Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Постоянно кипящие смеси Азеотропные смеси

    Подобные же соотношения имеют место и в системах, относящихся к третьему типу. Примером таких систем может служить соляная кислота. Хотя, вода при атмосферном давлении кипит при 100° С, а хлористый водород при —85° С, раствор, содержащий 20,24% хлористого водорода, кипит при 108,5°С. Любой раствор, содержащий меньше 20,24% хлористого водорода, может быть разделен дистилляцией на постоянно кипящую смесь с содержанием 20,24% хлористого водорода и остаток из чистой воды, но ни растворы, более богатые хлористым водородом, ни чистый хлористый водород не могут быть выделены из него таким путем. Наоборот, любой раствор, содержащий больше 20,24% хлористого водорода, может быть разделен на ту же постоянно кипящую смесь и чистый хлористый водород (при температуре —85°С). Азеотропные растворы встречаются во многих практически важных системах (соляная кислота, водные растворы азотной кислоты, этилового или пропилового спиртов и др.). [c.320]


    Многие вещества образуют друг с другом азеотропные смеси, т. е. смеси с определенным соотношением компонентов, обладающие максимумом или минимумом температуры кипения. Азеотропную смесь невозможно разделить перегонкой на отдельные компоненты, так как жидкость и пар имеют одинаковый состав. К числу известных азеотропных смесей принадлежат, например, концентрированная бромистоводородная кислота, имеющая постоянную температуру кипения (126" С — максимум температуры кипения), и 96%-ный этиловый спирт (т. кип. 78,15° С — минимум температуры кипения). Образование азеотропной смеси можно использовать для извлечения одного компонента из смеси. [c.51]

    Он имеет экстремальную температуру кипения наименьшую — при положительных отклонениях, наибольшую — при отрицательных отклонениях от закона Рауля. Азеотропный раствор кипит при постоянной температуре (при условии постоянства внешнего давления) без изменения своего состава. Однако при изменении внешнего давления меняется не только его температура кипения, но и состав. Это указывает на то, что азеотропная смесь не является химическим соединением. Чаще всего встречаются системы с минимальной температурой кипения азеотропных смесей. К ним относятся вода — этиловый спирт метиловый спирт — ацетон бензол — уксусная кислота и др. [c.99]

    Дробной перегонкой, одиако, не удается получить безводный (абсолютный) спирт ввиду того, что этиловый спирт, кипящий при 78,3 ", с водой образует азеотропную смесь, содержащую около 4.5% воды т. кип. 78, 15°. Такой спирт, содержащий 96% об. С. НаОН, обычно используется для фармацевтических целей. Абсолютный спирт получают высушиванием 9б°-пого спирта негашеной известью или перегонкой азеотропной смеси в присутствии бензола. При этом вначале отгоняется постоянно кипящая тройная смесь бензола, воды и спирта (при 64,85°), затем двойная смесь спирта и бензола (68,25 ) и, наконец, чистый безводный спирт (78,3°). [c.117]

    Для смесей жидкостей с неограниченной взаимной растворимостью в случаях значительных отклонений (как положительных, так и отрицательных) в их поведении от закона Рауля на кривых зависимости давления насыщенного пара от состава (при постоянной температуре) имеют место экстремумы — максимумы (при положительных отклонениях) либо минимумы (когда отклонения отрицательны). То есть имеется строго определенный, т. н. азеотропный состав жидкой смеси, температура кипения которого является экстремальной (максимальной — в случаях положительного отклонения от закона Рауля, минимальной — при отрицательных отклонениях) по отношению к температурам кипения при любых других возможных количественных составах данной смеси. Для азеотропной смеси, в соответствии со вторым законом Коновалова, составы жидкости и пара одинаковы. Отсюда следует, что азеотропная смесь кипит при постоянной (экстремальной) температуре. [c.487]


    С.водой он дает постоянно кипящую азеотропную смесь с минимумом температуры кипения. Состав такой смеси около 41—42% этиленхлоргидрина, а темп. кип. 97—98°. [c.146]

    Для определения воды, за исключением более старых методов высушивания в сушильном шкафу, наиболее широко применяется метод дистилляции. Этот метод нашел применение в пищевой и нефтеперерабатывающей промышленности для анализа твердых, пастообразных и других относительно малолетучих продуктов. Многие из этих методик приняты во всем мире в качестве стандартных, так как условия перегонки и требования к аппаратуре могут быть описаны достаточно четко и однозначно. Эти методики включают, как правило, отгонку воды с последующим разделением фаз. Обычно используют дистилляцию в присутствии углеводородов или органических галогенидов, которые или образуют азео-тропные смеси с водой с минимальной температурой кипения, или кипят выше 100 °С и поэтому могут служить переносчиками воды. Смесь двух или нескольких компонентов называют азеотропной в том случае, если она кипит при постоянной температуре, соответствующей данному давлению, и в процессе перегонки не изменяет своего состава. Азеотропная смесь ведет себя при перегонке как индивидуальное вещество до тех пор, пока не будет исчерпан один из входящих в ее состав компонентов (в данном случае вода). В большинстве методик анализа, использующих дистилляцию, анализируемый образец диспергируют в относительно большом объеме переносчика воды. Далее нагревают смесь до начала кипения и конденсируют образующийся пар. Конденсат собирают в градуированный приемник (конденсат разделяется на две фазы) и измеряют объем водной фазы. Азеотропные смеси с минимальной температурой кипения позволяют значительно снизить температуру, требуемую для удаления влаги, и, таким образом, осуществить определение воды в более мягких условиях, чем при обычной сушке в сушильном шкафу при атмосферном давлении. Физико-химические принципы дистилляции рассмотрены в работе [89]. [c.236]

    Из рис. 18 первой части, на котором показана связь между температурой кипения при постоянном давлении и составом жидкой и паровой фаз смесей этилового спирта с бензолом, видно, что пар смесей, мольные доли (м. д.) бензола в которых меньше чем в азеотропной смеси, богаче бензолом, чем жидкость, а пар смесей, м. д. бензола в которых больше, чем в нераздельно кипящей смеси, беднее бензолом, чем жидкая фаза. Этим 1 Азеотропная смесь спирта с водой содержит 0,10П м. д. воды и кипит ири 78,15 .  [c.72]

    При перегонке азеотропные смеси ведут себя как индивидуальные вещества. Они кипят при постоянной температуре без изменения состава. Однако, изменяя давление, можно разделить азеотропную смесь на компоненты, поскольку давление пара последних практически никогда не изменяется в одинаковой степени при изменении общего давления. Так, например, при увеличении разрежения содержание этилового спирта в азеотропной смеси его с водой возрастает (табл. 57), а при остаточном давлении ниже 75 мм спирт и вода вообще не образуют постояннокипящей смеси. [c.186]

    Этиловый спирт смешивается с водой во всех отношениях. Совершенно безводный (или абсолютный, 100%-ный) спирт кипит при 78,37°, тогда как обычный спирт — ректификат — при 78,15°С. Это объясняется тем, что смесь из 95,6% спирта и 4,4% воды всегда кипит при постоянной температуре —78,15°С. Такие смеси определенного состава, кипящие при постоянной температуре, называются азеотропными. Они не являются химическими соединениями, хотя разделить их путем обычной перегонки невозможно. [c.93]

    На рис. 111 приведены кривые общего давления пара над соляной кислотой разных концентраций. Пересечение кривых с пунктирной линией соответствует точкам кипения под атмосферным давлением (760 мм рт. ст.). С понижением температуры кипящей кислоты ее концентрация, начиная от 20,24%, может и возрастать и убывать. Это же видно из рис. 124. При общем давлении 700 мм рт. ст. азеотропная смесь кипит при 105,8° и содержит 20,4% НС1. При более низкой концентрации кислоты ее пары обогащены водяным паром, а при более высокой — хлористым водородом. Охлаждение кислоты азеотропного состава вследствие ее испарения при абсорбции, т. е. переход от изотермы 4з, например, к tu может привести к образованию как более разбавленной (точка Л), так и более концентрированной (точка В) кислоты. Возрастание или убывание концентрации кислоты будет зависеть от состава газовой фазы. Если парциальное давление НС1 в газе превышает давление НС1 над постоянно кипящей смесью, то концентрация кислоты должна возрастать. Поэтому при подаче хлористого водорода кипящая в адиабатических условиях кислота будет концентрироваться. [c.396]


    Случай 4. Кривая обращена выпуклостью к оси абсцисс и имеет минимум. Высококипящая азеотропная смесь А ж Б ж в этом случае кипит при постоянной температуре, которая выше точки кипения высококипящей компоненты (например, НдО и НСООН). При составе смеси, лежащем слева от минимума, можно дробной перегонкой отделить, низкокипящую компоненту А от азеотропной смеси, справа от минимума — высококипящую компоненту Б. [c.132]

    Важное значение имеет азеотропная сушка. К высушиваемому соединению добавляют вещество, образующее с водой азеотропную смесь и по возможности мало смешивающееся с водой на холоду (например, бензол). Нагревают смесь до кипения. Вода образует с бензолом азеотропную смесь (т. кип. 69° С) и выделяется при охлаждении в виде капель. Выделившуюся воду замеряют и определяют как момент окончания отгонки воды, так и ее количество. Точно так же можно наблюдать за течением химических реакций, при которых выделяется вода. Постоянной отгонкой воды из реакционной смеси можно сместить равновесие химической реакции в желательном направлении. Наиболее часто для отделения воды при азеотропном высушивании применяют бензол, толуол, ксилол, хлороформ, I.  [c.55]

    Система вода — спирт относится к системам с положительным отклонением от линейной зависимости. Если взять систему с отрицательным отклонением от линейной зависимости, например соляную кислоту, то и здесь нельзя произвести разделение раствора на чистые компоненты. Хотя вода при атмосферном давлении кипит при 100° С, а хлористый водород при —85° С, раствор, содержащий 20,24° хлористого водорода, кипит при 108,5° С. Любой раствор, содержащий меньше 20,24% хлористого водорода, может быть разделен дистилляцией на постоянно кипящую смесь с содержанием 20,24% хлористого водорода и остаток из чистой воды, но ни растворы, более богатые хлористым водородом, ни чистый хлористый водород не могут быть выделены из него таким путем. Наоборот, любой раствор содержащий больше 20,24% хлористого водорода, может быть разделен на азеотропную смесь и чистый хлористый водород (если достигнута температура —85° С). При перегонке раствора первоначально выделяется один из компонентов (более летучий) в концентрированном виде. В дальнейшем концентрация выделяющегося компонента по отношению к первоначальному отгону уменьшается. Поэтому на практике процесс разделения смеси жидкости производится путем отбора дистиллята, кипящего в различных интервалах температур, в различные приемники. Этот процесс разделения получил название дробной или фракционной перегонки. Жидкость отобранная в один из приемников в определенном интервале температур, называется фракцией. [c.139]

    Азеотропная перегонка. Процесс разделения азеотропной смеси путем добавления нового компонента, образующего гетерогенную постоянно кипящую смесь, как в только что рассмотренном случае, обычно называется азеотропной перегонкой, хотя это и является неправильным применением термина, если ограничить термин азеотропная смесь гомогенной постоянно кипящей смесью. Подобный (по принципу) процесс приобрел в последние годы важное значение в связи с разделением растворов уксусная кислота — вода, причем тот же самый принцип приложим и в других случаях. Уксусная кислота и вода не образуют азеотропной смеси, но разгонка их трудна вследствие малой разницы между составом сосуществующих фаз. При добавлении третьего компонента, практически не смешивающегося с водой, дестиллатом при перегонке является не вода, а гетерогенная постоянно кипящая смесь воды и добавленного компонента, которая называется улавливателем . Она кипит при более низкой температуре, чем вода, и поэтому значительно увеличивает конечную разность температур в системе. Например, если улавливателем является изопропиловый эфир, то точка кипения гетерогенной смеси с водой будет равна 61°С, и колонна в состоянии произвести разделение дестиллата и кубового остатка, кипящих соответственно при 61 и 118°С (уксусная кислота) вместо 100 и 118°С. Головной дестиллат разделяется механически, а улавливатель возвращается в колонну. (Отметим сходство этого процесса с перегонкой с водяным паром.) Дальнейшие подробности, относящиеся к рассматриваемому процессу, можно найти в статье Отмера [183]. [c.667]

    При перегонке азеотронные смеси ведут себя как индивидуальные вещества. Они кипят при постоянной температуре без изменения состава. Однако, изменяя давление, можно разделить азеотропную смесь на компоненты, поскольку давление пара последних практически никогда не изменяется в одинаковой степени при изменении общего давления. Так, при увеличении разрежения содержание [c.168]

    Характерной особенностью неидеальных растворов со значительным положительным или отрицательным отклонением от закона Рауля является их способность образовывать азеотроп-ные смеси, которые на диаграммах состояния изображены фигуративной точкой а. Азеотропные смеси — это растворы, при испарении которых получается пар того же состава, что и исходная жидкая смесь. В неидеальных растворах со значительным положительным отклонением от закона Рауля азеотропная смесь имеет самую низкую температуру кипения. В растворах со значительным отрицательным отклонением от закона Рауля азеотропная смесь характеризуется самой высокой температурой кипения. Азеотропные смеси при данном внешнем давлении кипят при постоянной температуре, как и чистые вещества (Сусл = 2—2-Ь1—1=0). [c.160]

    Известны гомогенные азеотропные смеси с минимумом и максимумом температуры кипения. Типичным гомогенным азеотропом с минимумом температуры кипения является смесь бензола и циклогексана (рис. 201), которая в точке, соответствующей содержанию бензола 51,5 мол. %, имеет постоянную температуру кипения 77,2° С. Ректификация в колонне с любым числом тарелок не приводит к разделению такой смеси на составляющие компоненты. В любом случае названный азеотроп выделяется как головной продукт, так как он кипит лри минимальной для данной системы температуре. В остатке в зависимости от состава исходной смеси может быть получен бензол или циклогексан. [c.326]

    Обычный продажный спирт представляет собой смесь спирта (95,57% по весу) и воды (4,43%), кипящую при постоянной температуре 78,2 °С. Эта температура немного ниже температуры кипения абсолютного спирта (78,3 °С). Разделение спирта и воды не может быть достигнуто простой перегонкой. Полное обезвоживание достигается химическими методами, например действием негашеной извести, которая соединяется с водой, но не реагирует со спиртом. Однако в промышленности абсолютный спирт чаще всего получают путем азеотропной перегонки. Если перегонять смесь 95%-ного спирта с бензолом, начальная фракция состоит из смеси бензола, спирта и воды (т. кип. 64,8 °С), следующая — из спирта и бензола (т. кип. 68,2 °С) и конечная фракция представляет собой абсолютный спирт. [c.330]

    Т. кип. 78,4° смешивается с водой. Полное обезвоживание постоянно кипящей смеси, содержащей 95,5% (вес.) спирта, достигается в два приема. Большую часть воды удаляют обработкой негашеной известью, после чего получается продукт, содержащий около 99,5% этилового спирта. Промышленный способ получения абсолютного спирта заключается в перегонке азеотропной с.меси этиловый спирт—вода—бензол. Сначала перегоняется смесь всех трех компонентов, затем бензол и этиловый спирт, а затем абсолютный этиловый спирт. Продажные сорта абсолютного спирта также могут содержать следы воды, так как чистый этиловый спирт крайне гигроскопичен и легко поглощает влагу при. переливании. [c.333]

    Закон Рауля, являющийся одним из основных в теории перегонки и ректификации, приложим далеко не ко всем растворам. Существуют так называемые азеотропные смеси, образующие при известном составе нераздельно кипящую фракцию, перегоняющуюся при постоянной температуре, которая мо-жет быть или более высокой или более низкой, чем температура кипения компонентов. Например, бензол <т. кип. 80,2° С) и циклогексан (т. кип. 80,75° С) образуют азеотропную смесь с содержанием 55 /о бензола и температурой кипения 77,5° С. Разделить азеотропные смеси перегонкой и ректификацией невозможно, так как при известной температуре будет кипеть нераздельно кипящая смесь. Чтобы разделить азеотропную смесь, приходится прибегать или к изменению температуры перегонки путем изменения внешнего давления или прибавлением третьего компонента (при изменении давления паров меняется состав азеотропной смеси), или использовать различную растворимость или различие температур застывания компонентов, входящих в азеотропную смесь. При обычной перегонке нефти, когда получаются фракции, кипящие в широких интервалах температур, наличием азеотропных смесей можно пренебречь и считать, что нефть представляет идеальный раствор, следующий закону Рауля. С особенностями азеотропных растворов приходится сталкиваться при выделении из легких фракций нефти отдельных индивидуальных углеводородов, особенно ароматических. Например для правильного распределения метановых углеводородов по двухградусньш фракциям при тщательной ректификации бензина оказалось необходимым удалить предварительно из бензмна ароматические углеводороды. При перего нке бензинов бензол (т. кип. 80,2° С) концентрируется во фракциях, кипящих. при 71—75° С, а толуол (т. кип. 110,6° С) концентрируется во фракции с температурой кипения ЮГ С. [c.173]

    Этанол (метилкарбинол, этиловый спирт) — бесцветная подвижная жидкость с жгучим вкусом и характерным запахом. Температура кипения этанола 78,4°С, температура плавления -114,15°С, плотность 0,794 т/м . Этанол смешивается во всех отношениях в водой, спиртами, глицерином, диэтиловым эфиром и другими органическими растворителями. С некоторыми из них (водой, бензолом, этилацетатом, хлороформом) он образует азеотропные смеси различного состава. Азеотропная смесь с водой, содержащая 95,6% об. этанола, кипит при постоянной температуре 78,1°С. Поэтому, для получения безводного ( абсолютного ) этанола в промышленности используют специальные методы его обезвоживания, например, абсолютирование бензолом. Этанол образует алкоголяты с солями кальция и магния, например СаС12 4С2Н50Н и МяСЬ бСгНбОН. [c.270]

    Многие вещества образуют азеотропиые смеси, т. е. при определенном соотношении компонентов смесь имеет максимально большую или минимально малую температуру кипения (табл. 6). Азеотропную смесь невозможно разделить перегонкой на отдельные компоненты, так как жидкость и пар над ней имеют одинаковый состав (разд. А,2.3.3 и рис. 52). Из числа известных азеотропных смесей можно назвать, например, постоянно кипящую бромистоводородную кислоту (т. кип. 126°С, максимум температуры кн-пення) и 96%-ный этиловый спирт (т. кип. 78,15°С, минимум тем пературы кипения). [c.80]

    Азотная кислота образует с водой постоянно кипящую (азеотропную) смесь ст. кип. 121,9° С, содержащую 68,4% HNO3. [c.37]

    Азеотропные смеси (азеотропы). Азеотропная смесь ведет себя подобно чистому веществу, поскольку она перегоняется без изменения состава или температуры кипения до тех пор, пока давление остается постоянным. Перемена давления приводит как к изменению температуры кипения и состава азеотропа, так и формы кривой равновесия пар—жидкость. Эти изменения почти всегда малы, если только давление не изменится значительно. Так, раствор хлористого водорода и воды, содержащий 20,2% (весовых) хлористого водорода, кипит при 110° (при 760 мм рт. ст.), давая дестиллят того же состава (рис. 7). При нагревании смеси любого другого состава один из компонентов отгоняется в различных количествах до тех пор, пока в кубе не останется азеотропная смесь, которая затем перегоняется при постоянной температуре. Все смеси, содержащие меньше 20,2% хлористого водорода, можно рассматривать как составленные из воды и азеотропа, причем более летучим компонентом будет вода. Те же смеси, в которых содержится более 20,2% хлористого водорода, можно рассматривать аналогично как состоящие из хлористого водорода и азеотропа более летучим компонентом будет хлористый водород. Подобно тому, как это происходите системами, не содержащими азеотропа, перегонка, если только она достаточно эффективна, приводит к разделению на воду и азеотроп для систем, содержащих менее 20,2% хлористого водорода, и на хлористый водород и азеотроп для систем, содержащих более 20,2% хлористого водорода. Система вода— хлористый водород является типичной для систем, образующих смеси с максимальной точкой кипения. Аналогичные положения применшмы к системам, образующим смеси с минимальной точкой кипения, за исключением того, что в них азеотроп более летуч, чем любой из компонентов. Так, все смеси толуол—спирт, содержащие менее 41 % толуола, могут быть разделены на азеотроп и спирт, а смеси, содержащие более 41% толуола,—на азеотроп и толуол. Изложенную характеристику двойных азеотропных систем можно свести в следующие положения  [c.26]

    Регенерация антренера из водного слоя (из флорентины 4) производится в колонне 8, имеющей 17 тарелок В ней отгоняются острым паром антренер и другие летучие продукты, вы водимые из системы через конденсатор 9 и флорентину 10 С водным (нижним) слоем из последней отводятся накаплива ющиеся в системе метилацетат, спирты и т п, а слой антре нера (верхний) стекает в общую флорентину 4 Кислотность отбросной воды из колонны 8 не должна превышать 0,2—0,3 % Коэффициент извлечения товарной кислоты при азеотропном способе доходит до 72—75 % Расход тепла немного выше, чем при экстрационном способе, и составляет 8,3—9,6 ГДж на 1 т кислоты сырца, воды расходуется 80 м , антренера до 60 кг/т Азеотропный способ укрепления жижки осуществим и с при менением бутилацетата, образующего с водой постоянно кипя щую при температуре 90,2 °С азеотропную смесь, содержащую 28,9 % воды Аппаратурное оформление процессов такое же, что и на рис 4 4 Коэффициент извлечения уксусной кислоты несколько ниже, чем при использовании древесно спиртовых масел, а расход тепла (пара) примерно равен расходу по [c.93]

    Этанол (этиловый спирт) С,Н ОН — бесцветная жидкость со слабым запахом, легко воспламеняется. Смешивается с водой во всех соотношениях. Прчем внутрь даже небольших количеств этанола понижает восприимчивость органов чувств, вызывает сильное поражение центральной нервной системы. Широко используется в промышленном органическом синтезе. В фармации применяется для приготовления настоек и экстрактов в медицинской практике — как наружное антисептическое средство для дезинфекции рук и хирургических инструментов. Безводный (абсолютный) спирт кипит при 78,37 С. Получаемый в промышленности спирт-ректификат представляет собой смесь 95,6% этанола и 4,4% воды, которая кипит при постоянной температуре — 78,15 °С (смеси определенного состава, кипящие при постоянной температуре, называют азеотропными смесями). Основной промышленный способ получения этанола — гидратация этилена под давлением. [c.177]

    Joung нашел, что температура кипения азеотропной смеси изопропилового спирта с водой равна 80,37°. В этой смеси содержится 87,90% (весовых) изопропилового- спирта. Смеои, содержащие спирта больше, чем азеотропная iwe b, при кипении образуют пар, более богатый спиртом, чем жидкость. Омеси с низшими концентрациями спирта образуют при кипении пар, более бедный, чем жидкость состав пара имеет тенденцию приближаться к составу постоянно-кипящей смеси. Lebo исследовал температуры кипения различных смесей изопропилового спирта с водой и нашел, что азеотропная смесь имеет темп. кип. 80,4 , содержит 87,7% (весовых) спирта (или 91,1% по объему) и обладает удельным весом — 0,8158. [c.392]

    Равновесие паровой и жидкой фаз в системе серная кислота —вода представлено на рис. 182. Из диаграммы видно, что вода и серная кислота образуют азеотропную смесь, содержащую 98,3% вес. Н2304, кипящую под атмосферным давлением при 336,6°. Перегонкой разбавленные водные растворы серной кислоты могут быть разделены на воду и такую постоянно кипящую смесь. Безводная серная кислота кипит под [c.417]

    Смесь жидкостей определенного состава, которая перегоняется при постоянной температуре без изменения состава, называется азеотропной. Температура кипения такой смеси обычно ниже наиболее низкокипящего компонента, но иногда бывает выше наиболее высококииящего компонента она гцгкогда не бывает промежуточной. Обычный этиловый спирт является азео-тролом (т. ки Л. 78,1 ) и состоит из 95,57о вес. этилового спирта" (т. кип. 78,4°) и 4,5% вес. воды. Азеотропная смесь из 32,4% этилового спирта и 67,6 /о бензола (т. кип. 80,1°) кипит при 68,2". Тройной азеотроп (т. кип. 64,9°) содержит 74,1% бензола, 18,5% этилового спирта и 7,4% воды. Абсолютный спирт получают добавлением бензола к 95%-ному спирту при перегонке вода удаляется в виде летучей азеотропной смеси [c.25]

    Смеси жидкостей, соответствующие экстремальным точкам на рассмотренных кривых, называют азеотропическими смесями (азеотропами) или нераздельно кипящими — они кипят как одно целое при постоянной температуре и не разделяются путем перегонки. Если разделить диаграммы типа приведенных на рис. VII. 11 на две части вертикальной чертой — часть правее азетропа и часть левее его, станет ясно, что смесь произвольного состава можно путем перегонки разделить на азеотроп и один из компонентов. В табл. 31 приведены примеры азеотропных растворов. [c.283]

    При дистилляции бинарйой смеси жирных кислот температура кипения, ее в результате отгонки части одного из компонентов сначала постепенно повышается до некоторого максимума. Оставшаяся часть кипит при постоянной температуре как индивидуальное вещество, несмотря на то что она представляет со- 0ой сме сь двух жирных кислот. При этой постоянной температуре содержание летучего компонента в парах будет такое же, как и в жидкости, т. е. испарение протекает без изменения состава". Такие неразделяющиеся простой перегонкой смеси жирных кислот назьТБают азеотропными. [c.52]

    Азеотропной (нераздельно кипящей) называется смесь жидкостей (взаимно растворимых или нерастворимых), образующих при определенной температуре кипения смесь паров постоянного состава. Так, смесь воды с бензслом кипит при температуре 69° (температура кипения бензола 80°), причем образующиеся пары содержат 91% бензола и 9% воды. [c.44]

    Винилалкиловые эфиры, как и другие простые эфиры, принадлежат к акцепторным жидкостям, образующим водородные связи с веществами, имеющими подвижный атом водорода. Бинарные смеси простых эфиров со спиртами, сильно ассоциированными за счет водородных связей, характеризуются, однако, положительными отступлениями от закона Рауля. Последнее, вероятно, объясняется большим числом рвущихся водородных связей по сравнению с числом и энергией вновь образующихся связей [11]. Поэтому при достаточной близости температур кипения компонентов наблюдается образованхге гомогенных минимальных азеотропных смесей при перегонке эфирноспиртовых смесей. Согласно Войтсу [12], и.пропиловый спирт (т. кип. 97,19°) и дипропиловый эфир (т. кип. 91°) дают азео-тропную смесь с т. кип. 85,8° и содержанием 32,2 вес. % спирта, а н. бутиловый спирт (т. кип. 117,5°)и дибутиловый эфир (т. кип. 141,9°) дают смесь с т. кии. 117,25° и содержанием 88 вес. % спирта. Этиловый спирт и диэтиловый эфир (разница температур кипения 43,8°) не образуют постоянно кипящей смеси. Отступления от закона Рауля, таким образом, недостаточно для образования экстремума на кривой плотность пара — состав в случае компонентов, значительно отличающихся по температурам кипения. [c.43]


Смотреть страницы где упоминается термин Постоянно кипящие смеси Азеотропные смеси : [c.53]    [c.389]    [c.590]    [c.328]    [c.61]    [c.18]    [c.590]    [c.262]    [c.250]   
Химическая термодинамика (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Азеотропные постоянно кипящие

Азеотропные постоянно кипящие смеси

Смесь азеотропная Азеотропные рас



© 2025 chem21.info Реклама на сайте