Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационное рассеяние света антистоксово

    Пусть среда освещается монохроматическим светом с квантами /lVQ, которые поглощаются молекулами среды, вследствие чего они сами становятся источником рассеянного света той же частоты т. е. будет классическое рассеяние света по Релею. Часть энергии падающих квантов /lVo может расходоваться и на возбуждение колебаний ядер внутри молекулы частоты V, и тогда в рассеянном свете появляются кванты меньшей величины /гvд — Ну. Если квант /lVo поглощается молекулой, в которой колебательный уровень уже был возбужден, то энергия этого возбуждения может добавиться к энергии кванта падающего света, и вследствие этого молекула излучает также кванты /гvo + /гv. В результате этого явления в спектре рассеяния наряду с основными линиями частоты V,, появляются симметрично расположенные по обеим их сторонам линии комбинационного рассеяния Vц+v. Линии спектра, которым соответствуют частоты Vo —V, называются стоксовыми, линии с частотами 0 + V — антистоксовыми. [c.74]


    В некоторых случаях в специальном режиме можно получить ИК-спектры испускания нагретых образцов и/или при использовании охлаждаемых детекторов (см. разд. 9.2.2). КР-спектры формируются при неупругом рассеянии света молекулами (см. рис. 9.2-1). Для возбуждения КР-спектров требуются монохроматичные лазерные источники в видимой или ближней ИК-областях, например, Аг+-лазер (488 нм) или К(1 АС-лазер (1,06 мкм). Комбинационное рассеяние относится к очень слабым эффектам. Только около 10 падаюш,его излучения претерпевает упругое рассеяние. Эта часть излучения формирует рэлеевскую линию, имеющую такую же частоту, что и возбуждающее излучение. Около 10 ° падающего излучения приводит к возбуждению колебательных или вращательных уровней основного электронного состояния молекул. Это является причиной потери энергии падающим излучением и вызывает сдвиг полосы в длинноволновую область по сравнению с рэлеевской линией (стоксов сдвиг). Антистоксовы линии с большей частотой, чем падающее излучение, можно наблюдать, когда рассматриваемые молекулы до взаимодействия с лазерным излучением уже находятся в возбужденных колебательных состояниях (при более высоких температурах) (рис. 9.2-2). При комнатной температуре антистоксовы линии слабее, чем стоксовы. Соотношение интенсивности стоксовых и антистоксовых линий является функцией температуры образца (почему ). [c.167]

    Повышения интенсивности рассеянного света можно добиться с помощью достаточно интенсивных световых потоков или мощных лазеров. Качество регистрации рассеянных квантов можно повысить, имея совершенное оптическое и электронное оборудование. Применение лазеров стимулировало развитие этой, уже ставшей классической, области спектроскопии. Лазеры не только повысили чувствительность спектроскопии обычного (спонтанного) комбинационного рассеяния, но и стимулировали развитие новых методов, основанных на вынужденном, например на антистоксовом, комбинационном рассеянии, носящем название когерентного антистоксового рассеяния света (КАРС) или, в частности, резонансного комбинационного рассеяния (РКР). При возрастании интенсивности падающего лазерного излучения становится значительной интенсивность рассеянного стоксового излучения. В этих условиях происходит взаимодействие молекул одновременно с двумя электромагнитными волнами лазерной vл и стоксовой V т = Vл — v , связанных между собой через молекулярные колебания с VI,. Такая связь (энергетическая) между излучением накачки и стоксовой (или антистоксовой) волной может привести к интенсивному поляризованному излучению на комбинационных частотах, другими словами— к вынужденному комбинационному рассеянию. Причем в этих условиях оказывается заметной доля молекул, находящихся в возбужденном колебательном состоянии, и в результате на частотах Гл + VI, возникает интенсивное антистоксово излучение. [c.772]


    Рассеяние света без изменения частоты называется классическим или релеевским. Рассеяние света с изменением частоты называется комбинационным, причем рассеяние с частотой с (оз — 0) ) называется стоксовым, а с частотой с т Ыд) — антистоксовым. [c.17]

    Таким образом, в частотах стоксовой (со —ш —<о ) и антистоксовой (о)д =т +сй ,.) линий комбинируются частота монохроматического излучения источника с частотой собственных колебаний молекулы. Поэтому описанное выше явление называют комбинационным рассеянием. Объяснение этого явления можно дать как на основе классической электромагнитной теории, так и на основе квантовой теории света. [c.75]

    Лазеры могут также использоваться для возбуждения в исследованиях комбинационного рассеяния света. Лазерная спектроскопия комбинационного рассеяния (КР) нашла ряд приложений в исследовании промежуточных продуктов фотохимических реакций. Высокая интенсивность и монохроматичность лазерного излучения обеспечивает методу КР чувствительность, которая недоступна с традиционными световыми источниками. Кроме того, появляется возможность изучения промежуточных соединений с временным разрешением. С перестраиваемыми лазерами становится возможной резонансная лазерная спектроскопия (РЛС). Когда длина волны излучения, возбуждающего комбинационное рассеяние, подходит к сильной полосе поглощения исследуемого образца, интенсивность КР увеличивается на шесть порядков по сравнению с обычным, нерезонансным возбуждением. Одним особенно важным вариантом лазерной спектроскопии КР является когерентная антистоксова спектроскопия комбинационного рассеяния (КАСКР), которая зависит от нелинейных свойств системы в присутствии интенсивного излучения и включает смешение нескольких волн. Высокая чувствительность получается вследствие того, что регистрация проводится скорее по люминесцентной, чем по абсорбционной методике. Паразитное рассеяние возбуждающего света ограничивает чувствительность традиционных исследований КР, но в экспериментах по КАСКР вблизи длины волны испускаемого излучения нет возбуждающего излучения, поэтому рассеянное возбуждающее лазерное излучение может быть отфильтровано. [c.197]

    Рассмотрим с этой точки зрения комбинационное рассеяние света. Пусть падающий фотон возбуждающего излучения характеризуется индексами (ро, о). фонон, участвующий в процессе комбинационного рассеяния, — индексами (р, к) и рассеянный фотон — индексами (р, к ) для стоксова комбинационного рассеяния и (р", к") для антистоксова комбинационного рассеяния. Соответствующие константы в (20.3) имеют вид Qp pp k, к) и Q(vpp" ( о. ). Увеличение со временем числа квазичастиц для рассматриваемых процессов в первом порядке теории возмущений определяется выражениями [c.408]

    Перестраиваемое по частоте когерентное излучение может быть получено и за пределами упомянутого выше спектрального диапазона прямой оптической генерации ЛОС путем преобразования их излучения методами нелинейной оптики (генерация высших гармоник, получение суммарных и разностных частот, использование стоксова и антистоксова вынужденного комбинационного рассеяния разных порядков в водороде или других средах, накачка параметрических генераторов света). Пока это наиболее эф- [c.193]

    Спектры комбинационного рассеяния света (СКР), илираман-спектры, также являются колебательными спектрами. Для их изучения измеряют спектр излучения, рассеянного веществом. Практически поступают следующим образом. Образец индивидуальной жидкости или раствора облучают светом определенной длины волны (длина волны не имеет принципиального значения) и исследуют спектральный состав излучения, обычно рассеянного под углом 90°. В спектре появляются очень интенсивные линии источника света, рассеянного с неизмененной длинЬй волны. По одну сторону от этих линий имеется серия слабых спутников (линии Стокса) по другую сторону еще менее интенсивные антистоксовы линии, расположенные симметрично линиям Стокса на тех же расстояниях от интенсивной линии источника света (рис. 75). [c.611]

    В зависимости от того, в каком из двух состояний, Е или Е", молекула находилась первоначально. Как следствие, в рассеянном свете вместе с неизмененной частотой Vo появляются частоты То + АЕ/к и — АЕ/к происходит комбинационное рассеяние. В нижней части рис. 13 приведена схема спектра, где показаны релеевская линия и линии комбинационного рассеяния, возникающие благодаря переходам между уровнями Е" и Е. Комбинационная линия более низкой частоты, чем релеевская, называется стоксовой линией, линия более высокой частоты — антистоксовой. Вообще величины смещений (в см ) линий комбинационного рассеяния от релеевской линии дают разности энергий для молекулы. Согласно теории, в спектре комбинационного рассеяния могут встретиться линии, возникающие благодаря переходам между вращательными, колебательными и электронными уровнями энергии. До настоя- [c.127]


    Это и используется для интерпретации спектров и определения структуры молекул. Важно, что для обнаружения тех или иных структурных сочетаний атомов мы пользуемся разницами между частотами стоксовых и антистоксовых линий, с одной стороны, и частотою падающего света — с другой эти разницы и именуются частотами комбинационного рассеяния. [c.43]

    Примерами нелинейного рассеяния являются гиперкомби-национное рассеяние, вынужденное комбинационное рассеяние, когерентное антистоксово рамановское рассеяние (КАРС). Гиперкомбинационное рассеяние света заключается в том, что в отличие от линейного рассеяния (см. разд. 5.2.5) в неупругом столкновении с частицей А( ) участвуют два фотона с частотой VI. В результате образуется молекула в другом энергетическом состоянии и один фотон, имеющий энергию hvj. А(Е )+2 Av, [c.125]

    Интенсивность стоксовых линий значительно больше интенсивности антистоксовых линий. Линии комбинационного рассеяния в рассеянном свете наблюдаться не будут, если при вынужденном колебании диполя элек- [c.17]

    Перечисленные группы примесей далеко не исчерпывают всех нормируемых в водах компонентов. К ним относятся также соли, металлы, газы и другие неорганические соединения, не дающие заметной флуоресценции. Их надо определять с использованием других механизмов взаимодействия света с веществом, например механизма комбинационного рассеяния. Однако сечение обычного спонтанного комбинационного рассеяния в 10 раз меньше сечения флуоресценции, и, следовательно, такие слабые сигналы не могут быть обнаружены на фоне флуоресценции РОВ и фитопланктона. Надо переходить в более коротковолновую, антистоксову область (относительно частоты возбуждающего излучения) и значительно увеличивать интенсивность сигнала, исполь пя методы когерентной спектроскопии. Вторая проблема, стоящая перед л,1. срной диагностикой водных сред, состоит в переходе от локальных измерений в пределах замкнутых водоемов к широкомасштабному глобальному мониторингу Мирового океана и внутренних водоемов. [c.166]

    В спектроскопии комбинационного рассеяния образец облучают монохроматическим пучком света с любой удобной длиной волны и ведут наблюдение над светом, рассеянным под прямыми углами к падающему пучку. Если разложить рассеянный свет с помощью призмы или, для более высокого разрешения, решетки, то можно получить спектр, состоящий из отдельных линий. Предположим, что квант, имеющий частоту vo и энергию /lvo, сталкивается с молекулой исследуемого газа. Квант света может быть рассеян с неизмененной частотой, и тогда он порождает часть рэлеевской линии. С другой стороны, падающий квант может вызвать переход в молекуле образца. Пусть, например, это будет колебательный переход из состояния у = О в состояние у = 1. Ассоциированный с этим переходом квант имет частоту, которую мы назовем V , и энергию Ну . Поскольку падающий квант вызвал этот переход, он будет рассеян с понизившейся энергией /г(го — г ). Это значит, что со стороны низких частот от рэлеевской линии будет наблюдаться дополнительная линия со сдвигом частоты, равной V,,. Такая линия называется стоксовой. Если сначала молекула находилась в состоянии и = 1, то в результате столкновения с падающим квантом может произойти переход от о = 1 к и = 0. В этом случае квант будет отброшен с увеличением энергии /l(vo + VD), и линия появится со стороны высоких частот от рэлеевской линии с тем же сдвигом частот. Такая линия называется антистоксовой. В общем случае переход может быть как колебательным, так и вращательным, и в каждом случае линии комбинационного рассеяния будут появляться при частотах о гк, где гк — частота, соответствующая определенному вращательному или колебательному переходу. [c.39]

    Возникновение спутников основной частоты получило название комбинационного рассеяния (КР) света или эффекта Рамана (в зарубежной литературе). Оно было открыто независимо и одновременно советскими физиками Мандельштамом и Ландсбергом и индийскими физиками Раманом и Кришнаном. Вероятность неупругого столкновения мала, поэтому стоксовы линии слабые, интенсивность их в миллионы раз меньше релеевской, при фотографировании требуется длительная, часто многочасовая экспозиция. Еще более слабы ан-тистоксовы линии, так как вероятность сверхупругого рассеяния еще меньше (при низких температурах доля возбужденных молекул ничтожна). Сравнение интенсивности релеевской, стоксовой и антистоксовой линий приведено на рис. 68. [c.146]

    ЗЗж. Вид спектра комбинационного рассеяния. На основании изложенного в предыдущих параграфах можно представить себе полную картину спектра комбинационного рассеяния. Вследствие того, что смещения частоты для вращательных линий являются произведением небольшого целого числа на В, в то время как для колебательных переходов они по порядку величины равны колебательной частоте молекулы, очевидно, что смещение линий во вращательном спектре комбинационного рассеяния много меньше смещения соответствующих колебательных линий. Отсюда следует, что спектр комбинационного рассеяния будет состоять, во-первых, из очень интенсивной линии, соответствующей падающему свету, т. е. линии релеевского рассеяния. С каждой стороны этой линии в непосредственной близости от нее будут располагаться стоксовы и антистоксовы линии почти одинаковой интенсивности, соответствующие различным вращательным переходам. На большем расстоянии от возбуждающей линии со стороны меньших частот будет находиться относительно интенсивная стоксова линия ( -ветви (Д/ = 0) колебательного перехода и = 0—> = 1 с каждой стороны этой линии тесно к ней примыкают слабые линии О- и -ветвей, соответствующие Д/, равному — 2 и +2. Возможно, что анти-стоксова -ветвь будет находиться на равном частотном расстоянии с высокочастотной стороны от возбуждающей линии, но она будет очень слабой при обычных температурах. [c.253]

    Ступенчатое возбуждение гармоник. После первичного акта стоксова комбинационного рассеяния света образуется возбужденная молекула и фотон с уменьшенной частотой йсо 1. Стоксово взаимодействие фотона йсо ] с невозбужденной молекулой дает фотон йю-2, где со-2=(й —2( о —ю-1), т. е. возникает первая гармоника. Эти процессы, повторяясь, дают гармоники все более высокого порядка в стоксовой области. Взаимодействие фотона возбуждающего света йш с возбужденной молекулой дает антистоксов фотон йюь причем молекула переходит в невозбужденное состояние. Взаимодействие антистоксова фотона ЙМ] с возбужденной молекулой дает антистоксову гармонику с частотой ЙС02, где (Ог = (о+2((о — ю-1), и т. д. Конкурирующими процессами являются рассеяние антистоксовых фотонов на невозбужденных молекулах с образованием фотонов с уменьшенной частотой и рассеяние стоксовых фотонов на возбужденных молекулах, в результате чего образуются фотоны с увеличенной частотой. [c.516]

    Происхождение комбинационного рассеяния можно понять, используя представления квантовой теории рассеяния. При столкновении с молекулами кванты света рассеиваются. Если столкновение полностью упругое, они отклоняются от первоначального направления своего движения (от источника), не изменяя энергии. Если же столкновение неупругое, т. е. происходит обмен энергией между квантом и молекулой, молекула может потерять или приобрести дополнительно энергию Д в соответствии с правилами отбора. Приче.м ДЕ должна быть равна из.менению колебательной и (или) врапдательной энергии и соответствовать разности энергий двух разрешенных ее состояний. Излучение, рассеянное с частотой, меньшей, чем у падающего света, называют стоксовым, а с частотой большей — антистоксовым. Стоксово излучение сопровождается увеличением энергии молекул (такой процесс может произойти всегда), и линия его более интенсивна (на несколько порядков), чем антисток-сова, так как в этом случае молекула уже должна находиться в одном из возбужденных состояний (рис. 32.9). [c.770]

    При этом в спектре рассеянного света появляется линия, длина волны которой меньше длины волны Хо возбуждающей линии, это так называемая антистоксова линия. По отношению с возбуждающей линии антистоксова линия смещена в фиолетовую сторону спектра. Так как фотоны могут терять и приобретать различные количества энергии, то в спектре рассеянного света наряду с возбуждающей линией появится несколько линий — так называемые линии комбинационного рассеяния (сателлиты). [c.276]

    Комбинационное рассеяние света. Эффект комбинационного рассеяния, открытый., независимо друг от друга Раманом, Мандельштамом и Ландсбергом, часто применяется для исследования соединений с ковалентной связью. Сущность эффекта заключается в том, что когда свет достаточной интенсивности проходит через вещество, то часть света рассеивается перпендикулярно направлению исходного луча, содержит и большие и меньшие частоты, чем были в исходном луче при обычном рассеянии света (релеевское рассеяние) частота вообще не изменяется. При комбинационном рассеянии наряду с нормальной частотой в спектре обнаруживаются дополнительные линии — спутники . Те линии, частота которых меньше, чем в исходном колебании, называют стоксовыми линиями, а те, у которых частота больше,— антистоксовыми. Физическая картина этого явления представляет собой взаимодействие падающего кванта света с молекулой вещества (неупругое соударение). При этом или часть энергии кванта поглощается молекулой и рассеивается меньший квант, или, если молекула находится в возбужденном состоянии, падающий квант получает от нее дополнительную энергию и рассеивается больший квант. Молекула, следовательно, может находиться в двух состояниях, отличающихся по запасу энергии на А . В первом случае квант рассеянного излучения должен иметь величину (Яг—АЕ), а во втором — величину (/гг+АЯ). Это соответствует частотам стоксовой линии V—(АЕ/Н) и антистоксовой - - АЕ/Н), причем интенсивность стоксовой линии будет выше, так как большинство молекул находится в основном состоянии, а число возбужденных молекул обычно очень мало. Энергетические уровни в комбинационном рассеянии представляют собой уровн , возникающие вследствие изменения поляризуемости молекулы. Свет, т, е. электромагнитные волны, вызывает поляризацию люлекулы и индуцирует в ней переменный диполь. Между напряженностью Е поля и дипольным моментом .I существует прямая пропорциональная зависимость Е= а х., где а — поляризуе- [c.206]

    Эффект комбинационного рассеяния можно объяснить следующим образом при поглощении кванта энергии падающего монохроматического излучения молекула возбуждается до высшего электронного уровня. Спустя очень короткое время возбужденная молекула испускает квант энергии, превращаясь при этом в очень маленький источник света. Если при этом молекула возврав ается на тот же колебательный уровень, что и до поглощения, то испускаемый квант обладает той же энергией. Частота испускаемого излучения аналогична частоте падающего излучения в соответствующей молекуле происходит простое рассеяние света. Если же после испускания молекула обладает более высоким колебательным уровнем (например, v ), чем до поглощения Vq), то испускаемый квант обладает меньшей энергией, чем поглощенный разность между этими двумя энергиями AE равна разности между соответствующими уровнями v —v .AE вычисляют из рамановской частоты при помощи уравнения AJS —Av. Может случиться, что часть молекул находилась первоначально на уровне % и возвращалась после пспускания на уровень В таком случае испускается антистоксова линия, но с той жо частотой v. В действительности явление несколько более сложно, так как, кроме колебательных уровней, участвуют и вращательные уровни так же, как и при поглощении инфракрасного света. [c.110]

    Спектры комбинационного рассеяния веществ, как и инфрзт красные спектры, связаны с колебаниями молекул, но глубоко -отличаются по способу возбуждения. Спектры комбинационного рассеяния возбуждаются почти всегда видимым или ультрафиолет товым светом и не являются спектрами поглощения в обычном смысле слова. Суть дела заключается здесь в том, что прозрачные вещества, освещаемые монохроматическим светом, рассеивают излучение такой же длины волны, как и падающий свет, а также свет других длин волн, причем разности частот падающего и рассеянного света связаны с колебательными и вращательныяш частотами молекулы. Рассеянное излучение и дает начало спектрам комбинационного рассеяния света. Например, спектр рассеянного излучения жидкого четыреххлористого углерода, освещаемого линейчатым источником света, содержит, кроме возбуждающей линии, три относительно сильные линии 218, 314 и 459 смг в сторону более низких частот и слабую пару при 762 и 790 смг (рис, 39). Эти разности частот между падающим и рассеянным светом обычно называются частотами комбинационного рассеяния света и не зависят от частоты возбуждающей линии. Набор частот комбинационного рассеяния света вещества составляет его спектр комбинационного рассеяния, характеризующий вещество при данных условиях. В том же количестве, как и линии со стороны меньших частот, в спектре могут присутствовать линии со стороны более высоких частот но отношению к возбуждающей линии—так называемые антистоксовые линии. Интенсивность линий комбинационного рассеяния света увеличивается обратно пропорционально длине волны возбуждающей линии. Поэтому в видимой области наиболее эффективны синие и фиолетовые возбуждающие линии в тех случаях, когда это не приводит к фотохимическим изменениям, флюоресценции или поглощению исследуемыми соединениями, можно использовать такие ультрафиолетовые линии (как, например, линию 2537 А ртутной резонансной лампы), которые особенно аффективны. [c.150]

    Помимо обычных одноквантовых переходов, в каждом из к-рых поглощается или испускается один квант энергии, возможны многофотонные процессы, представляющие собой либо последовательность неск. одноквантовых переходов, либо один К. п. системы между двумя квантовыми состояниями, но с излучением или поглощением неск. квантов одинаковой или разной энергии. Вероятность многоквантовых переходов быстро уменьшается с понижением интенсивности взаимодействующего с в-вом электромагн. излучения, поэтому их исследование стало возможным лишь благодаря применению лазеров. Простейший двухквантовый процесс-комбинац. рассеяние света, при к-ром частица (атом, молекула) одновременно поглощает квант энергии и испускает квант меньшей или большей энергии. При последоват. поглощении молекулой двух квантов света возможны в ряде случаев фотохим. р-ции (см. Двухквантовые реакции). Четырехквантовый переход является, напр., основой метода когерентного антистоксова рассеяния света (КАРС) (см. Комбинационного рассеяния спектроскопия). С помощью этого метода удается изучать такие состояния, переходы в к-рые запрещены при одноквантовых переходах. [c.368]

    Использование перестраиваемых лазеров увеличивает возможности метода КРС, однако интенсивность излучения все равно остается значительно ниже интенсивности возбуждающего света. Если интенсивность возбуждающего света возрастает, то при некотором значении возникает так называемое вынужденное комбинационное рассеяние (ВКР). Интенсивности вынужденного стоксова и антистоксова излучений могут быть сравнимы с интенсивностью волны накачки. Этот метод наиболее эффективен в газовой фазе при использовании фемтосекундных импульсов света. [c.124]

    Рассеяние света без изменения ча-Стоты называется классическим или Орелеевским. Рассеяние света с измене- ( нием частоты называется комбинацион- ным, причем рассеяние с частотой (со — сор) называется стоксовым, а с частотой с (со + сОе) — антистоксовым. [c.17]

    В настоящее время исследуется большое число нелинейных оптических взаимодействий высокоинтенсивных лазерных лучей с веществом [113, 114]. Два из них — спектроскопия насыщения и двухфотонное поглощение — уже были рассмотрены. Третьим методом является когерентная антистоксова спектроскопия комбинационного рассеяния ( ARS)—метод смещения четырех волн, который привлек широкое внимание и уже нашел некоторое аналитическое применение. Уникальное свойство ARS состоит в том, что оптический сигнал, испускаемый в результате взаимодействия в образце трех фотонов из двух падающих лазерных лучей, сам по себе является когерентным в пространстве и времени лучом ( четвертой волной ). Таким образом, этот метод обладает геометрическими преимуществами лазерной абсорбционной спектроскопии из-за отсутствия потерь, подчиняющихся закону обратной пропорциональности квадрату расстояния, как в падающем, так и в испускаемом образцом свете. Так, пространственную когерентность испускаемого луча можно использовать для исследования недоступных образцов, например внутренней камеры реактивного двигателя [115]. [c.587]

    Диполь, совершающий колебания с заданной частотой, излучает свет этой же частоты, причем интенсивность излучения пропорщюнальна Из уравнения (8.89) следует, что при облучении колеблющейся молекулы светом частоты v излучается свет с частотами V + v HV — к. Положение полос испускания (относительно положения возбуждающего пика) дает значение колебательной частоты v. Спектральная полоса с частотой, меньшей, чем у возбуждающего света, называется стоксовой, а с большей — антистоксовой. Может показаться парадоксальным, что образец способен испускать фотоны, энергия которых больше, чем у возбуждающих фотонов. Отметим, однако, что спектры комбинационного рассеяния порождаются двухфотонными процессами. Если система поглощает два фотона частоты v и испускает один фотон частоты v — v, а другой — v + v. to суммарное изменение энергии равно нулю [c.120]

    Тот факт, что А/может быть равно 2, эквивалентен результату, полученному на основании классической теории в параграфе 336, согласно которому частота рассеянного света изменяется на величину 2v .. В том случае, когда А/ = 0, рассеянное излучение имеет ту же частоту, что и падающий свет, и, следовательно, в этом случае отсутствует комбинационное смещение линий и линии рассеянного света не отличимы от спектральных линий падающего света или от линий релеевского рассеяния. Комбинационные частоты, которые могут наблюдаться для --молекул, соответствуют переходам Д/=- -2 (стоксовы линии) и Д/=—2 (антистоксовы линии). Вследствие того, что вращательные кванты относительно малы, значительное число уровней энергии будет занято многими молекулами при обычных температурах. Следовательно, можно наблюдать несколько вращательных комбинационных переходов, соответствующих начальным значениям /, равным 0,1, 2.. . и т. д. до 10 и даже более. Р1спользуя уравнение (28.1) для энергии жесткого ротатора [c.248]


Смотреть страницы где упоминается термин Комбинационное рассеяние света антистоксово: [c.457]    [c.170]    [c.550]    [c.457]    [c.197]    [c.151]    [c.158]    [c.174]    [c.311]    [c.239]    [c.241]   
Физические методы исследования в химии 1987 (1987) -- [ c.113 , c.176 , c.345 ]




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние

Комбинационное рассеяние света

Рассеяние света

Рассеяние света антистоксово

Свет, комбинационное рассеяние



© 2025 chem21.info Реклама на сайте