Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы температуры кипения при различных

    На рис. 29 изображен прибор для определения повышения температуры кипения различных жидкостей. Исследуемый раствор помещают в широкую пробирку 2 с боковой трубкой, которая погружается в сосуд 4. Чтобы не нагревать пробирку 2 непосред- [c.106]

    Полученное равенство ( .18) представляет собой математическое выражение закона Рауля. Относительное понижение давления пара растворителя над раствором по сравнению с чистым растворителем равно мольной доле растворенного веш,ества. Следствия из закона Рауля таковы относительное понижение давления пара над растворами равной концентрации различных веществ, в одном и том же растворителе одинаково относительное понижение давления пара над раствором одномоляльной концентрации не зависит от природы растворенного вещества и является специфической характеристикой растворителя, называемой моляльным понижением давления пара над раствором температура кипения раствора t f ш выше, чем для чистого растворителя. Рост температуры кипения раствора по сравнению с чистым растворителем пропорционален концентрации растворенного вещества [c.117]


    В справочной литературе мы найдем температуры кипения различных концентраций растворов только при атмосферном давлении, в то время как в выпарных аппаратах мы встретимся с самыми разнообразными давлениями как выше, так и ниже атмосферного. [c.307]

    Для измерения температуры замерзания или кипения раствора обычно применяют дифференциальный термометр Бекмана, который изображен на рис. 50. Этот термометр имеет шкалу, разделенную на 5—6 градусов. Каждый градус в свою очередь разделен на десятые и сотые доли градуса, так что с помощью лупы можно брать отсчеты с точностью до 0,002° С. Особенностью термометра Бекмана является то, что он имеет в отличие от обычных ртутных термометров дополнительный резервуар с ртутью на верху капиллярной трубки. Наличие этого резервуара дает возможность менять количество ртути в нижнем резервуаре, что, позволяет определять с помощью такого термометра разность температур в широком интервале и использовать его для измерения температур замерзания, а также для измерения температур кипения различных растворов. [c.134]

    На рис. 51 изображен прибор для определения повышения температуры кипения различных жидкостей. Исследуемый раствор помешают в широкую пробирку 1 с боковой трубкой, которая погружается в сосуд 2. Чтобы не нагревать пробирку 1 непосредственно огнем, сосуд 2 заполняют жидкостью, имеющей по сравнению с исследуемым раствором более высокую температуру кипения. Спиралевидные трубки 3 предназначены для охлаждения образующихся паров жидкости и для обратного их перевода в сосуд. [c.134]

    Значения температур кипения различных растворов при атмосферном давлении, а также [c.418]

    Другие физические характеристики смотрите в следующих литературных источниках вязкость глицерина при различных температурах — [140] термическое расширение глицерина и его водных растворов, показатели преломления водных растворов глицерина прн 20 °С — [141] температуры кипения водных растворов глицерина при 760 мм рт. ст. — [142] температуры застывания и плотность водных растворов глицерина — [143] вязкость водных растворов глицерина — [144]. Физические характеристики глицерина приведены также в работе [145]. [c.200]

    Экстракция [5.24, 5.31, 5.33, 5.55]. Метод основан на различной растворимости извлекаемого химического соединения в воде и растворителе, используемом в качестве экстрагента. Чем лучше извлекаемое соединение растворено в экстрагенте, чем больше разница температур кипения между ними, чем более химически устойчиво извлекаемое соединение к экстрагенту и чем меньше оно растворяет в себе экстрагента, тем более эффективен этот метод. Экстрагент должен равномерно распределяться в объеме обрабатываемой воды, обладать высоким коэффициентом распределения, иметь низкую растворимость в воде и отличающуюся от воды плотность. Как правило, применение метода экономически оправдано при концентрациях извлекаемых соединений более 3 кг/м . [c.484]


    На измерениях температур кипения и замерзания растворов основные эбуллиоскопический и криоскопический методы определения молекулярных масс веществ. Оба метода широко используются в химии, так как, применяя различные растворители, можно определять молекулярные массы разнообразны. С веществ. [c.230]

    Абсорбционные холодильные машины применяют главным образом при иаличии вторичных энергоресурсов отработанного пара, горячей воды, отхо-ДЯШ.ИХ газов и других теплоносителей. В абсорбционных холодильных машинах используют растворы двух компонентов с различными температурами кипения при том же давлении. Один компонент, кипящий при низкой температуре, выполняет функции холодильного агента, другой — служит в качестве абсорбента (поглотителя). Из веществ, пригодных для получения низких температур, практическое применение имеет водноаммиачный раствор. [c.322]

    Это явление изучалось на четырех различных автомобилях при их разгоне с полностью открытой дроссельной заслонкой. Во впускной трубопровод каждого двигателя поочередно впрыскивались алкилиодиды с различной температурой кипения. Замерялось время движения иодида от момента его впрыска во впускной тракт до конца выпускного тракта, где была укреплена фильтровальная бумага, пропитанная крахмальным раствором, который под действием иода синел. Полученные результаты показали (рис. 4), что с увеличением температуры кипения иодида увеличивается задержка появления его продуктов сгорания в конце выпускного тракта. Чем выше температура кипения иодида, тем большее количество его попадает в жидкую пленку и тем медленнее движется он по впускному трубопроводу, тем позже появляются продукты его разложения в конце выпускного трубопровода [9]. [c.36]

    Неполная диссоциация молекул, взаимное притяжение ионов, их гидратация и другие эффекты влияют на различные свойства раствора. Суммарное влияние их на любое из термодинамических свойств может быть выражено через коэффициент активности электролита в данном растворе. Поэтому коэффициент активности и активность могут быть определены путем измерения различных свойств растворов температуры замерзания, температуры кипения, давления насыщенного пара, осмотического давления, электродвижущей силы (э. д. с.) гальванической цепи (см. ниже) и др. [c.395]

    Сопоставляя различные методы выбора разделяющих агентов, необходимо иметь в виду, что все свойства растворов взаимосвязаны и их значения определяются свойствами компонентов и интенсивностью их взаимодействия друг с другом. Поэтому о характере отклонений от идеального поведения можно судить не по одному, а по ряду свойств. Так, к заключению о пригодности воды в качестве разделяющего агента для системы этанол—этилацетат можно прийти, основываясь на том, что смеси этилацетата и воды имеют более низкие температуры кипения, чем такого же состава смеси этанола и воды. К этому же выводу можно прийти, основываясь на том, что азеотроп этилацетат—вода имеет более глубокий минимум температуры кипения, а также принимая во внимание наличие ограниченной взаимной растворимости в системе этилацетат—вода, в противоположность системе этанол—вода. Из этого следует, что все методы выбора разделяющих агентов по свойствам растворов практически равноценны. Выбор же того или иного метода должен в каждом конкретном случае определяться степенью полноты имеющихся данных о свойствах растворов и трудностью их экспериментального определения. [c.71]

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Температура кипения раствора изменяется от наибольшего значения н внизу у греющих труб (точка 7) до меньшего у поверхности выпариваемого раствора (точка 9). Изменение температуры кипения раствора объясняется изменением гидростатического давления кипящего раствора на различных высотах. Если давление у поверхности выпариваемого раствора равно давлению в паровом пространстве аппарата р, то давление внизу у греющих труб равно р -1- (в ат), причем гидростатическое давление [c.189]

    При выпаривании под повышенным давлением вторичный пар может быть использован как нагревающий агент в подогревателях, для отопления и т. п., а также для различных технологических нужд. Выпаривание под давлением связано с повышением температуры кипения раствора, поэтому применение данного способа ограничено свойствами раствора и температурой нагревающего агента. [c.469]

    Температура кипения водных растворов КН4 Оз при различных давлениях [c.630]

    Так как монель стоек в быстро движущейся морской воде, его часто применяют при изготовлении деталей клапанов и водоотливных шахтных стволов. Из него изготавливают также промышленные емкости для горячей пресной воды и различное оборудование для химической промышленности. Он стоек в кипящих растворах серной кислоты при концентрациях ниже 20 %. скорость коррозии в этих условиях менее 0,20 мм/год (длительность испытаний 23 ч) [6]. Монель обладает очень высокой стойкостью в неаэрированных растворах HF любой концентрации вплоть до температуры кипения (в насыщенном азотом 35 % растворе HF при 120 °С скорость коррозии составляет 0,025 мм/год при насыщении воздухом — 3,8 мм/год) [7 ]. Сплав имеет высокую стойкость и в щелочах, за исключением горячих концентрированных растворов едкого натра или аэрированных растворов гидроксида аммония. [c.363]

    Ректификационными колоннами называют вертикальные цилиндрические аппараты, предназначенные для четкого разделения смеси двух взаимно растворимых жидкостей с получением целевых продуктов требуемой концентрации. Такое разделение обеспечивается в результате процесса ректификации, под которым понимают двусторонний массообмен между двумя фазами растворов, одна из которых паровая, другая — жидкая. Диффузионный процесс разделения жидкостей ректификацией возможен при условии, что температуры кипения жидкостей различны. Для осу- [c.121]

    Температуру кипения раствора данной концентрации при различных давлениях можно определить по методу Дюринга (уравнение VII. 19), если известны две экспериментальные точки при этом в качестве стандартной жидкости выбирают чистый растворитель. [c.188]

    Температуру кипения растворов при различных давлениях можно определить и по приближенному уравнению Тищенко, если известна температура кипения раствора той же концентрации прп нормальном давлении [c.188]

    В настоящее время ректификация получила широкое распространение и применяется для получения различных продуктов определенной чистоты. Однако, для разделения чувствительных к повышенным температурам (термолабильных) веществ, для извлечения ценных продуктов или примесей из сильно разбавленных растворов, а также для разделения компонентов с близкими температурами кипения в ряде случаев может оказаться более целесообразным применение других методов разделения, например, экстракции. [c.8]

    На фиг. 8 представлены кривые парциальных давлений одного из компонентов бинарного неидеального раствора в функции мольного состава жидкой фазы для различных положительных отклонений от закона Рауля. При некоторых определенных значениях величин отклонений от свойств идеального раствора и, в частности, для систем, компоненты которых имеют близкие температуры кипения, кривая общего давления паров системы может иметь экстремальную точку. В этом случае раствор, состав которого отвечает максимуму или минимуму суммарной упругости паров, называется азеотропи-ческим раствором и характеризуется тем, что жидкость кипит при постоянной температуре и находится в равновесии с паром одного и того же с нею состава [7]. [c.17]

    Весьма большую роль в кристаллообразовании парафинов играют мелкокристаллические высококипящие парафины, влияющие на структуру парафинов с более низкими температурам кипения. При добавке к раствору крупнокристаллического парафина даже самых незначительных количеств высококипящих мелкокристаллических парафинов сразу же резко снижаются размеры образуюнщхся кристаллов. Это обусловливается тем, что высококипящие парафины, будучи менее растворимыми в различных растворителях, в том числе и в нефтяных маслах, начинают выкристаллизовываться первыми и образуют большое число центрой. кристаллизации. Последующее выделение менее высококипяпщх и по природе крупнокристаллических парафинов происходит на уже образовавшихся многочисленных центрах кристаллизации, вследствие чего вся выкристаллизовавшаяся масса парафина рассеивается по этим многочисленным центрам кристаллизации, приобретая в результате этого мелкую структуру, отвечающую наиболее высококипящей высокомолекулярной ее части. [c.67]

    Оценку эффективности различных растворителей для экстракционной перегонки можно произвести различнымт способами. Предварительный отбор может быть выполнен путем измерения температур кипения смесей углеводородов и растворителя. Хороший растворитель должен обладать значительно более низкой экспериментально измеренной температурой кипения смеси, чем температура, рассчитанная на основе линейной зависимости между составом и температурой кипения. Это иллюстрируется графиком (рис. 5), выражающим зависимость температуры кипения смеси метил-циклогексана с анилином от состава [11]. Экспериментальная кривая, выражающая зависимость температуры кипения от состава смеси, расположена значительно ниже пунктирной линии, соответствующей линейной зависимости между температурой кипения и составом. Это показывает, что образуются неидеальные растворы, для которых отклонения от закона Рауля имеют положительное значение. Экспериментальные данные по равновесию пар—жидкость показали, что в качестве растворителей для [c.100]

    Как пройдут кривые зависимости давления иара раствора нелетучего вещества различных концентраций от температуры, если нх наносить на диаграмму состояния чистого растворителя Л ожио лн на этих диаграммах показать, как изменяется температура кипения раствора и температура замерзания его и зависимости от кошгеитрацни раствора  [c.194]

    Отличительная особенность этих аппаратов состоит в том, что благодаря интенсивной циркуляции горячий питающий раствор предварительно смещивается с уже охлажденным маточным раствором. В результате такого смешения температура раствора становится всего лишь на несколько градусов выше температуры кипения при данном вакууме и при самоиспарении раствора в нем возникает сравнительно небольшое пересыщение. Причем при выходе суспензди из циркуляционной трубы и движении ее вниз кристаллы классифицируются наиболее крупные отводятся, а кристаллы меньших размеров вновь засасываются в циркуляш -онную трубу и, многократно проходя через зону пересыщения, увеличиваются в размерах. Очевидные преимущества циркуляционных вакуум-кристаллизаторов позволяют считать их наиболее перспективными для химической технологии [1]. Это подтверждается и тем фактом, что в настоящее время предложено много различных вариантов этих аппаратов [1, 28-36 J. [c.177]

    Системы, которые по диаграммам температур кипения относятся к различным типам (см. рнс. 108), неодинаково ведут себя при дистилляции. Рассмотрим сначала системы, относящиеся к первому из трех типов (см. рис. 107). Если нагревать раствор состава N, то кипение его начнется, когда будет достигнута температура t. Пар, равновесный с этим раствором, обладает составом Ыз. Он более богат компонентйм В, чем жидкий раствор, поэтому после испарения некоторого количества раствора остающаяся часть его становится богаче компонентом А и имеет, например, состав IV2- Раствор такого состава не может кипеть, пока температура не поднимется до /г- Пар, находящийся в равновесии с этим раствором, обладает составом Л/4. Он тоже более богат компонентом В, чем раствор. Поэтому остаток раствора обогащается компонентом А и температура кипения повышается. В результате в остатке в конце концов будет содержаться практически чистый компонент А и температура кипения достигнет tj . [c.319]

    Что касается зависимости адсорбции от вида газа, то можно указать здесь одно приближенное правило, относящееся к области адсорбции при сравнительно высоких концентрациях газа. По этому правилу, при прочих равных условиях сильнее адсорбириются те газы, которые легче конденсируются в жидкость и которые, следовательно, обладают более высокой температурой кипения в сжиженном состоянии. Для адсорбции из растворов существует закономерность, аналогичная этому правилу. Сопоставляя растворы различных веществ при одинаковой концентрации, можно установить, что из раствора сильнее адсорбируются обычно те вешества, которые обладают меньшей растворимостью в данном растворителе. [c.370]

    Коррозионная стойкость хромоникельмолибденомедистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов па коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации ц температуры среды. Хром повышает коррозионную стойкость в 5—30%-иой серной кислоте при температуре 80° С. Никель и медь повышают коррозионную стойкост1з в 5—60%-ной серной кислоте и особенно в 40—60%-ной ири 80° С и в 5— 50%-ной лрн температуре до 80° С. Молибден увеличивает стойкость стали в 5—70%-ной кислоте прн 80° С и в 5—507о-пой при температуре кипения. [c.230]

    Для изучения равновесия пар — жидкий раствор применяют два типа диаграмм состояния 1) диаграммы давление пара — состав (Т = onsi), 2) диаграммы температура кипения — состав (Р = = onst). Диаграммы состояния для различных типов растворов (/-идеальный раствор, 11(111) — реальный раствор с незначительным положительным (отрицательным) отклонением от идеальности, IV(V) — реальный раствор со значительным положительным (отрицательным) отклонением от идеальности представлены на рис. 130, на котором приведены, кроме того, диаграммы состав жидкого раствора — состав пара. Для изучения равновесия пар — жидкий раствор чаще используются диаграммы температура — состав, называемые диаграммами кипения. Рассмотрим диаграммы кипения для некоторых реальных систем (рис. 131 — 133). На этих диаграммах фигуративные точки а н Ь соответствуют температурам кипения чистых компонентов при данном внешнем давлении Р. При температуре кипения чистого компонента система инвариантна (С =1—2 + 1 = 0). Та из двух жидкостей, которая обладает более низкой температурой кипения при заданном давлении, соответственно будет более летучей при данной температуре. Каждая из диаграмм кипения имеет две кривые, разделяющие диаграмму на три области I — область пара (С = 2—1 -f- 1 = 2), II — область жидкости (С =2—1 + 1 =2), III — область равновесия пара и жидкости (С =2—2 +1 =1). [c.389]

Рис. 67. Зависимость температуры кипения растворов от ковцентрации NaOH при различных давлениях. Рис. 67. <a href="/info/1702746">Зависимость температуры кипения растворов</a> от ковцентрации NaOH при различных давлениях.
    Температуры кипения растворов окислов азота в HNO3 и содержание окислов в парах при различном общем давлении [c.626]

    Синтетические ВЖК — это смеси насыщенных монокарбоно-вых кислот нормального и изостроения с четным и нечетным числом углеродных атомов в цепи. В дальнейшем под термином ВЖК понимаются исключительно синтетические кислота (СЖК). Технический продукт под таким названием выпускается в виде фракций различного состава в зависимости от назначения. Свойства фракций, в том числе температуры их плавления, зависят от молярной массы входящих в них кислот. Так, фракции С-5—Сб, С7—Сэ, Сд—Сю и Сю—С13 представляют маслянистые жидкости с температурами кипения от 200 до 284°С фракции Сю—Схб и С13—Схб — мазеподобные продукты с температурами кипения от 270 С до 215°С (при 2 кПа), фракция С17—С20 — твердое вещество с температурой размягчения 60—75°С. Все ВЖК имеют цвет от белого до светло-желтого, они легче воды (плотность 0,86—0,92 т/м ) и не растворяются в ней. Растворяются в щелочах с образованием соответствующих солей (мыла), которые разлагаются минеральными кислотами и легко гидролизуются. ВЖК умеренно токсичны, оказывают раздражающее действие на кожу и слизистые оболочки. ПДК паров суммы кислот (в пересчете на уксусную кислоту) равна 5 мг/м . [c.282]

    Стирол (винилбензол, фенилэтилен) СбН5-СН=СН2 — бесцветная жидкость с характерным сладковатым запахом, с температурой кипения 145,2°С, с температурой плавления -30,6°С и с плотностью 0,906 т/м . Плохо растворим в воде (0,05% мае.), образуя с ней азеотропную смесь с температурой кипения 34,8°С, смешивается во всех отношениях с метанолом, этанолом, диэтиловым эфиром, ацетоном, четыреххлористым углеродом. Хорошо растворяет различные органические вещества. Критическая температура стирола составляет 373°С. [c.335]

    Хастеллой В и промышленные сплавы аналогичного состава устойчивы в соляной кислоте любой концентрации при температурах вплоть до температуры кипения (рис. 22.1). Скорость коррозии сплава составляет в кипящем 10 % растворе НС1 — 0,23 мм/год в кипящем 20 % растворе НС1 —0,5 мм/год в 37 % растворе НС1 при 65 °С—0,05 мм/год [18]. В кипящих растворах серной кислоты стойкость достаточна вплоть до 60 % растворов H2S04(<0,2 мм/год). В фос( юрнои кислоте скорость коррозии низка при любых концентрациях и температурах наивысшая скорость коррозии в чистой кислоте наблюдается в кипящих 86 % растворах (0,8 мм/год). Стойкость также достаточно высока в различных горячих и холодных органических кислотах. [c.365]


Смотреть страницы где упоминается термин Растворы температуры кипения при различных: [c.140]    [c.501]    [c.8]    [c.103]    [c.60]    [c.60]    [c.152]    [c.17]    [c.230]    [c.421]    [c.79]    [c.440]    [c.356]    [c.49]    [c.223]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Раствор кипение

Температура кипения раствора



© 2024 chem21.info Реклама на сайте