Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глина разложение кислотами

    Сырьем для производства сернокислого алюминия 29 go многих странах служит наиболее дешевый и доступный вид природного материала — глина. Разложение глины производят серной кислотой, которая растворяет содержащуюся в глине окись алюминия по реакции  [c.636]

    Разложение каолинов и глин серной кислотой [c.58]

    При комплексном разложении каолиновых глин азотной кислотой с целью получения глинозема в качестве крупно-тоннажного отхода получается нерастворившийся кремнеземистый остаток, так называемый сиштоф в количестве 75% от веса исходного сырья (или 3 г на 1 г глинозема). [c.75]


    Хлористый алюминий получают при разложении прокаленного каолина или глины соляной кислотой. При этом раствор содержит 17% хлористого алюминия, 0,5% хлоридов железа, 23% соляной кислоты и около 60% воды. Удельный вес раствора при 20° С равен 1250 кг/м . Для выпаривания раствора применяют аппарат с погружной горелкой, где в качестве топлива используется электролитический водород [161. [c.217]

    Натрия карбонат (безводный). МагСОз х. ч. (химически чистый), Т = 850 °С. Щелочной плавень. Применяют при анализе силикатов, нерастворимых (кислых) шлаков, огнеупоров, глин, нерастворимых в кислотах остатков, при разложении трз дноразложимых сульфатов. Сплавление проводят с 6-8-кратным количеством плавня в платиновых, железных и никелевых тиглях. [c.48]

    Для выпаривания раствора хлористого алюминия, получаемого при разложении прокаленного каолина или глины соляной кислотой, применена установка периодического действия с погружной горелкой. Установка составляет часть хлорного завода, поэтому для выпарки в качестве топлива используется электролитический водород. [c.440]

    В конденсате, питательной и обессоленной воде кремниевая кислота может содержаться в определяемой обычным молибдатным способом форме и в состоянии, не поддающемся определению этими приемами. Такая неопределимая или иначе нереакционноспособная кремниевая кислота обусловливается весьма дисперсными частичками кварца и алюмосиликатных минералов, например глин. В котловой воде все эти соединения подвергаются разложению и входящая в их состав кремниевая кислота принимает участие во всех процессах наряду с реакционноспособной . Таким образом для эксплуатации важно знать общую концентрацию [c.397]

    ГДР располагает месторождениями гипса, и поэтому диоксид серы для производства серной кислоты получают в основном по этой реакции. С целью экономии энергетических ресурсов температуру разложения понижают введением добавок кокса и глины . При этом образующийся СО уносит избыток кислорода, а СаО в ходе твердофазной реакции с глиной образует силикат и алюминат кальция (основную составную часть цемента). [c.433]

    При температуре выше 300° контактная очистка глинами сопровождается крекингом — разложением церезина и превращением его в парафин, разложением нафтеновых кислот до образования ОО2, дегидрогенизацией смол с последующим их уплотнением в асфальтены, уплотнением ароматических углеводородов в смолы, отрывом и разложением алкановых цепей, дегидрогенизацией цикланов и переходом последних в ароматические углеводороды и т. п. Таким образом, в области температур, лежащих выше 300°, отбеливающие глины не только извлекают смолы путем адсорбции (физический процесс), но также каталитически усиливают их разложение (химические реакции). Адсорбционное извлечение и каталитическое разложение дают в сумме высокий эффект обессмоливания масел. [c.333]


    Из рассмотренных выше продуктов реакции в осадок могут выпадать кремневая кислота и гидролизованная соль алюминия. Однако при достаточно высокой концентрации соляной кислоты в кислотном растворе не происходит коагуляции и осаждения кремневой кислоты и гидролиза хлористого алюминия. Опыты показывают, что при концентрации соляной кислоты в кислотном растворе 10—12% нерастворимых осадков при разложении глинокислотой кварца и глины не образуется. [c.215]

    С этой целью могут использоваться процессы адсорбционной очистки высокопористыми сорбентами в сочетании с каталитической гидроочисткой, позволяющие в результате получать фракции очищенного масла, полимерных ароматических соединений, лёгких углеводородов и соляной кислоты. К другим современным способам удаления ПХД относятся экстракция, химическое связывание хлора с переводом в легко выделяемые или безвредные продукты, каталитическое или биологическое разложение. Однако сложность проблемы удаления из отработанных масел ПХД и других галогенсодержащих соединений заключается в их плохой разлагаемости при биологической очистке. Адсорбционная очистка активированными глинами не всегда удаляет соединения типа ПХД, а утилизация такого отработанного сорбента сама пред- [c.363]

    И среди каталитических реакций встречаются такие, в которых используются либо все центры поверхности, либо активна небольшая их часть. При окислении аммиака в азотную кислоту на платине реакция настолько быстрая, что с поверхностью реагирует при столкновении практически каждая молекула (см. разд. 6, гл. Vni). Тоже самое наблюдается при разложении озона на поверхности окиси серебра [52] и аммиака или германа на поверхностях германия [53]. С другой стороны, не может быть сомнений в том, что необходимость удаления последних следов кислорода с поверхности железных катализаторов синтеза аммиака при обмене азота или при синтезе аммиака указывает на то, что лишь небольшая доля центров активна это подтверждается действием промоторов, например окиси калия, которые могут удалять кислотные центры , активные для крекинга, но неактивные для синтеза аммиака (см. разд. 3 гл. Vni). Доказано (см. разд.7 гл. VHI), что такие кислотные центры активны в реакциях крекинга на природных глинах и алюмосиликатных катализаторах независимо от того, являются ли они кислотами Брэнстеда или Льюиса однако они не заполняют полностью поверхности катализаторов. Введение в поверхность окислов показало, что в некоторых реакциях окисления в каждый данный момент времени активна только небольшая часть центров 154 ..  [c.267]

    Дигидроперекись ж-диизопропилбензола Муравьиная кислота Резорцин, другие продукты разложения Разложение с отщ> СО, НгО Кислые глины в среде безводн. жидкого ароматического углеводорода [1150] еплением СО, СО Алюмосиликат 210—310° С [1135]. См. также [1136, 1137] [c.211]

    Оксид А. получается обработкой бокситов расплавленной щелочью, выщелачиванием водой, разложением оксидом углерода (IV) и прокаливанием осадка гидроксида А. Электрокорунд получают плавкой боксита с коксом и железными опилками. Хлорид А. получают из глинозема, каолина, бокситов или глин с коксом и смолой обработкой газообразным хлором при 650—850°С чистый хлорид А. — взаимодействием А. с хлором сульфат А.— растворением гидроксида А. в горячей концентрированной серной кислоте нитрат А.— растворением гидроксида А. в азотной кислоте с последующим упариванием и кристаллизацией нитрид А. — восстановлением оксида А. углем в атмосфере азота при 1600—1800 °С или азотированием алюминиевой пудры при 800—1200 °С. [c.207]

    Лишь очень немногие известняки бывают настолько чистыми, что при обработке их соляной кислотой не оставляют никакого остатка. Обычно получаемый остаток может состоять из кварца, глины и других силикатов, углистых веществ, пирита и т. п., и способ разложения породы в каждом отдельном случае зависит от количества нерастворимых веществ, а также от того, предполагают ли анализировать их отдельно от растворившейся части породы или нет. [c.1048]

    Разложение по второму способу основано на том, что раствор алюмината, полученный при нагревании в автоклаве, после охлаждения и разбавления метастабилен. Добавляемая гидроокись алюминия ускоряет распад алюмината, причем разложение происходит следующим образом [А1(0Н)4] = А1(0Н)з-Ь0Н. Частицы гидроокиси алюминия служат центрами кристаллизации. Разновидностью способа Байера является способ башенного вскрытия. По этому способу вскрытие производят не в автоклавах, а в высоких бапшях, в которых едкий натр стекает сквозь слои боксита. Товарная стоимость алюминия определяется следующими расходами 32% на AI2O3, 4% на криолит, 12% на электродные угли и 25% на электрическую энергию, еслИ считать стоимость 1 квт-ч в 1,2 пфеннига. Цена боксита составляет только 6% общей стоимости алюминиевого производства. Для Германии имеет большое значение вопрос извлечения AI2O3 из местного сырья, т. е. из широко распространенных глин. Вследствие высокого содержания в глинах кремневой кислоты щелочные методы вскрытия, как, например, способ Байера, для них почти не пригодны, Чтобы уменьшить переход, кремневой кислоты в раствор, для вскрытия глии применяют кислоты, и процесс при этом ведут так, чтобы по возможности избежать растворения окислов железа, ибо-последующее отделение больпшх количеств железа от алюминия представляет значительные трудности. [c.383]


    Активация бентонита. Из бункер-дозатора 2 молотый бентонит загружают в активатор и в течение 30—45 мин тщательно перемешивают воздухом до прекращения выделения газов, образующихся главным образом при разложении карбонатов газы вызывают вспенивание и разбрызгивание пульпы (интенсивное перемешивание опасно для обслуживающего персонала). За это время бентонит распускается в растворе серной кислоты. Образовавшуюся пульну разбавляют водой до 20 о-ной концентрации H2SO4. При разбавлении кислотной пульпы возможно дальнейшее выделение газов и при сильном перемешивании может произойти выброс глины из активатора. Во избежание этого разбавление осуществляют при слабом перемешивании и при умеренной подаче воды перемешивание воздухом может быть усплено только после прекращения выделения газов. [c.74]

    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    На гидратацию исследованных фаз в цементе и глино-цементе, как это видно из рис. 78 и табл. 18, более энергичное замедляющее действие оказывает винная кислота. Если исходные термограммы цемента и глино-цемента имели набор эндоэффектов, свидетельствующих о значительном разложении эттрингита и переходе его в моносульфоалюминат, то в присутствии сахарозы лишь начинается образование эттрингита, а эндоэффекты твердого раствора и гидроалюминатов отсутствуют. Добавление винной кислоты сильнее приостанавливает гидратацию гипса, С3А н, видимо, С4АР, так как в этом случае методом ДТА эттрингит не обнаруживается. [c.164]

    Боковую трубку колбы-приемника присоединяют к поглотительной склянке с концентрированным раствором едкого натра (для поглощения акролеина, который иногда может образоваться при проведении этой реакции). Прибор устанавливают в вытяжном шкафу, К реакционной смеси добавляют несколько кусочков пористой глины и быстро нагревают колбу на пламени- горелки до 195°, причем отгоняется небольшое количество предгона (при медленном нагревании происходит осмоление вещества и образование значительного количества акролеина, что сильно снижает выход аллилового спирта). Предгон -содержит значительное количество муравьиной кислоты. Нагревание и отгонку дистилЛйта продолжают до достижения температуры 260°, когда начинается разложение вещества с выделением белого дыма. Основная реакция проходит при температуре 225—235°. Дистиллят, отгоняющийся в температурном интервале 195— 260° (около 75 мл), собирают отдельно. Затем реакционную массу охлаждают до температуры 100—125°, добавляют к ней еще 50 г муравьиной кислоты и снова нагревают при температуре 195—260° собирают 50 мл дистиллята. Эту операцию повторяют в третий раз, вновь добавляя 50 мл муравьиной кислоты, и собирают около 35 мл дистиллята, отгоняющегося в температурном интервале 195—260°. При этом глицерин используется полностью, и дальнейшее добавление муравьиной кислоты излишне. [c.712]

    Несмотря на то что устойчивость глин в растворах кислот невелика, они были предложены для использования в качестве ионообменников в тех случаях, когда имеет значение их дешевизна, специфичность, а также устойчивость по отношению к радиации и нагреванию в водной среде. Монтмориллонит предложили использовать при переработке радиоактивных сбросных растворов, но из-за малых размеров его частиц для получения материала, который можно использовать в больших колонках, необходима некоторая предварительная обработка. Из двух изученных процессов один заключается в выдавливании материала из водяной пульпы в ионообменную колонку [25], другой — в смешивании глины со связующим раствором, например с этилортосиликатом, с последующим разложением смеси при нагревании. Последняя операция, однако, приводит к некоторой потере емкости [26]. Оба этих метода имеют свои недостатки,.  [c.57]

    Для ГАХ. 67. Уголь общего назначения. 68. Для очистки воздуха. 6Э—83. Для обесцвечивания растворов. 84—89. Для дезодорации и адсорбции из растворов, 90—101. Для адсорбции и катализа в газах. 103. Отбеливающие глины с добавкой активного угля. 104. Для ГАХ. 105—106. Обесцвечивающий уголь двух сортов стандартный и промытый кислотой. 107. Для КЖХ. 108—111 Для ГАХ. 112. Высокоочищен-ный обесцвечивающий уголь. 114, Для адсорбции из газов. 115. Для адсорбции из газов при повышенной температуре. 116. Для очистки газов, рекомендуется для поглощения бензола из бытового газа. 117. Для адсорбции ультрамикропримесей в газах. 118, Для улавливания ядовитых веществ в.газах. 119. Импрегнированный уголь для улавливания сероводорода (превращение в элементарную серу в присутствии следов кислорода). 120. Для улавливания серусодержащих соединений (в результате адсорбции после каталитического разложения). 121. Для очистки органических рас-гворителей (в нарах). 122. Для очистки сероуглерода от сероводорода (в парах). 123. Носитель для катализаторов в газофазных реакциях. [c.125]

    Кадариу нашел, что при определении кремния в силикатах и алюминиевых сплавах лучше употреблять хлорную кислоту,, чем серную. Хлорную кислоту рекомендовали также для растворения оксалата кальция перед титрованием перманганатом. Када-риу1 предложил применять хлорною кислоту для разложения шлаков, высушенного цементного теста, портландцемента, боксита или глины. Турек разлагал глину фтористоводородной и хлорной кислотами. После перевода образовавшихся перхлоратов в сульфаты анализ заканчивали обычными методами. [c.123]

    Метод спекания. Большинство встречающихся в природе и искусственно получаемых силикатов не разлагается кислотами. Опытным путем Ю. И. Усатенко установлено, что процесс разложения силикатов, динаса, шамота, кварца, шлака, глин, хромистого железняка, агломерата железных руд и других неразлагаемых кислотами материалов сокращается во много раз при кратковременном нагревании с минимальным количеством Naa Og. При этом получается не плав, а пористая прочная масса, т. е. происходит спекание. [c.300]

    Первые процессы крекинга, осуществленные в 1920—1930 гг., представляли некаталитические термические реакции. В этих реакциях большие молекулы парафинов или боковые цепи замещенных ароматических молекул расщепляются на меньшие молекулы насыщенных углеводородов и олефинов считается, что в качестве промежуточных соединений при этом образуются незаряженные свободные радикалы. Главными конечными продуктами, полученными из парафинов и олефинов и боковых цепей ароматики, были углеводороды от С1 до С3. Однако очень скоро было установлено, что лучшие топлива можно получать каталитическим разложением, и некаталитический термический крекинг был в основном вытеснен каталитическим крекингом на древесном угле или платине, на различных кислотных катализаторах, как, например, на обработанных кислотой глинах или смесях силикагеля с окисью алюминия или на катализаторах двойного действия , состоящих из платины, никеля или молибдена на окиси алюминия. Считается, что кислотные катализаторы действуют подобно катализаторам Фриделя — Крафтса, превращая олефины в карбониевые ноны, которые участвуют в различных превращениях, давая ряд продуктов, совершенно отличных от получаемых при термическом крекинге, с большими выходами углеводородов Сз и С4, разветвленных олефинов, изопарафинов и ароматических углеводородов, которые, в частности, используются в составе моторных топлив или как исходные вещества для синтеза других химических продуктов. По-видимому, эти реакции на металлических катализаторах по своему характеру относятся к свободнорадикальным, но тем не менее получаемые в них продукты более полезны, чем продукты термического крекинга, так как здесь в большей степени идут изомеризация в разветвленные цепи, дегидрирование С - [c.336]

    Гидроперекись кумола Абиетиновая кислота Хлорциклогексан (метилхлорциклогек- сан) Фенол, ацетон Рааложение с от Жидкие углеводороды, СО, СО, Разложение с Пяти- и шестичленные циклены А1зОз ЗЮз 40—50 С [1516]. См. также [1517) щеплением СО, СО Глина активированная 250 С [1518] отщеплением НС1 Алюмосиликат на активированном угле 400— 450° С [1510] [c.274]

    Проведенные исследования показали, что скорость реакции разложения углеводорода можно повысить при помощи добавок разных веществ — газообразных, жидких и твердых. Некоторые вещества, обладающие способностью повышать скорость реакций, были известны много лет тому назад, однако они не нашли промьппленного применения. Современный каталитический крекинг-процесс был разработан позже (благодаря исследованиям Е. Гудри в 1924—1928 гг. [55]). Было найдено, что бензины хорошего качества могут быть получены обработкой тяжелых фракций нефти при высокой температуре определенными сортами глин, особенно если последние предварительно были обработаны кислотой. [c.391]

    Гринел [56] разработал метод определепия кислотности катализаторов типа фильтрол , основанный на диспергировании образцов глин в водных растворах Na l и титровании выделившейся кислоты слабым раствором КОН. Кислотность глины фильтрол уменьшалась почти линейно с ростом температуры прокаливания в диапазоне 482—816° С. Из указанно11 зависимости для нескольких образцов Гринел определил температуры разложения глины, причем они находились в хорошем соответствии с температурами, определенными методом рентгеноструктурного анализа. При постоянной концентрации пара с ростом температуры от 482 до 760° С кислотность быстро падала, а затем оставалась на одном уровне. [c.30]

    В противоположность этой реакции каталитический характер многих других превращений был выяснен раньше. Выяснение каталитического характера реакций происходило по мере того, как становились более ясными состав исходных и конечных продуктов реакции, их основные свойства и стехиометрические отношения. Для Пристли, например, было очевидным, что пары спирта претерпевают разложение посредством раскаленной трубки. Но он не мог еще оценить значение данного явления и тем более сказать что-либо существенное о содержании явления. По-иному уже представляются исследования голландских химиков. Несмотря на то, что эти исследования проводились до установления стехиометрических законов, они основывались на более четких представлениях о составе исходных и конечных продуктов. У голландских химиков спирт также был пропущен через раскаленную глиняную трубку, в результате чего был получен газ такой же, как и при перегонке спирта с серной кислотой . Замена глиняной трубки на стеклянную приводила к тому, что реакция прекращалась. Это навело на мысль о том, что через стенки глиняной пористой трубки в сферу реакции попадает воздух, который и вызывает реакцию. Тогда они провели опыты в глиняной трубке, изолированной от воздуха свержу стеклянной трубкой, а также в стеклянной трубке, наполненной куооч1ками глиняной трубки. В 01боих случаях реакция снова происходила. Поэтому они пришли к выводу, что глина — материал трубки должен иметь влияние на природу газа [6]. Это уже нечто такое, что указывает на связь с савременным катализом. [c.11]

    После экстракции антрахиионовый раствор содержит около 0,1—0,3% воды, небольшие количества перекиси водорода (в качестве типичной указана концентрация 0,17 г/уг), а также различные окисленные органические вещества, например органические кислоты, альдегиды, кетоны и т. д. Эти соединения могут отравить никелевый гидрогенизационный катализатор, а поэтому они должны быть удалены до повторной циркуляции. По германскому процессу рабочий раствор подвергают сушке водным раствором углекислого калия с концентрацией 33% (по весу) этот раствор извлекает также часть перекиси водорода. Органические вещества и следы воды удаляют путем адсорбции на слое глины. Остаточную перекись водорода подвергают разложению на слое никельсеребряного катализатора, причем иногда к возвратной жидкости до подачи ее на носитель с катализатором для лучшего удаления перекиси водорода и растворенного кислорода добавляют небольшое количество (около 10%) восстановленного раствора из гидрогенизатора. При этом образуется небольшое количество воды, которое остается в рабочем растворе. [c.73]


Смотреть страницы где упоминается термин Глина разложение кислотами: [c.293]    [c.178]    [c.106]    [c.284]    [c.28]    [c.73]    [c.1009]    [c.198]    [c.84]    [c.9]    [c.386]    [c.145]    [c.383]   
Методы разложения в аналитической химии (1984) -- [ c.63 , c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Глины



© 2024 chem21.info Реклама на сайте