Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектры двухатомных молекул комбинационного рассеяния

    Отличительной особенностью спектров комбинационного рассеяния (СКР) многоатомных молекул от спектров двухатомных молекул является то, что многоатомные молекулы обладают большим числом степеней свободы колебательного движения и, следовательно, в спектрах наблюдается большее число линий комбинационного рассеяния. Число степеней свободы колебательного движения атомов в молекулах определяется уравнением (1.68) или (1.69). [c.29]


    Вращательные спектры линейных многоатомных радикалов совершенно аналогичны спектрам двухатомных молекул (стр. 56 и сл.), поэтому нет необходимости останавливаться на них подробно. Эти спектры проявляются в микроволновой области, но до сих пор наблюдался только один такой спектр для свободного радикала — для N O [121]. Спектр комбинационного рассеяния для какого-либо радикала не наблюдался, однако были получены спектры электронного спинового резонанса. Для линейных многоатомных молекул не было обнаружено ни одного спектра переориентации спина. [c.99]

    Инфракрасные спектры двухатомных молекул. Молекулярные колебания проявляются в двух типах спектров. Кванты инфракрасного излучения возбуждают колебания непосредственно, и поэтому их поглощение приводит к возникновению инфракрасного спектра. Кванты видимого излучения косвенно дают те же результаты, которые можно наблюдать в спектрах комбинационного рассеяния (в раман-спектрах). Так как колебание большой молекулы относительно сложно, то мы рассмотрим сначала колебательное движение двухатомных систем с тем, чтобы избежать осложнений, связанных с большим размером молекул. [c.34]

    В отличие от линий спектра флуоресценции линии комбинационного рассеяния не характеризуются одной определенной частотой, а имеют фиксированную разность частот Аю между возбуждающим и рассеянным излучениями. Эти разности частот соответствуют разностям между колебательными уровнями основного состояния. Гомополярные двухатомные молекулы, например N2, Ог и Нг, которые неактивны в инфракрасном поглощении (у них отсутствует постоянный дипольный момент), имеют спектры комбинационного рассеяния, по которым можно определить такие величины, как момент [c.154]

    Инфракрасные колебательные спектры двухатомных молекул. Инфракрасные колебательные спектры многоатомных молекул. Колебательные спектры комбинационного рассеяния. ... [c.3]

    Если на молекулу действует внешнее электрическое поле, ядро будет смещаться по отношению к электронам. Это означает, что центр отрицательных зарядов сместится по отношению к центру положительных зарядов. Таким образом, будет возникать наведенный диполь дополнительно к тому диполю, который уже мог существовать. Это свойство назьшается поляризуемостью молекул. Даже в двухатомных молекулах с одинаковыми атомами колебания увеличивают искажение электронного облака, образующего связь, и таким образом вызывают изменение начальной поляризуемости. Всякие колебания, которые вызывают такие изменения, будут увеличивать частоту рассеянного света в спектре комбинационного рассеяния и называются активными в этом спектре. Смещение частоты соответствует изменению энергетического уровня молекулы. Интенсивность линии рассеяния зависит от изменения поляризуемости, связанного с данным типом колебания. [c.316]


    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]

    Колебательный спектр комбинационного рассеяния. Спектр КР связан не с дипольным моментом, а с поляризуемостью молекулы, и так как поляризуемость двухатомной молекулы изменяется при колебаниях (da/dr Ф 0), все двухатомные молекулы, гомонуклеарные и гетеронуклеарные, активны в колебательных КР-спектрах, причем интенсивность спектров неполярных молекул выше, чем полярных. [c.165]

    Спектры комбинационного рассеяния. Раман-спектры. Колебание атомов в двухатомной молекуле описывается изменением колебательной координаты. В качестве колебательной координаты удобно принять разность между межатомным расстоянием и равновесным межатомным расстоянием [c.15]

    Из вращательных спектров комбинационного рассеяния получают точные данные о строении двухатомных молекул, состоящих из атомов одного сорта. И более сложные симметричные, без дипольного момента молекулы могут быть изучены [c.176]

    Гомоядерные двухатомные молекулы не имеют постоянных дипольных моментов и не дают чисто вращательных спектров, однако для них наблюдаются вращательные спектры комбинационного рассеяния (разд. 15.10) и в их электронных спектрах имеется тонкая вращательная структура. [c.462]

    Для того чтобы колебание было активным в спектре комбинационного рассеяния, необходимо изменение поляризуемости молекулы а (разд. 14.12). Это правило отбора легко объяснить, так как если происходит изменение поляризуемости, сопровождающее колебание, то при частоте колебания будет изменяться наведенный момент. Поскольку поляризуемость гомоядерной двухатомной молекулы изменяется во время колебания, спектры таких молекул имеют колебательные линии КР. [c.479]

    Как и все симметричные двухатомные молекулы, водород не имеет дипольного колебательно-вращательного спектра, и молекулярные постоянные Нг в основном электронном состоянии могут быть найдены только на основании результатов исследования квадруполь-ного колебательно-вращательного спектра, спектра комбинационного рассеяния и электронного спектра Квадрупольный спектр Нг, лежащий в фотографической инфракрасной [c.182]

    Другим методом исследования колебаний молекул является комбинационное рассеяние света. При падении монохроматического света на образец исследуемого соединения большая часть излучения рассеивается без изменения длины волны. Однако небольшая доля рассеивается в виде света с несколько большей или несколько меньшей частотой и при прохождении через спектрограф появляется в виде сравнительно слабых полос по обе стороны от возбуждающей линии. Разницы частот соответствуют частотам определенных колебаний молекулы. Существенно то, что колебание активно в комбинационном рассеянии, если оно вызывает изменение электрической поляризуемости — величины, приблизительно пропорциональной объему молекулы. При симметричном колебании молекулы СО, такое изменение происходит, и поэтому такое колебание проявляется в спектре комбинационного рассеяния. Обычно колебания, неактивные в инфракрасном поглощении, активны в комбинационном рассеянии, и обратно. Аналогично двухатомные молекулы с одинаковыми ядрами, например молекулы кислорода или азота, не поглощают в инфракрасной области, так как их единственное колебание не создает у них дипольного момента, но это колебание приводит к появлению линии в спектре комбинационного рассеяния. Такие молекулы дают также вращательные линии комбинационного рассеяния (см. стр. 329). [c.332]

    Построить кривые потенциальных энергий химических свя -зей можно на основании анализа колебательных частот молекул. Для этой цели используют данные ИК-спектров, спектров комбинационного рассеяния и флуоресценции. Обзор соответствующей литературы можно найти в монографиях [[22—24]. Здесь рассмотрим лишь простейшую теорию и основные экспериментальные данные для двухатомных молекул. [c.18]


    Здесь уместно упомянуть еще об одном очень интересном спектральном методе, который пока еще не получил широкого распространения в каталитических исследованиях. Речь идет о резонансном комбинационном рассеянии света, который часто позволяет получить большое число хорошо разрешенных компонент колебательной структуры. Использование этих данных для расчета поверхностей потенциальной энергии связей в каталитических комплексах и адсорбированных молекулах требует, однако, дальнейшей разработки теории колебаний в многоатомных системах и создания соответствующих автоматизированных программ для расчетов на ЭВМ. Решение этой задачи будет способствовать и более строгой интерпретации спектров фосфоресценции, а также позволит исследовать с помощью ИК-спектроскопии многие нехарактеристические колебания, которые нельзя трактовать в простом двухатомном приближении. Таким образом, перспективы дальнейшего использования спектральных методов для изучения элементарных стадий катализа достаточно широки. [c.35]

    Однако не все колебательные частоты молекул наблюдаются как в спектрах комбинационного рассеяния, так и в инфракрасных спектрах поглощения. В инфракрасной области поглощение есть функция изменения величины дипольного момента, а в спектрах комбинационного рассеяния — излучение является функцией изменения коэффициента поляризуемости молекулы при данном колебании. Так, например, двухатомные молекулы типа Ог, На, N2 и т. д. будут прозрачны в инфракрасной области из-за симметрии зарядов, но дадут характерные полосы излучения в спектрах комбинационного рассеяния, так как световые колебания сместят электронное облако в молекуле, образующее химическую связь, и поляризуют молекулу. Благодаря этому явлению ряд частот наблюдается или только в одном или в другом спектре. Следовательно, для получения более полной картины колебательных частот необходимо использование данных обоих методов. Удобство их совместного [c.415]

    При высоком разрешении были исследованы чисто вращательные спектры комбинационного рассеяния нескольких двухатомных и многоатомных линейных молекул. Эти исследования проводились почти исключительно с неполярными молекулами, так как вращательные спектры полярных молекул могут быть изучены в микроволновой области с разрешением значительно большим, чем доступное в настоящее время в спектрах рассеяния. Типичные примеры полученных спектров показаны на рис. 2—7. [c.144]

    Вращательные постоянные, эффективные моменты инерции и межъядерные расстояния, полученные при изучении спектров комбинационного рассеяния некоторых двухатомных и линейных молекул [c.149]

    Несмотря на то что изменения длины волны при комбинационном рассеянии света соответствуют поглощению или излучению в инфракрасной области, ИК- и КР-спектры не всегда оказываются идентичными. Так, часто при сравнении этих спектров может быть получена ценная информация относительно симметрии молекул. Причина заключается в том, что электрически симметричная связь (т. е. связь, не имеющая дипольного момента) не поглощает в инфракрасной области. Например, симметричные двухатомные молекулы, подобные На и Оа, всегда электрически симметричны и не дают поглощения в инфракрасной области. Однако при комбинационном рассеянии происходит возбуждение симметричных колебаний . В такой молекуле, как этилен СНа=СН2, валентные колебания двойной связи симметричны, поскольку оба конца молекулы одинаковы, в результате в ИК-спектре не проявляется поглощение, обусловленное валентными колебаниями двойной связи оно оказывается слабым во всех этиленах, строение которых близко к симметричному. Однако это колебание сильно проявляется в КР-спект-ре этилена и свидетельствует о симметричности структуры этилена. [c.51]

    Несмотря на то что изменения длины волны при комбинационном рассеянии света соответствуют поглощению или излучению в инфракрасной области, инфракрасные и рамановские спектры не всегда оказываются идентичными. Так, часто при сравнении инфракрасных и рамановских спектров может быть получена ценная информация относительно симметрии молекул. Причина заключается в том, что электрически симметричная связь (т. е. связь, не имеющая дипольного момента) не поглощает в инфракрасной области. Например, симметричные двухатомные молекулы, подобные Н2 и О2, всегда электрически симметричны и не дают поглощения в инфракрасной области. Однако при комбинационном рассеянии происходит возбуждение симметричных колебаний. В такой молекуле, как этилен СНг = СНз, [c.43]

    При исследовании спектров комбинационного рассеяния растворов азотной кислоты в серной кислоте обнаружена одна линия с частотой 1 400 слг, которая не может быть приписана ни нитрат-иону, ни молекуле азотной кислоты, ни азотному ангидриду. Обнаружена эта линия и в спектре безводной азотной кислоты, но у смеси азотной и серной кислот она значительно сильнее. Интенсивность этой линии уменьшается с увеличением содержания воды в смеси. Как известно, одну основную линию в спектре комбинационного рассеяния показывают лишь двухатомные и линейные симметричные трехатомные частицы. В данном случае такой частицей может быть только нитроний-катион [c.145]

    Те же сведения, которые получаются из микроволновых спектров, можно получить и из вращательных спектров комбинационного рассеяния, где нет правила отбора, требующего наличия постоянного дипольного момента. Вследствие этого из вращательных спектров комбинационного рассеяния были получены очень точные данные о двухатомных молекулах из одинаковых атомов. Экспериментально полосы обнаруживались в виде стоксовых линий с частотами, соответствующими вращательным переходам. [c.234]

    Однако в случае простых молекул вопрос об активности колебания можно решить при рассмотрении формы нормального колебания. Очевидно, например, что колебание гомеополярной двухатомной молекулы неактивно в инфракрасном спектре, но активно в спектре комбинационного рассеяния, тогда как колебание гетеро-полярной двухатомной молекулы активно в инфракрасном спектре и в спектре комбинационного рассеяния. Из рис. б видно также, что в инфракрасном спектре активны все колебания молекул НгО и СОг (кроме колебания VI последней молекулы), так как они приводят к изменению дипольного момента. С другой стороны, в спектре комбинационного рассеяния активны все колебания молекулы НгО и колебание VI молекулы СОг, так как они приводят к изменению поляризуемости. Колебания vг и vз молекулы СОг неактивны в спектре комбинационного рассеяния, как это следует из рис. 7, так как два состояния колебания (до и после прохождения ядер [c.41]

    Значения длин связей в некоторых двухатомных и линейных молекулах, полученные из вращательных спектров комбинационного рассеяния [c.62]

    Поляризуемость двухатомной молекулы (например, Нг) анизотропна электроны, образующие связь, легче смещаются в поле, направленном вдоль молекулы, чем в поперечном. Молекулы, попадая в поле излучения частоты V, оказываются в переменном электрическом поле, и, следовательно, наведенный дипольный момент осциллирует с частотой V. Осциллирующий диполь излучает с частотой падающего излучения, что объясняет природу рэлеевского рассеяния. Если в молекуле одновременно реализуются внутренние движения, оказывающие периодическое влияние на поляризуемость, то диполь будет испытывать дополнительные осцилляции с периодичностью этих движений (vкoл), а это значит, что наряду с возбуждающей частотой V должны появиться компоненты с частотой V Vкoл. Однако следует отметить, что для проявления комбинационного рассеяния молекулярное вращение или колебание должно вызывать изменение какой-либо составляющей поляризуемости молекулы. Поэтому, если молекула имеет низкую симметрию или совсем ее не имеет, не приходится задумываться, какие типы ее колебаний будут активны в комбинационном рассеянии обычно активными считаются все колебания. Все типы колебаний в тетраэдрической молекуле приводят к изменениям и дипольного момента, и поляризуемости следовательно, все они активны как в ИК-, так и в КР-спектрах, что [c.771]

    Vfl может быть больше нуля, равно пулю и меньше нуля соответственно линии рассеянного света будут смещены в сторону красной области спектра, останутся пеизмев епными или сместятся в сторону фиолетовой области. Соответствующие соударения называются неупругими, упругими и сверхуиругими. Величины смешений в обоих направлениях одинаковы, так что линии появляются парами они находятся на одинаковых расстояниях от несмещенной линпи, но интенсивности их различны. На измерении температурной зависимости относительной иптенсивности обеих смещенных полос основан один из методов определения постоянной Планка h (гл. III). Хотя комбинационное рассеяние света и находит объяснение с точки зрения гипотезы Смекала, его истинное происхождение следует искать в изменении поляризуемости молекулы за счет колебаний атомов данной молекулы. В результате взаимодействия переменного внутримолекулярного поля, возникающего таким образом, и гармонического поля, связанного с электрической компонентой падающего света, возникают три электромагнитных колебания с частотами vl, v -f--l-Vji и Vb—Vfl, где —частота падающего света, а уц—частота комбинационного рассеяния. Рассмотрим двухатомную молекулу, в которой ядра колеблются относительно положений равновесия с постоянной частотой Vr. Смещение [c.428]

    Р- и 7 -ветви колебательно-вращательных спектров в газах, состоящих из двухатомных молекул с разными ядрами, отвечают соответственно изменениям вращательного квантового числа / на —1 и +1, а нулевая линия, отвечающая переходу между двумя колебательными состояниями с одинаковым вращательным квантовым числом, отсутствует, хотя ее положение в голове полосы можно точно определить с помощью уравнения Фортрата. Волновые числа для этих линий, отсутствующих в инфракрасных спектрах галогеноводородов, приведены в последнем столбце табл. 17 вместе с единственными линиями, наблюденными непосредственно в спектрах комбинационного рассеяния для веществ в трех агрегатных состояниях. Согласие [c.431]

    Двухатомная молекула характеризуется колебаниями только одной частоты, но иелинейная многоатомная молекула, состоящая из п атомов, имеет Зп—6) степеней свободы колебательного движения. Если частоты соответствующих колебаний можно определить с помощью инфракрасных или ультрафиолетовых спектров или спектров комбинационного рассеяния, то можно вычислить и колебательную составляющую энтропии. [c.253]

    Совместное применение инфракрасного и комбинационного спектра позволяет во многих случаях надежно установить тип симметрии молекул и расположения ядер в пространстве. Например, для молекулы СОз возможны конфигурации— линейная Ооон) или нелинейная (Сгг). Для второй все колебания активны как в инфракрасном, так и в комбинационном спектре. Опыт же показывает, что в инфракрасном спектре активны два колебания ( 2 и Хц), а в случае комбинационного рассеяния лишь одно ( 1). Это отвечает линейной молекуле, имеющей центр симметрии. Следовательно, СО — лтнтейна и симметрична. Напротив, обнаружение всех трех частот молекулы НгО в инфракрасном спектре неопровержимо. указывает, что молекула нелинейна. Межъядерные расстояния проще всего определяются из вращательных спектров. При их интерпретации принято различать линейные многоатомные молекулы, для которых имеется два одинаковых момента инерции, и нелинейные, с тремя моментами инерции /а, в, /с. Если /а=г=/в = /с, молекулу относят к типу симметричного волчка (например, СНзР), при 1аФ вФ /с — к типу ассиметричного (например, НПО), при /д = /в = /д—к типу сферического волчка (ЗРе). Соответственно, имеется три вращательных постоянных Л, В и С, связанных с моментом инерции соотношением, аналогичным (15) для двухатомной молекулы. Из вращательного спектра, аналогично тому, как это делают для двухатомных молекул (см. 1), находят значения моментов инерции. [c.30]

    Для некоторых двухатомных молекул вращательные линии в спектрах наблюдались уже вскоре после открытия эффекта комбинационного рассеяния. Так, Мак-Ленан и Мак-Леод [69] первые наблюдали их в спектре жидкого водорода. Кроме колебательной линии, они обнаружили две вращательные (У = 2- -0иУ = 3- -1)ина основании этого пришли к заключению, что эффект комбинационного рассеяния может наблюдаться для неполярных молекул и что правилом отбора для вращательных переходов молекулы Нг является условие AJ = 2. Более того, они показали, что их работа экспериментально доказывает точку зрения Деннисона [30], утверждавшего, что водород представляет собой смесь двух отдельных типов молекул, одна из которых имеет только четные вращательные уровни, а другая — только нечетные. [c.116]

    После открытия эффекта комбинационного рассеяния света (1928) спектральная техника позволяла исследовать практически лишь двухатомные молекулы типа Ог, N2 и т. п. В 50-х годах удалось получить разрешенные чисто вращательные спектры ряда симметричных молекул с числом атомов до 8—12 (Б. Стоичев). В настоящее время использование лазерной техники привело к новому этапу в развитии метода комбинационного рассеяния света для определения вращательных постоянных и геометрического строения молекул. [c.113]

    Структура спектра комбинационного рассеяния часто оказывается довольно сложной даже для двухатомных молекул. В особом случае двухатомных молекул, у которых угловой момент количества движения электроиа относительно межъядер-ной оси равен нулю (Л = 0), правила отбора [127] разрешают колебательно-вращательные переходы с изменением вращатель- [c.354]

    Плачек [128] применил квантовый подход к теории поляризуемости для того, чтобы получить величины дифференциального сечения рассеяния для вращательного комбинационного рассеяния двухатомных молекул в случае плоскополярпзован-ного падающего света. На рис. 6.12 приведен пример чисто вращательного спектра комбинационного рассеяния. Использование чисто вращательного спектра комбинационного рассеяния позволяет получить некоторые преимущества [133, 134]. В первую очередь сечение вращательного рассеяния молекулы обычно больше (иногда на два порядка величины), чем сечение [c.357]


Смотреть страницы где упоминается термин Спектры двухатомных молекул комбинационного рассеяния: [c.35]    [c.99]    [c.355]    [c.256]    [c.432]    [c.44]    [c.262]   
Теоретическая химия (1950) -- [ c.238 , c.254 ]




ПОИСК





Смотрите так же термины и статьи:

Двухатомные молекулы

Комбинационное рассеяние

Рассеяние молекулами

Спектры комбинационного рассеяния

Спектры молекул



© 2025 chem21.info Реклама на сайте