Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Линейные молекулы колебательно-вращательные спектры

    СОСТОЯНИЯ, которые сопровождают колебательные переходы, являются причиной тонкой структуры колебательных полос. Вследствие того что многоатомные молекулы могут иметь три различных момента инерции, вращательная структура будет усложнена. Далее, в результате того, что величины этих моментов инерции для относительно больших молекул могут быть значительными, расстояние между последовательными вращательными линиями часто бывает столь малым, что полное разрешение невозможно. Тем не менее могут быть получены полезные сведения на основании общего вида полосы, как это будет пояснено ниже. Несмотря на их сложность, изучение вращательной структуры колебательных полос многоатомных молекул важно вследствие того, что оно облегчает решение часто трудной задачи корреляции наблюдаемых полос с видами нормальных колебаний молекулы. Рассмотрение влияния вращения молекулы на колебательный спектр более удобно производить, подразделив молекулы на четыре группы в соответствии с определенными соотношениями моментов инерции. К первой группе относятся линейные молекулы они имеют два одинаковых момента инерции, а третий момент инерции равен нулю таким образом, они ведут себя подобно двухатомным молекулам. Ко второй и третьей группе относятся молекулы, которые имеют или два равных момента инерции, а третий отличный от нуля (симметричные волчки), или все три равных между собой момента инерции (сферические волчки). К четвертой группе относятся несимметричные молекулы, у которых все три момента инерции отличны друг от друга,—асимметричные волчки. [c.271]


    Трудно разрешимы. В тех случаях, когда структура в спектре существует, определенные переходы могут быть разрешены или запрещены правилами отбора для вращательных и колебательных переходов. Эти правила также основаны на приближении Борна — Оппенгеймера, предполагающем разделение волновых функций отдельных мод. В асимметричной молекуле не существует ограничений на возможные колебательные переходы, так что ее спектр соответственно достаточно сложен. В симметричной молекуле только колебательные уровни той же колебательной симметрии для частиц на верхнем и нижнем электронных уровнях могут сочетаться друг с другом. Это значит, что, хотя все симметричные колебания сочетаются друг с другом, для антисимметричных колебаний возможны лишь переходы с До = 0, 2, 4 и т. д. Вращательная структура в электронной спектроскопии особенно сложна, поскольку вращательный момент молекулы может взаимодействовать с электронным моментом, причем известно несколько типов и случаев такого взаимодействия. Более того, возможные для молекулы вращения зависят от ее формы (линейная, симметричный волчок и т. д.), так что нет смысла приводить здесь отдельные правила отбора для вращения. Достаточно одного известного примера для перехода линейной молекулы правила отбора записываются в виде АЛ = 0, 1. [c.43]

    Колебательно-вращательные спектры охватывают не только многоатомные молекулы с постоянным дипольным моментом. Колебательные спектры с низким разрешением присутствуют в инфракрасной области и области рамановских частот. Правила отбора, определяющие число линий рамановских и инфракрасных спектров, очень сильно зависят от симметрии. Так, например, линейная трехатомная молекула ВАВ обладает двумя сильными линиями в инфракрасном спектре и только одной сильной линией (иной частоты) в раман-спектре. Оба спектра дополняют друг друга. Молекула, обладающая центром симметрии, всегда имеет сильную линию в раман-спектре и не имеет ее в инфракрасном спектре [c.13]

    Число основных колебаний вытекает из числа степеней сво- боды молекулы. Молекула, состоящая из п атомов, имеет Ъп степеней свободы. Из них 3 степени свободы падают на поступательное и 3 (для линейно построенных молекул 2) на вращательное движение. Колебательное движение молекулы имеет 3>п — 6 (для линейных молекул Ъп — 5) степеней свободы. Такого количества нормальных основных колебаний и следует ожидать в спектре. Однако поглощение ИК-излучения электромагнитного переменного поля наблюдается только в том случае, если происходящий при этом переход на более высокий колебательный уровень связан с изменением электрического диполь-ного момента молекулы. Только такие переходы являются разрешенными. Поэтому особенно интенсивное поглощение обусловлено наличием в молекуле сильнополярных групп (например, >С=0, —50г, —N02 и т. д.). Напротив, неполярные группы, имеющиеся в симметрично построенных олефинах (К2С=СКг) пли азосоединениях (К—Н = Н—К), не проявляются в ИК-спектрах. Многие колебания, неактивные в ИК-спектре, обнаруживаются в спектрах комбинационного рассеяния (спектрах Рамана) последние несут особенно ценную информацию, дополняя ИК-спектроскопическое исследование. [c.131]


    Для молекул, состоящих из N атомов, картина оказывается гораздо более сложной. Мы ограничимся здесь общим описанием подхода, применяемого при вычислении фундаментальных колебаний. Определение частот колебаний представляет интерес прежде всего в связи с интерпретацией инфракрасных спектров, а также для использования в статистической термодинамике. В выражения для констант равновесий и скоростей наряду с другими величинами входит функция распределения по колебательным состояниям. Из ЗМ степеней свободы Л -атомной молекулы 3 приходятся на поступательное движение и еще 3 (2 в случае линейных молекул) на вращательное движение молекулы. Остальные ЗМ — 6 (для линейных молекул ЗМ — 5) степеней свободы соответствуют колебаниям. Если колебания атомов отвечают гармоническому движению, все они колеблются с одинаковой частотой и в фазе (все атомы одновременно проходят через положения равновесия), то мы имеем дело с так называемыми нормальными колебаниями. Для расчета таких колебаний необходимо знать межатомные силы (описываемые силовыми постоянными) и конфигурацию молекулы (валентные углы и длины связей). Волновое число коле-бания (называемое в этой области спектроскопии фундаментальной частотой) вычисляется из величины X  [c.376]

    Для линейной молекулы в невырожденном основном электронном состоянии чисто вращательный спектр КР связан только со сферической компонентой а°, Проекция углового момента на межъядерную ось равна нулю, и, следовательно, квантовые числа К я К равны нулю. Когда основное электронное состояние является вырожденным, компонента также вносит вклад в интенсивность вращательных линий комбинационного рассеяния. Появление четных антисимметричных тензоров может стать реальностью, если в произведении представлений основного состояния содержится представление, по которому преобразуются антисимметричные компоненты. Эти антисимметричные тензоры могут не давать вклад в переход в колебательно-вращательном спектре линейной молекулы. Но для случая невырожденного основного состояния следует помнить, что компонента Оц дает вклад только в переход / = 0- -/ = 0 и что компоненты и дают вклад и в другие переходы (А/ = 0). Это обстоятельство имеет [c.140]

    Нормальные и характеристические колебания. Водородная связь X—Н... влияет на внутримолекулярные колебания и приводит к появлению новых колебательных степеней свободы, что находит отражение в инфракрасных (ИК) спектрах и спектрах комбинационного рассеяния (КР) света. Как известно, молекула, состоящая из и атомов, имеет 3 степеней свободы, из которых для нелинейных молекул 6, а для линейных — 5 внешних степеней свободы связаны с поступательным и вращательным движениями молекулы как целого. Остальные 3 —6 или Зл — 5 внутренние степени свободы связаны со всевозможными колебаниями атомных ядер в молекулах. Колебательное движение может быть описано с помощью естественных координат определяющих отклонения межъядерных расстояний и валентных углов относительно равновесного положения. При равновесной конфигурации атомных ядер все естественные координаты Х обращаются в нуль. Колебания атомных ядер в молекулах взаимосвязаны, поэтому изменения естественных координат атомных ядер также взаимосвязаны. Если считать колебания гармоническими, то во многих случаях с помощью методов, разработанных механикой малых колебаний молекул, приближенно можно осуществить переход от естественных координат X. к нормальным координатам Q . [c.64]

    Молекула, состоящая из п атомов, имеет Зп степеней свободы, три из которых относятся к поступательному, три —-к вращательному (две в линейных молекулах типа ацетилена), а остальные Зп—6 (Зп—5 в линейных молекулах) — к колебательному движению. Эти различные колебания (основные колебания) поглощают энергию инфракрасного излучения при определенных частотах и приводят к появлению полос поглощения. Однако число полос поглощения не точно совпадает с числом основных колебаний. Так, если колебание не приводит к какому-либо изменению дипольного момента молекулы, то оно не поглощает инфракрасного излучения и число полос поглощения в спектре соответственно уменьшается. Например, колебание центральной связи С = С молекулы этилена не поглощает инфракрасного излучения (неактивно в инфракрасном спектре). Полосы поглощения основных колебаний могут быть разделены на полосы валентных колебаний и полосы деформационных колебаний . В качестве примера ниже показаны колебания метиленовой группы. [c.22]

    Строение молекул и полосатые спектры. Одним из важнейших вспомогательных средств для исследования строения, в первую очередь строения простых по составу молекул, является изучение полосатых спектров. Энергия сложных молекул, не считая энергии их поступательного движения, состоит из вращательной и колебательной энергии атомов и энергии связей электронов. Изменение каждого из этих трех видов энергии связано с испусканием или поглощением световых волн (в широком смысле). Поэтому из полосатых спектров можно определять как моменты инерций, по которым рассчитывают межатомные расстояния, так и получать сведения о прочности отдельных связей (по колебательным частотам). Из полосатых спектров молекул, так же как из линейных спектров свободных атомов, можно рассчитывать энергии связей электронов в нормальном и возбужденном состоянии молекулы. [c.343]


    По табл. 2 легко можно проверить следующие выводы относительно вращательной структуры колебательных полос в спектре комбинационного рассеяния. Для линейных молекул полносимметричная полоса должна иметь сильную [c.143]

    Поскольку каждый колебательный переход сопровождается изменением вращательного состояния молекулы, инфракрасный спектр представляет собой вращательно-колебательный спектр. Из-за большого количества отдельных полос поглощения взаимодействия молекул в твердом или жидком состояниях этот спектр проявляется не как линейный (дискретный), а как спектр полос поглощения (также разд. А,3.5.1). [c.132]

    Кроме того, интенсивность линий почти линейно зависит от концентрации образца. При регистрации непрерывного спектра КР в области от оо до 2,5 мкм (О—4000 см ) нет необходимости иметь несколько наборов призм или решеток. Правила отбора для спектров КР являются менее ограничительными, чем правила отбора для ИК-спектров, поэтому вращательно-колебательная линия спектра КР может непосредственно давать информацию о параметрах молекулы, в то время как подобная линия на ИК-сиектре позволяет определять только комбинации этих параметров. Комбинационный и ИК-спектры а-пинена показаны на рис. 6-28. [c.286]

    Если молекулы находятся в невырожденном колебательном состоянии (/ = 0), то чисто вращательные спектры КР анализируются при помощи выражения (93). Это справедливо для всех линейных молекул, для которых получены чисто вращательные спектры, за исключением СОг, СЗг, Ог и N0. Для СОг и С5г 5-ветвь чисто вращательных переходов наблюдалась также для возбужденного состояния (и1 = О, Уг = 1 , з = 0) молекул [55, 111]. Это состояние дважды вырожденное (типа л ), поэтому для получения молекулярных постоянных используется выражение (99). [c.222]

    Исследование контуров вращательной структуры полос в ИК спектрах многоатомных молекул может быть полезным для отнесения колебательных частот. Как и в случае чисто вращательных спектров (см. гл. V), рассмотрим разные типы молекулярных волчков. Для линейных молекул и симметричных волчков можно различать два типа колебательных переходов или нормальных колебаний параллельный и перпендикулярный . При первом (Ц) происходит изменение компоненты электрического дипольного момента в направлении главной оси вращения, совпадающей с осью симметрии высшего порядка (Соо —у линейной молекулы и Сп, где л>2, — у симметричного волчка), т. е. [c.217]

    Для молекулы F2 надежные колебательные и вращательные данные были получены Андришуком [3[ только из спектра комбинационного рассеяния. Он изучал спектр газа при давлении в одну атмосферу на призменном спектрографе, имеющем линейную дисперсию 58 см мм. Чисто вращательный спектр был разрешен, и было показано, что в спектре имеет место чередование интенсивности с соотношением 1 3 между линиями с четным и нечетным J. [c.148]

    При возбуждении молекулы в ней происходят сложные энергетические изменения (рис. 90) электроны переходят с одного уровня энергии на другой, одновременно измен. ется и система возможных колебательных и вращательных уровней. Это усложняет спектр и образует ту характерную структуру полосатых спектров, которая резко отличает молекулярные спектры от линейных спектров атомов. [c.162]

    Колебательно-вращательные спектры линейных многоатомных радикалов очень похожи, конечно, на спектры стабильных линейных молекул (см. [II], гл. IV), если их основные электронные состояния относятся к типу Е. В этом случае вращательная структура колебательных переходов Ей—Е и Пц—Е для симметричных молекул должна быть в инфракрасной области совершенно такой же, как у электронных полосЕ — Е иП — Е двухатомных радикалов. Для симметричных линейных молекул типа ХУг только колебания va и V3 активны в инфракрасной области (рис. 53). Для несимметричных молекул все колебания активны в инфракрасной области (индексы g тя. и должны быть опущены). У радикалов такие спектры в газовой фазе еще не найдены, однако в твердой матрице при очень низкой температуре фундаментальные частоты в инфракрасной области были получены для ряда свободных радикалов, особенно Миллиганом и Джекоксом. Естественно, при этих условиях вращательная структура не наблюдается.- [c.99]

    Колебательно-Еращательные спектры. Для получения этих спектров требуется техника, позволяющая обеспечить высокое разрешение в инфракрасной области. До последнего времени к-огда для регистрации инфракрасного излучения начали применять фотосопротивления (сульфид, селенид и теллур ид свинца),, наилучшее разрешение достигалось при регистрации фотографическим способом, а не с помощью термопар. Поэтому для исследования вращательной тонкой структуры- колебательной полосы было желательно использовать полосы, находящиеся в так называемой фотографической области инфракрасного спектра. Трудность состояла в том, что интенсивные линии инфракрасного спектра лежат в области с большими длинами волн, а фотографическая область содержит сравнительно слабые обертоны и комбинационные полосы. В течение последних лет Герцберг с сотрудниками и другие исследователи сумели преодолеть указанное затруднение, используя многократное отражение луча и увеличивая таким образом путь, на котором происходит поглощение. Вращательная тонкая структура колебательной полосы зависит от симметрии молекулы и от изменения колебательного состояния,, которому отвечает эта полоса. В частности, для линейных молекул имеется набор колебательных переходов 2—2, П—И, П—П и т. д. Полосы Е—Е имеют простые ветви Р и Я (соответствующие-изменению вращательного квантового числа J на —1 и +1) о одной недостающей вращательной линией между этими двумя линиями полосы П—И и П—П имеют, кроме того, и ветвь Q (соответствующую ЛУ=0), Для молекул с центром симметрии вращательные уровни при обмене одинаковых ядер оказываются поочередно симметричными или антисимметричными. Следствием этого является чередование интенсивностей вращательных ли- [c.14]

    Если предположить, что двухатомная молекула имеет постоянный дипольный момент (в противном случае она не имела бы колебательно-вращательного спектра), то вероятность данного перехода может быть найдена, как и раньше, подстановкой приближенной собственной функции для линейного гармонического осциллятора [уравнение (8.44)] в уравнение (27.3). Таким путем найдено, что вероятность будет тлична от нуля только в том случае, когда изменение колебательного квантового числа двух состояний, между которыми происходит переход, равно единице. Отсюда следует, что правилом отбора для линейного гармонического осциллятора будет условие [c.189]

    Поглощение или рассеяние излучения исследуют спектроскопическими методами (микроволновая и инфракрасная спектроскопия, спектроскопия комбинационного рассеяния света), которые основаны на изучении вращательных переходов энергии молекулы, что позволяет определить для изучаемой молекулы с данным изотопным составом максимум три главных момента инерции. Для линейных молекул и молекул типа симметричного волчка можно определить лишь одну из этих величин. Число моментов инерции, определенных спектроскопически, соответствует числу определяемых геометрических параметров молекул. В связи с этим при исследовании геометрического строения многоатомных молекул необходимо применять метод изотопного замещения, что создает значительные трудности. Кроме того, микроволновые и инфракрасные вращательные спектры могут быть получены только для молекул, имеющих днпольный момент. Изучение строения бездипольных молекул осуществляется методами колебательно-вращательной инфракрасной спектроскопии и спектроскопии комбинационного рассеяния (КР). Однако эти спектры имеют менее разрешенную вращательную структуру, чем чисто вращательные микроволновые спектры. Трудно осуществимы КР-спектры в колебательно-возбужденных состояниях бездипольных молекул или приобретающих дипольный момент в колебательных движениях. Последние случаи весьма сложны и, как правило, реализуемы лишь для простых молекул типа СН4. [c.127]

    Вращательное движение многоатомных молекул. Вращательноколебательные спектры. Многоатомные линейные молекулы обладают двумя степенями свободы вращательного движения вокруг осей, проходящих через центр масс молекулы и перпендикулярно оси молекулы. Оба момента инерции одинаковы и, следовательно, одинаковы и вращательные постоянные, которые могут быть определены из вращательного или вращательно-колебательного спектра по одному из уравнений (1.38), (1.42), (1.43). У молекул типа сферически симметричного волчка все три момента инерции одинаковы  [c.23]

    За последние годы значительные успехи в определении вращательных постоянных многоатомных молекул в основном колебательном состоянии были достигнуты благодаря созданию радиоспектроскопических методов изучения вращательных спектров поглощения молекул в микроволновой области. Применение этих методов позволило определить вращательные постоянные ряда многоатомных молекул результаты исследований этих спектров и найденные значения постоянных собраны в монографиях Горди, Смита и Трамбаруло [164] и Таунса и Шавлова [416]. Следует, однако, отметить, что линейные симметричные молекулы, а также молекулы типа сферического волчка не имеют вращательных спектров. Вращательная постоянная А симметричных волчков, связанная с моментом инерции относительно главной оси симметрии молекулы 1а, также не может быть найдена из анализа вращательных спектров (см., например, [152], стр. 43). Эти обстоятельства существенно ограничивают возможности определения вращательных постоянных многоатомных молекул из их микроволновых спектров. [c.67]

    Вращательная структура резких полос НСО и D O наводила сначала на мысль, что эти полосы принадлежат к П — S или 2 — II переходам линейной молекулы. Эта интерпретация, однако, была отвергнута по различным причинам, указанным Герцбергом и Рамзаем [61J. Удовлетворительная интерпретация спектра получается, если предположить, что полосы принадлежат переходу с нижнего состояния, в котором молекула нелинейна, в верхнее состояние с линейной равновесной конфигурацией. Можно показать, что верхнее состояние этих полос является колебательным состоянием типа 2, так как в некоторых из этих полос наблюдаются линии Р (1), обусловленные уровнем J = 0. В нижнем состоянии молекула очень близка к симметричному волчку и вращательные уровни энергии могут быть описаны обычными квантовыми числами J и К- Если К характеризует полный момент количества движения молекулы относительно междуядерной оси в возбужденном состоянии, то структура полос легко объясняется, если предположить, что полосы принадлежат типу С с i K = = гг 1, т. е. что. момент перехода перпендикулярен к плоскости молекулы. Резкие полосы обусловлены переходом с вран ательного уровня К" 1 основного состояния на 2 колебательные уровни (К = 0) верхнего состояния. Наблюдаемый для этих полос большой комбинационный дефект объясняется большим /С-удвоением в o hobhoiw состоянии для уровней с К"== 1. Вращательные постоянные для основных состояний НСО и D O приведены в табл. 2. Угол между связями для основного состояния равен точно 120°, а длина связи С=0 на 0,01—0,02 А короче, чем в основном состоянии формальдегида. [c.48]

    При этом переход может быть поляризован в направлении, перпендикулярном к плоскости молекулы, что находится в согласии с наблюдаемым спектром. Подобные предсказания были сделаны Мелликеном (цитируется по [152]). Переход должен сопровождаться большим изменением угла, но небольшим изменением длины связи, что согласуется с экспериментом. Интересно отметить, что угол в основном состоянии NHj (103°20 ) очень близок соответствующему углу Н. 0 (105°3 ), что можно было ожидать, так как электронные конфигурации для этих двух состояний отличаются только одним электроном на несвязывающей, выходящей из плоскости -орбите. Подтверждением отнесения основного состояния к fi-состоянию является чередование интенсивности вращательных линий, наблюдающееся в различных ветвях исследованных полос (см. рис. 11). Однако такое чередование не дает возможности различить состояния Si и Во- Низкое значение величин электронного терма возбужденного состояния ( 10 250 с.и i) можно легко объяснить, так как два состояния, участвующих в переходе, соответствуют простому П-состоянию при линейной конфигурации. Главная особенность спектра NHj, не обсуждаемая Уолшем, состоит в сложной колебательной структуре возбужденного состояния. Происхождение наблюдаемых колебательных расщеплений рассматривается в следующем разделе. [c.56]

    Для молекулы СзЫз самый низкий возбужденный уровень имеет частоту 230 см [60]. Этот уровень дважды вырожден его больцмановский фактор около /д. Значит, чисто вращательный спектр молекул, находящихся на этом уровне, имел бы интенсивность около 1 интенсивности спектра молекул, находящихся в основном состоянии. (Общая интенсивность, однако, распределится на К- и 5-ветви в противоположность спектру основного состояния, который состоит только из 5-ветви.) Эти спектры не будут совпадать точно из-за небольшой разницы в величинах вращательных постоянных для двух этих уровней. Реальный спектр дает величину не В,, а В, которая равна некоторому среднему значению между двумя величинами вращательных постоянных. Однако разница между величинами В для основного состояния и для самого низколежащего колебательного уровня обычно очень мала для линейных молекул так, например, для СО2 разница составляет 0,19% от величины В [24]. Следовательно, величины В, приведенные в табл. 4, не должны сильно отличаться от величин Вд. [c.157]

    Большинство недавних исследований чисто вращательных спектров комбинационного рассеяния было проведено с использованием спектрографа, имеющего вогнутую решетку с фокусным расстоянием около 6 м, работающую в схеме Игля. Решетка нарезана Ричардсоном, сотрудником Оптической кодшании Буша и Ломба. Она имеет 600 штрихов на 1 мм при площади 18 X 7,6 см (в дюймах 7 X 3). Максимум интенсивности для второго порядка приходится на область 5000 A, интенсивность духов относительно низка. Эти качества решетки имеют большое значение для исследования спектров комбинационного рассеяния. Для второго порядка эквивалентная линейная дисперсия равна 1,25 А 1мм или 6,7 слС /мм для Я = 4358 А. Спектры фотографировались со спектральной щелью 0,2 (для длины волны 4358 А), что соответствует полуширине возбуждающей линии ртути 4358 А. Самое меньшее расстояние между двумя линиялш, которое было разрешено при этих условиях, составляло 0,37 слГ . Давление обычно использовалось порядка половины атмосферы, а для газов, имеющих интенсивный спектр, около 100 мм рт. ст. При съемке на пластинках Кодак 103а-0 экспозиции составляли от 1 до 20 час. Из вращательно-колебательных полос на этом спектрографе получены только три полосы для молекул СОг, Sa [109] и СН4 [105]. Для этих последних работ интенсивность спектральных линий была повышена в 15 раз благодаря применению цилиндрической линзы (см. следующий раздел), использовалось давление в две атмосферы, при этом были необходимы экспозиции от 20 до 30 час. [c.214]

    После ознакомления с основными принципами колебательной спектроскопии в предыдущем разделе мы перейдем к более сложным системам. Если молекула содержит N атомов, для полного определения положения всех атомов требуется ЗЖ координат. Эти координаты можно разделить на 6 координат для определения положения центра тяжести (3 координаты) и относительного вращательного положения (еще 3 координаты) молекулы и на ЗN— 6 координат для определения относительного положения атомов. Это относится к нелинейной молекуле. Для линейной молекулы требуется только две вращательные координаты, так что для определения положения атомов внутри нее остается ЗЖ — 5 координат. Применение теории малых колебаний показывает, что все возможные сложные относительные движения атомов в молекуле можно рассматривать как состоящие из ЗN — 6 ЗN — 5 для линейной молекулы) нормальных колебаний. Нормальным типом движения считается такой, в котором молекула не претерпевает чисто трансляционного или вращательного движения и в котором все атомы колеблются около своих равновесных полюжений с одной и той же частотой в фазе друг с другом, т. е. все атомы проходят через свое равновесное положение в одно и то же время. Для нелинейной молекулы следует ожидать ЗN — 6 нормальных колебаний, следовательно, ее спектр может содержать до З У — 6 основных частот. Помимо основных частот, т. е. частот переходов, нри которых происходит изменение на 1 единицу колебательного квантового числа только одного нормального колебания, спектр также может содержать значительно уменьшенной интенсивности обертонные полосы и полосы составных частот. Обертон возникает в результате перехода, в котором одному нормальному типу колебания соответствует изменение квантового числа больше чем на единицу, например от и = О до ге = 2, в то время как полосе составных частот отвечает переход, при котором меняется квантовое число более чем одного нормального типа колебаний. Для ожидаемых интенсивностей была предложена весьма упрощенная, но достаточно точная картина. По ряду причин все основные частоты не столь интенсивны, как это можно было бы ожидать, так что некоторые полосы составных частот и обертонные полосы [c.324]

    До СНХ пор с достаточным разрешением и интенсивностью, позволяющими получить тонкую структуру, наблюдались вращательно-колебательные спектры КР только нескольких линейных молекул. Так, Стойчев [124] и Иосино и Бернштейн [125] для Нг, Ог, и HD наблюдали разрешение только Q-ветви. Для Ог и N2 при помощи долазерной техники получены О- и S-ветви [77а, 80, 125]. Эти ветви были также фотоэлектрически зарегистрированы Барретом и Адамсом [99] методом фокусировки луча лазера, причем в этом случае эффективный рассеивающий объем составлял 10 см и содержал 10 молекул при атмосферном давлении. Эти же авторы зарегистрировали в спектре СО2 дублеты, обусловленные резонансом Ферми (vi и 2 i). Стойчев [29, 126] сфотографировал аналогичные дублеты в спектрах СО2 и S2 и провел детальный анализ этих спектров, определив точные значения колебательных частот, постоянных ангармоничности и констант, описывающих резонанс Ферми [127]. [c.226]

    Для линейных молекул в невырожденном колебательном состоянии разрешены переходы с А/=0 (Р-ветвь) и А/= 2 (О- и 5-вет-ви) (рис. 1.2). В чисто вращательном спектре КР-переходы для / = 0 соответствуют релеевской линии, а в случае Д/=-Ь 2 урав-11ение для частоты перехода из одного вращательного состояния в другое имеет следующий вид  [c.117]

    Подавляющее число спектров испускания связано с излучением двухатомных молекул. Однако известно небольшое количество систем, которые являются результатом излучения трехатомных и многоатомных молекул. В ряде случаев такие системы наблюдались в спектрах поглощения. Оказывается, что большинство возбужденных электронных состояний многоатомных молекул неустойчиво, и поэтому спектры, соответствующие переходам с участием такого рода состояний, не могут быть обнаружены в излучении, в поглощении же наблюдаются только сплошные спектры. В тех же случаях, когда можно наблюдать спектры мн()гоатомных молекул, картина очень сложна и хотя некоторые из этих спектров, как, например, спектры lOj и бензола, имеют довольно правильный характер и могут быть, во всяком случае частично, проанализированы, в общем случае анализ неосуществим. За исключением спектров небольшого числа линейных молекул, которые могут быть рассмотрены теоретически таким же образом как и двухатомные, об электронной и вращательной структуре таких спектров известно очень мало. Анализ колебаний усложняется большим числом частот колебаний трехатомная молекула обладает тремя колебательными степенями свободы, а молекула из N атомов имеет 3iV — 6 степеней правда, число различных частот будет меньше этого числа, если молекула обладает большой степенью симметрии. Попытки вывести правила для определения изменения колебательного квантового числа при электронных переходах были сделаны Герцбергом и Теллером [143] и Ку [180], которые нашли, что разрешенными являются только некоторые из возможных полос. Однако их выводы расходятся с результатами исследования спектра поглощения SO2, и развитие теории может быть, вероятно, осуществлено только после дальнейшей экспериментальной работы. [c.37]

    В случае комбинационного рассеяния правила отбора несколько отличаются от правил, приложимых к колебательным полосам инфракрасного спектра. Так, для линейных молекул Д/=0, 2 для параллельных полос и 1, 2 для перпендикулярных -ветвь должна, таким образом, присутствовать в параллельных и отсутствовать в перпендикулярных полосах. Для симметричных волчков АК=0 и = О, 1, 2 для колебаний, параллельных оси симметрии молекулы, тогда как для колебаний, перпендикулярных к этой оси, АК = 1, 2 и Д7 = 0, 1, 2. Взаимодействие между колебаниями и вращениями должно вести к аномальному разделению в перпендикулярных полосах, точно так же, как в инфракрасных спектрах. У сферически симметричных молекул только те полосы в спектре комбинационного рассеяния могут обнаруживать вращательную структуру, которые обусловлены не полностью симметричными колебаниями. Для такой полосы правилом отбора является условие Д/ = 0, 1, 2. Подобные правила отбора приложимы к полосам комбинационного рассеяния несимметричных молекул. Очевидно, что вследствие большого числа дозволенных вращательных переходов структура колебательных полос в спектрах комбинационного рассеяния многоатомных молекул должна быть сложна. Если бы нолосы были разрешены, то они дали бы возможность вычислить моменты инерции молекул, которые могли бы дополнить данные, получаемые из инфракрасных спектров. [c.284]

    СО2. Молекула СО2 имеет линейную симметричную структуру и принадлежит к точечной группе Воок- Две основные частоты 02(v2 и з) активны в инфракрасном спектре, третья ( 1) — в спектре комбинационного рассеяния. Инфракрасный спектр и спектр комбинационного рассеяния двуокиси углерода исследовались в десятках работ и к настоящему времени изучены лучше, чем для любой другой многоатомной молекулы. Герцберг [152] на основании анализа данных, опубликованных до 1944 г., рекомендует для молекулы СО2 значения колебательных постоянных, найденные Деннисоном [1314], и вращательные постоянные, полученные Аделем и Деннисоном [490] (см. табл. 132). [c.453]

    Междуядерные расстояния [8]. Когда может быть сделан анализ колебательно-вращательных или вращательных полос, позволяющий вычислить разделение последовательных линий, то, как было уже показано, можно определить момент инерции. Пользуясь полученным значением, во многих случаях можно определить форму и размеры молекул некоторые примеры будут рассмотрены здесь. Рассмотрим, например, молекулу двуокиси углерода ее спектр соответствует линейной симметричной молекуле ОСО. Момент инерции, выведенный из частотного разделения колебательных Л1ший при учете того, что линии через одну отсутствуют, равен 70,8-10 г-сл1 . Поскольку [c.290]

    Из сказанного выше видно, что одни и те же энергетические уровни определяют, с одной стороны, эффект комбинационного рассеяния и, с другой стороны, колебательно-вращательные переходы. По этой причине спектры комбинационного рассеяния содержат, вообще говоря, те же частоты, что и инфракрасные спектры. Однако имеются некоторые существенные различия, обусловленные тем обстоятельством, что у этих двух типов спектров спраЕ едливы разные правила отбора. (Колебание атомов в молекуле образует инфракрасную частоту только в том случае, если оно вызывает изменение дипольиого электрического момента, т.е. поляризацию молекулы, в то время как появление рамановской частоты требует изменения поляризуемости см. ниже.) Поэтому некоторые частоты, отсутствующие в спектре комбинационного рассеяния, присутствуют в инфракрасном спектре, и наоборот. Так, симметричное линейное колебание молекулы СОз, не активное в инфракрасном спектре (см. рис. 28), проявляет себя в виде рамановской частоты при 1336 см -Таким образом, инфракрасные спектры и спектры комбинационного рассеяния удачно взаимно дополняют друг друга. [c.110]

    В результате исследования вращательной структуры полос могут быть получены данные о симметрии молекулы. Например, простая тонкая структура вращательно-колебательных полос ацетилена свидетельствует о том, что молекула ацетилена является линейной. Кроме того, в простых молекулах по расстояниям между вращательными ли1шями могут быть определены мпмс ггы инерции, а отсюда может быть получено и межатомное расстояние, если в молекуле, например метана, имеется только одно такое расстояние. Когда в молекуле имеются два различных межатомных расстояния, как в ацетилене, для определения межатомных расстояний необходимо исследовать спектр поглощения двух изотопических форм (в данном случае С2Н2 и СаНО). Это позволяет найти два значения момента инерции, на основании которых могут быть вычислены необходимые расстояния. [c.307]

    Инфракрасный спектр СО состоит из серии полос поглощения, каждая ии которых имеет два максимума, разделенных интервалом приблизительно в 30 сж Эти пары максимумов соответствуют Р- и Л-ветвям, рассмотренным в гл. X. Пары максимумов часто встречаются в виде дублетов, разделенных интервалом около 105 см , как это показано на рис. 4 [10]. В табл. 4 приведены положения полос поглощения, выраженные в микронах (первый столбец) и волновых числах (второй столбец). В третьем столбце указаны относительные интенсивности полос, а в следующем — средние значения волновых чисел для максимумов, лежащих близко друг к другу. В двух носледних столб цах приведены результаты интерпретации полос, согласно Шеферу [11] и Эйкену [12]. Шефер, приняв изогнутую модель молекулы, пришел к выводу, что максимумы поглощения наиболее интенсивных полос А, В ж С) с относительными интенсивностями соответственно 6, 10 и 10 непосредственно дают три основные частоты колебаний, которые в этом случае должны быть равны 3670, 2352 и 672 jn К подобным же выводам пришел и Деннисон [13]. Эйкен обратил внимание на несовместимость изогнутой модели молекулы двуокиси углерода с теплоемкостью газа. При низких температурах колебательная теплоемкость пренебрежимо мала, а опытные значения вращательной теплоемкости ясно указывают на вращение молекулы, подобное вращению жесткой гантели. Поэтому молекула должна быть линейной. Далее, в случае симметричной линейной трехатомной молекулы оптически активны только две из трех частот. Колебание, совершающееся с частотой (см. рис. 3), не изменяет дипольного момента молекулы (равного нулю) и поэтому не обнаруживается в спектре поглощения, за исключением комбинаций с двумя активными частотами. В связи с этим Эйкен принимает, что две из частот колебаний легко можно найти непосредственно иа положений интенсивных максимумов иогло1цения, а третья встречается только в комбинации. Для наиболее интенсивных полос в областях 15,05 — [c.412]


Смотреть страницы где упоминается термин Линейные молекулы колебательно-вращательные спектры: [c.140]    [c.156]    [c.129]    [c.177]    [c.209]    [c.226]    [c.335]    [c.156]    [c.459]   
Физические методы исследования в химии 1987 (1987) -- [ c.218 ]




ПОИСК





Смотрите так же термины и статьи:

Спектр вращательный колебательно-вращательный

Спектры вращательные

Спектры колебательно-вращательные

Спектры колебательные

Спектры молекул



© 2025 chem21.info Реклама на сайте