распределение диэлектрической проницаемости по площади изделия несет информацию о распределении наполнителя и связующего. [c.257]


    Рассмотрим статистическое распределение ионов в растворе с диэлектрической проницаемостью D вокруг какого-либо одного иона, который избран в качестве центрального. Пусть это будет катион с зарядом е. Вокруг этого иона имеется электрическое поле с шаровой симметрией. Потенциал поля в каждой точке есть функция расстояния г точки от центрального иона. [c.404]

    Однако было бы неправильным считать, что все сводится к взаимодействию заряженных частиц со средой, к действию электростатических сил. Так, может происходить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к распределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества,— а для растворителя с низкой диэлектрической проницаемостью и при сравнительно небольших его концентрациях,— в результате усиления влияния заряженных частиц друг на друга могут образоваться ионные пары и более сложные группировки, содержащие как ионы, так и молекулы. [c.168]

    Уравнения (4.10), (4.13) и (4.14) представляют наиболее полную систему уравнений электростатического поля в диэлектрических средах. При этом должно удовлетворяться условие о том, что напряженность поля в бесконечности равна нулю, т. е. все заряды находятся в конечной области пространства. Справедливо также и обратное. Если заданы значения диэлектрической проницаемости, напряженность поля или потенциал в каждой точке пространства, то можно однозначно найти распределения объемных и поверхностных зарядов. [c.136]

    Для получения наиболее простого уравнения, связывающего скорость относительного движения фаз с параметрами, определяющими свойства дисперсионной среды (вязкость, диэлектрическая проницаемость), двойного электрического слоя ( -потенциал) и внешнего электрического поля (напряженность), необходимо задаться некоторыми ограничениями 1) толщина двойного электрического слоя значительно меньще радиуса пор, капилляров твердой фазы (радиуса кривизны поверхиости твердой фазы) 2) слой жидкости, непосредственно прилегающий к твердой фазе, неподвижен движение жидкости в порах твердой фазы ламинарное и подчиняется законам гидродинамики 3) распределение зарядов в двойном электрическом слое не зависит от приложенной разности потенциалов 4) твердая фаза является диэлектриком, а жидкость проводит электрический ток. [c.220]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    Пирс (1955) исследовал диэлектрическую проницаемость эмульсий при концентрациях вплоть до 63% на частоте 1 кгц. Результаты измерений для частиц, размеры которых находились в пределах 2—40 мкм, приведены на рис. .43. Поскольку морская вода, используемая как дисперсная фаза, имеет высокую электропроводность, эмульсии на очень высоких частотах показали диэлектрическую дисперсию, обусловленную межфазной поляризацией. Значения диэлектрической проницаемости, наблюдаемые Пирсом, соответствовали предельным 8 на низких частотах. Пирс сделал вывод, что уравнение ( .233) справедливо для дисперсных систем с беспорядочным распределением сферических частиц, например, для эмульсий. [c.376]

    На рис. У.55 показаны некоторые стадии распределения зарядов. Они соответствуют дисперсии сферических частиц, помещенных между параллельными пластинами конденсатора, к которым приложено напряжение переменного тока. Заряд, вызванный электростатической индукцией (V), накапливается вблизи электродов и фазовых границ. На границах фаз имеется два вида зарядов связанный (о) и несвязанный ( ). Первый заряд — электростатический, связанный с фазовой границей, не может разрядиться, второй — способен перемещаться через фазовые границы диэлектриков и быстро разряжаться на электродах. Эти особенности не свойственны каждому заряду, а лишь в среднем являются функцией электропроводности и диэлектрической проницаемости двух фаз, образующих границу. [c.386]


    В начальный момент, когда на электроды подается напряжение постоянного тока, в пространстве между пластинами появляется некоторое количество индуцированного заряда V (рис. .55, стадия А). Следовательно, распределение заряда наглядно показывает поведение бинарной смеси, составные фазы которой обладают собственными диэлектрическими проницаемостями. [c.386]

    Для частиц с ориентацией большой оси перпендикулярно электрическому полю значения диэлектрической проницаемости (Р < <3 а < 1) ниже, чем при беспорядочном распределении и в случав сферических частиц, и минимальны (Р = О, а = 0), когда вр = е . [c.409]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]

    На практике при изучении диэлектрической релаксации полимеров определяют температурно-частотные зависимости компонент комплексной диэлектрической проницаемости. При этом Б соответствии с принципом ТВЭ можно проводить измерения в режиме изменения температуры с малой по сравнению с изменением т скоростью при фиксированной частоте внешнего электрического поля (скорость изменения температуры образца 19 град/мин). Другой вариант сводится к фиксации температуры образца и вариации частоты внешнего электрического поля. Второй случай экспериментально осуществим труднее, так как требуется аппаратура охватывающая широкий интервал частот, однако он по очевидным причинам предпочтительнее. В этом случае непосредственно реализуется миграция стрелки действия, что открывает возможность строгого расчета некоторых параметров, характеризующих релаксационный процесс таких, например, как полная величина поглощения (ест — е ) или параметр распределения [c.239]

    Прежде всего остановимся на индуцированной поляризации. Если молекулу с симметричным распределением зарядов внести в электрическое поле с напряженностью Е, то на ядра и электронную оболочку будут действовать противоположно направленные силы, вследствие чего центры тяжести зарядов раздвинутся и возникнет диполь л, = а . Коэффициент пропорциональности ю называют поляризуемостью. Она характеризует размер и подвижность электронной оболочки, поэтому ее измеряют как степень ослабления электрического поля, т. е. как диэлектрическую проницаемость е. Между е и средним моментом всех диполей и имеется связь, которая выражается уравнением Клаузиуса — Мосотти [c.99]

    Низкомолекулярные добавки (метанол, ацетон, диоксан и др.) повышают ККМ и снижают мицеллярную массу коллоидных ПАВ. Благодаря хорошей растворимости в иоде при равновесном межфазном распределении содержание их в мицеллах слишком мало, чтобы существенно изменить электрическую энергию и энтропию мицеллообразования. В то же время введение таких добавок снижает диэлектрическую проницаемость растворителя, а это приводит к возраст гию истинной растворимости ПАВ, что проявляется в повышении ККМ. [c.66]

    В теории Дебая диэлектрическая проницаемость входит в выражение для потенциальной энергии раствора как величина, не зависящая от характера распределения частиц в растворе. Однако она зависит от температуры и давления и, следовательно, связана с распределением молекул растворителя и растворенного вещества. В действительности диэлектрическая проницаемость является одним из термодинамических свойств растворов Ее величина пропорциональна второй производной свободной энергии системы но напряженности электрического поля  [c.70]

    Хюккель и Крафт возражают против объяснения минимума на кривых у = / (с) влиянием собственного объема ионов на распределение в ионной атмосфере и считают, что ход кривой объясняется влиянием ионов на диэлектрическую проницаемость раствора. [c.210]

    Порообразующие полимеры содержат вещества — порофоры, способные при нагревании, разлагаясь, выделять газы. Чаще всего это органические соединения, выделяющие азот. Из-за выделения газа полимер вспенивается, и в нем образуются закрытые поры, равномерно распределенные по всей массе материала. Газы уменьшают диэлектрическую проницаемость материала, что имеет существенное значение в области высоких частот. [c.31]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Пористый полиэтилен. Вводя в полиэтилен специальные вещества — порофоры, обладающие способностью при нагревании разлагаться и выделять газы, получают материал с большим количеством газовых включений (пор), распределенных достаточно равномерно по всей массе материала. Образующиеся поры замкнуты, благодаря чему пористые (ячеистые) материалы не пропускают, влаги и могут быть применены для электрической изоляции. Достоинства пористого полиэтилена используются в производстве высокочастотных кабелей, для которых большое значение имеет малая диэлектрическая проницаемость изоляции. Диэлектрическая проницаемость пористого полиэтилена занимает промежуточное значение между диэлектрической проницаемостью полиэтилена и заключенного в порах газа и находится практически в пределах 1,40—1,50 (против 2,2—2,4 для полиэтилена). Вследствие меньшего значения е высокочастотные кабели с пористой изоляцией по сравнению с кабелями со сплошной полиэтиленовой изоляцией при одинаковых характеристиках имеют более тонкий изоляционный слой. [c.101]

    Природа растворителя является еще одним важнейшим внешним фактором, влияюш им на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулоновского взаимодействия б 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.95]

    Пусть силовые линии электрического поля направлены по оси , магнитные силовые линии — по оси а скорость 1 — по оси X. (Здесь скорость =v . Скорость движения заряда или скорость распределения электромагнитного луча в веществе с магнитной и диэлектрической проницаемостями е и ц. Тогда из только что приведенных уравнений Томсона —Лоренца, разделив одно на другое, получим /г Е= / ГН. [c.52]

    СВЧ-излучение, длинноволновое излучение (импедансометрия), магнитная активность организма. Магнитное поле Распределение диэлектрической проницаемости и проводимости Появились идеи технической реализации метода. Созданы экспериментальные системы [c.185]

    Титиевская [27] показали, что добавка к гептану 10 моль/л кап-риловой кислоты резко увеличивает толщину пленок при том же значении расклинивающего давления. Это не находит объяснения Б рамках теории молекулярных сил, поскольку такая добавка не изменяет заметно статическую диэлектрическую проницаемость жидкости (для гептана бд = 2,04, для каприловой кислоты ео = = 1,91). Можно предположить, что неравномерное распределение каприловой кислоты по толщине пленки способствует появлению положительной адсорбционной составляющей расклинивающего давления Пд [6, 7]. [c.297]

    Уравнения (7.2) и (7.3) получены Дебаем при условии, что все диполи в диэлектрике одинаковы и не взаимодействуют между собой, поэтому имеется одно время релаксации т. Однако в реальных диэлектриках, в частности полимерах, процессам релаксации присуще распределение времен Xi, описываемое релаксационным спектром. Тот факт, что диэлектрические свойства полимеров не могут быть точно описаны уравнением с одним т, был впервые принят во внимание Фуоссом и Кирквудом [7.2], которые прямым образом учли существование спектра времен релаксации для полимеров. Учет распределения времен релаксации в конденсированных системах, в которых отсутствуют дальнодействующие силы, сделан в теории диэлектрических свойств слабополярных систем. Если функция распределершя времен релаксации является симметричной, то для обобщенной диэлектрической проницаемости может быть использовано модифицированное уравнение Дебая вида [c.177]

    Теория Гориути — Поляни содержит допущение, согласно которому распределение электронов адиабатически следует за изменением положения тяжелых частиц. Таким образом, приведенные на рис. 150, а кривые следует называть не потенциальными кривыми, а электронными термами. Понятие электронного терма включает в себя потенциальную энергию медленных (тяжелых) частиц и полную энергию электронов. Различие между электронным термом и истинной потенциальной кривой проще всего проиллюстрировать на примере иона в газовой фазе, где два протона, находящиеся на расстоянии Я друг от друга, связаны единственным электроном. Истинная потенциальная энергия этой системы и=еУЫгаН (во— диэлектрическая проницаемость вакуума) и ее зависимость от показана кривой 1 на рис. 151. Полная энергия электрона в системе На+ также зависит от Эта зависимость, рассчитанная на основе решения уравнения Шредингера, представлена кривой 2 на рис. 151. Кривая 3 на рис. 151 отражает зависимость элект- [c.278]

    Отсюда следует, что увеличение коэффициента ионного распределения и уменьшение величины адсорбции органического иона из неводных сред будут при обмене на двухвалентный ион еще больше, чем при обмене минеральных ионов. Экспериментальные исследования показывают, что при одинаковой степени заполнения емкости коэффициент распределения при обмене морфина на кальций возрастает при переходе от воды к метиловому спирту почти в 1000 раз, в то время как константа ионного обмена ионов цезия на ионы кальция только в 10 раз (рис. 93). Зависимость Ig от 1/е в этом случае уже не линейна, так как ЛС/п не зависит от диэлектрической проницаемости. Величина (АС7пм пн о) в уравнении не остается постоянной с изменением степени заполнения адсорбционного объема органическими ионами адсорбционные потенциалы различно изменяются с изменением емкости, поэтому влияние растворителя на коэффициент распределения зависит от степени заполнения емкости адсорбента органическими ионами. Если с изменением степени заполнения С/пм становится сравнимой с или больше нее, то будет происходить изменение знака (i7i,r — /пл)- В этом случае константа с увеличением степени заполнения емкости органическим ионом будет не возрастать, а падать. [c.375]


Смотреть страницы где упоминается термин Распределение диэлектрической проницаемости: [c.163]    [c.146]    [c.66]    [c.459]    [c.391]    [c.343]    [c.164]    [c.236]    [c.175]    [c.343]    [c.65]    [c.210]    [c.190]    [c.233]   
Фракционирование полимеров (1971) -- [ c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2024 chem21.info Реклама на сайте